U.S. flag

An official website of the United States government

Skip Header


Analytic Derivatives for Estimation of Linear Dynamic Models

Written by:
Working Paper Number CES-88-05

Abstract

This paper develops two algorithms. Algorithm I computes the exact, Gaussian, log-likelihood function, its exact, gradient vector, and an asymptotic approximation of its Hessian matrix, for discrete-time, linear, dynamic models in state-space form. Algorithm 2, derived from algorithm I, computes the exact, sample, information matrix of this likelihood function. The computed quantities are analytic (not numerical approximations) and should, therefore, be useful for reliably, quickly, and accurately: (i) checking local identifiability of parameters by checking the rank of the information matrix; (ii) using the gradient vector and Hessian matrix to compute maximum likelihood estimates of parameters with Newton methods; and, (iii) computing asymptotic covariances (Cramer-Rao bounds) of the parameter estimates with the Hessian or the information matrix. The principal contribution of the paper is algorithm 2, which extends to multivariate models the univariate results of Porat and Friedlander (1986). By relying on the Kalman filter instead of the Levinson-Durbin filter used by Porat and Friedlander, algorithms 1 and 2 can automatically handle any pattern of missing or linearly aggregated data. Although algorithm 1 is well known, it is treated in detail in order to make the paper self contained.

Page Last Revised - October 8, 2021
Is this page helpful?
Thumbs Up Image Yes Thumbs Down Image No
NO THANKS
255 characters maximum 255 characters maximum reached
Thank you for your feedback.
Comments or suggestions?

Top

Back to Header