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Research Problem from American Community
Survey (ACS) Operations

* Multi-dimensional problem
— Declining response rates
— Increasing collection costs I
— Exceeding respondent burden
* Multi-objective optimization problem with conflicting
objectives

— We present first steps to solve problem
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Physical Contact Attempts for Final Outcome

Outcome code 201: Occupied } Completed
Outcome code 218: Respondent refusal _ .
g Non-interview

Outcome code 313: Respondent burden exceede

e Average contact attempts:
— 201: approx. 2.5 } 1.5M contact attempts (2017 + 2018)

— 218: approx. 5

—313: approx. 7 } 600,000+ contact attempts (2017 + 2018)
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Costly contact attempts: Can we do better?

* Research Question:

— Can we identify non-respondents based on first contact ONLY?
* Answer:

— We can identify 70-80% of non-respondent households
* Impact:

— Prioritize cases with higher probability of completion

— Create adaptive design rules based on model results

e How do we do it?
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Current use of CHI in ACS

CHI — Contact History Information

— Paradata recorded by field rep when contact attempt is not
successful in getting a response

Burden score calculation based on CHI
— Updated based on each contact attempt

Burden score or CHI are not used to predict final response
propensity (completion or refusal)
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Research question and solution approach

Predict respondent refusal from first contact only -- using
both numeric and textual information (structured and
unstructured)
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— CHI: Structured numeric information
— Case Notes: free form text, unstructured
— Combine and use CHI and Case Notes

CHI based response propensity prediction model (new for ACS)
Case Notes based response propensity model (new for Census)
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Data merging: CHI with Case Notes

* 2017 and 2018 ACS CHI and Case Notes (focus of current analysis)

* Each CHI record was merged with zero-to-many Case Notes
associated with that contact attempt

* Challenge: CHI and Case Notes captured on different systems
— Merged on control number, date and timestamp
— Timestamp does not match
— Manually verified large (>400) samples to identify pattern of linkage

— Custom linkage algorithm based on control number, date and proximity of
timestamp between CHI and Case Notes
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Data merging with Workload table

* First contact only model:

— CHI + Case Notes (First contact only) = ControlNumber - FINAL
OUTCOME from Workload table

— (completed/refused when it happens in second or later contact)

* Focus: Predict final outcome = based on first contact info
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Distribution of Outcome Codes for First Contact only
model (2017 and 2018 data)
Outcome code Definition 2017 2017 2018 2018
(percent) (percent)
201 Occupied 225000 45% 205000 43%
218 Respondent refusal 36500 7% 45500 10%
313 Respondent burden exceeded 13000 3% 11000 2%
301 Vacant 95000 19% 88000 18%
501 Temporary occupied 2500 0.5% 2400 0.5%
203 Sufficient partial (occupied) - 11500 2% 11500 2%
no follow-up
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Predictive Model Setup
* Predict: Final outcome
— 201 (completed) vs 218 (refused)
— 201 (completed) vs 313 (burden exceeded)
* Prediction based on information from 15t contact only (personal or telephone)
* Predictors:
— Model 1: CHI only
— Model 2: Case Notes only (textual data)
— Model 3: ALL CHI and Case Notes
— Model 4 variations: Different CHI and Case Notes variables (based on variable
importance)
* Dimensionality reduction based on chi-square selection: all features (~10,000), best 6000 features,
best 4000, best 2000.
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Data undersampling used for modeling

* Models run: 201 vs 218, and 201 vs 313

» “Rare” occurrence of 218 (< 10%) and 313 (< 5%)

— Undersampling needed for data for modeling
Undersampled data used for modeling

2017 2018
Undersampling ratio] 50-50 | 40-60 | 30-70 50-50 | 40-60 30-70
Outcome codes

218] 36500 | 36500| 36500 45500/ 45,500 45,500

201 36,500 55,000 85,500 45,500 68,000 106,000

313 13,000 13,000 13,000 11,000 11,000 11,000
201 13,000 20,000 31,000 11,000 16,500 26,000
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Prediction model setup (e.g. for 40/60 in 2018)

All records from refusal —
(outcome='218'): 40% 45:500
of sample

113,500

Selected sample from

completed 68,000 |
(outcome='201'): 60% of
sample

UG ACICERCUM g5 125 / 28,375

Split: 75%-25%
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Methods

NLP (natural language processing)

— TF-IDF vectorization (Term Freq, Inverse Document Freq)
Machine Learning Models used

— Logistic Regression (LR)

— Random Forest (RF)

— Gradient boosting — XG Boost (XGB)

— Neural Network — Multi Layer Perceptron (MLP)

— Support Vector Machine (SVM)

Accounts for procedural — or model — bias in results
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Model metrics

Accuracy: number corrected predicted / total (n)

Precision: true refusals / total refusals predicted
— How many predicted refusals are actual refusals?
— Good metric, if cost of wrong prediction of refusals is high

Recall: true refusals predicted / total actual refusals
— How many of the actual refusals have been predicted?
— Good metric, if cost of gathering survey response is high

Precision=Recall
F1: Fl=2x—""——
Precision+Recall

— Measures balance between precision and recall
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2017

Features used cy(A) on(P) (R) wvalue
CHl only 0.701 0.785 0.548 0.645| 0.715 0.705 0.496 0.582 0.770 0.707 0.505
Notes only 0.739 0.811 0.618 0.702| 0.812 0.804 0.701 0.749 0.852 0.584 0.702

CHI + Notes (All Features)] 0.790 0.765/0.856 0.808| 0.832 0.808 0.761 0.784 0.864 0.833 0.683 0.751

Best model for respondent burden (201 vs. 313)

Random Forest
50-50 60-40 70-30

Accura Precisi Recall F1-

>
o
o
-
pd

P R F

ICHI+Notes(best2k) 0.798 0.772 0.862 0.814 |0.829 0.799 0.767 0.783| 0.864 0.827 0.689 0.752

2018

50-50 60-40 70-30

Accura Precisi Recall F1-

Features used cy(A) on(P) (R) value |A P R F A P R F
CHI only 0.721 0.682 0.860 0.761) 0.715 0.705 0.496 0.582 0.770 0.707 0.505
Notes only 0.757 0.742 0.809 0.774, 0.812 0.804 0.701 0.749 0.852 0.584 0.702

CHI + Notes (All Features)] 0.790 0.765 0.856 0.808/ 0.832 0.808 0.761 0.784 0.864 0.833 0.683 0.751

CUnited States”

IﬂHNotes(bestZk) 0.798 0.772 0.862 0.814' 0.829 0.799 0.767 0.783 0.864 0.827 0.689 0.752
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Distribution of Probability of Final outcome based
on first contact only (201 vs. 313)

| Differentiated strategies can be implemented for these segments |

2018 Distribution of Respondent Burden Prediction

2017 Distribution of Resy 1t Burden Predicti
201vs 313
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Frequency

1

0

0 01 02 03 04 0.5 0.6 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Probability of Burden Exceeded Probability of Burden Exceeded

Model with CHI + Notes (All features), 50-50 undersampling ratio
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Best model for respondent refusal (201 vs. 218)

Similar as in 201 vs. 313 modeling

Best model:
— CHI + Notes (all features), Random Forest, 40-60 undersampling

Notes-only model accuracy 20-25% better than CHI-only model

Probability distribution of final outcome can provide
differentiated strategies for operational implementation
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Feature importance

* Mix of CHI and Case Notes terms (single and double-word
phrases)

e Can be used to spot refusal reason trends in different times
and geographies

* Can be used to train FR
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Transfer learning
Response propensity — 201 vs. 218

* Train on 2017 data, predict 2018

* Choose best trained model from 2017
— Random Forest, 50-50 undersampling

* Predict refusals (218) for 2018
— 2018 Jan-Mar
— 2018 Jan-June
— 2018 full year

* Insights:
— Model accuracies dropped, as expected
— Need to build rolling horizon model
— Add state and RO (geographic dimension)
— Add month of survey (time dimension)
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Deep learning modeling ongoing

* Predictors:
— CHI
— Case Notes
— State and RO (regional office)  geographic dimension
— Survey month - time dimension
* Methods:
— NLP: NER (Named Entity Recognition), ELMo, BERT
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Conclusion and next steps

Promising results from CHI + Case Notes predictive model
— Used only 15t contact information to predict eventual outcome
— Augmenting with newer datasets (2019, 2020)
Can provide reliable recommendations for eventual refusal cases
Provide highly confident refusal recommendations
— Lower the data collection priority on predicted cases (eventual refusals)
— Add a high value to burden score
Can lead to savings in data collection
— Cost of each contact/case
Continue to fine-tune models
— Deep learning models

Experiment: For medium confident refusal recommendations, use some treatment to see if
it increases response rate
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