

A Smartphone App to Record Food Purchases and Acquisitions

Marcelo Simas, PhD

Presented at FedCASIC 2019

April 17, 2019

> FoodAPS-2 data collection – USDA / ERS

- Challenge is to lessen burden to reduce underreporting
- Other consumer purchasing surveys face similar challenges
- > Initial Hybrid App ADCM
 - Data collection test used a web-based app
 - Collected food acquisitions for all members of a household over a seven-day period
 - Smartphone host app created to better integrate for bar code scanning – require steady internet to function

What the App Collects

> Food Events

- Where do they happen and what are they?
 - Food at home (FAH) food you bring home
 - Food away from home (FAFH) food you acquire and consume out of home
- How much did you pay?
- How did you pay?
- > Food Items
 - Type of item, quantity/amount, price

Current Implementation Status

> Single adult/primary respondent

- Captures FAH & FAFH acquisitions
- Excludes meals at school
- Excludes shared meals
- > Future versions
 - Include all household members
 - Allow for data sharing among household members
 - Capture school meals
 - Reduce burden by entering shared meals only once
 - Integrate with web instrument for non smartphone participants

App Implementation Strategy

> Leveraged work done for DailyTravel HTS app

- Cross-platform
- Battery efficient location capture
- Fully disconnected mobile survey engine
- · Used by thousands of participants across US and Canada
- > Created new pages to bridge transitions between survey levels
 - Stop, Food Events, Food Items
- > Survey pages using programmable instruments
 - Added new question types (bar code scanning, PLU, picture taking, etc.)
- > Integrated with additional cloud services

App Technical Details

> Implemented in C# using Xamarin Forms

- Approximately 90% of source code shared between iOS and Android (.NET Standard)
- Encrypted SQLite database on phones
- > Server components implemented in C#
 - Website and services API in .NET Core
 - Phone activation
 - Secure data uploads and downloads
- > Server database hosted by PostgreSQL
 - Survey responses stored in binary JSON

> Native apps for iOS and Android (started in October of 2018)

- Ability to run in disconnected mode
- Faster, more responsive user interface
- > Apps to be installed on participants' phones (BYOD)
 - Web versions to be made available as fallback
- > Reduce respondent burden through technology
 - Location tracking, picture taking, receipt reading
 - Integrate with online services (Nutritionix, Calorie Mama)
- > Improve accuracy of food events and items
 - Link items to locations

7

General App Flow

8

Cloud Support Services

> List of food locations near stop

- Google Places and Nutritionix APIs
- > Auto-complete suggestions based on location's items
 - Restaurant menu items or grocery store
- > Matches scanned barcodes codes to product descriptions and other data
- > Uses Calorie Mamma machine vision for FAFH when a "picture" is taken
 - Identifies potential matches and asks respondent for confirmation

12:37 -

got at Safeway. Ways to add items

K Back

.... 🗢 🗖

Ē

\$12.00

0

р

 $\langle x \rangle$

Search

Food Items Let's get a list of all the food and drink you > Conducted internal feasibility test with no training earlier in 2019

- > Main feedback items were
 - Stop detection sensitivity needs to be adjusted (too many short stops detected)
 - Maps should be made bigger
 - Not all participants noticed that they could add items using...
 - Barcode scanner
 - PLU code
 - Keyboard was hard to dismiss on some survey pages

Work in Progress - Processing of Receipts

- > Receipt pictures uploaded to Westat
- > Python code hosted inside R package running on OpenCPU
- > Server runs through a series of steps
 - Filter out background using OpenCV
 - Stitch images back together
 - Perform OCR
 - Search for totals and items
- > App checks for completion and downloads data
 - User is presented details

- > Working with ERS to revise and simplify instruments at all levels (stop, food event and food items)
- > Will create web alternative for participants that would rather not use a smartphone
 - Participants will be able to start on smartphone and finish on web
 - Single integrated server database
- > Field test to take place in 2020/2021

Thank You

For more information on Westat branding, contact <u>MarceloSimas@westat.com</u>