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Designed Data
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The Data Bloggers
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How Would You Assess the Suitability for Use 
of These Data?
• How large a survey would you need to validate charts like these?

• What is the required sample size where the MSE of the simple 
random sample is lower than the MSE of the found data?

• If the incidence is low, and the frame bias is 20%?

• If the incidence is low, and the frame bias is 5%?
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Every Official Statistician Should Quote This 
Slide!
• Raghunathan (2015)

• If the expected incidence is 10%, and the expected bias in the found 
data is 20%, then a simple random survey of 290 cases has lower MSE 
than found data with one billion cases

• If the expected incidence is 10%, and the expected bias in the found 
data is 5%, then a simple random survey of 4,500 cases has lower 
MSE than found data with one billion cases

• This is why designed surveys are an essential component of designed 
data

10



Example of Correcting Frame Bias in Found 
Data
• Estimating the earnings distribution from administrative data on 

quarterly earnings

• From Abowd, McKinney and Zhao (2017)
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Earnings Inequality in the U.S.-Uncorrected
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Earnings Inequality in the U.S.-Corrected
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Records Removed from the Frame and Why
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Let Me Model That for You
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Designed Data Borrow Strength from Multiple 
Sources
• This example is from Bradley, Wikle and Holan (2015)

• Improving the areal coverage of American Community Survey 
estimates 
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What If All Data Were Private?
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http://delivery.acm.org/10.1145/2670000/2660348/p1054-erlingsson.pdf?ip=216.15.54.210&id=2660348&acc=OA&key=4D4702B0C3E38B35.4D4702B0C3E38B35.4D4702B0C3E38B35.91C7EFAB37C4303B&CFID=700754154&CFTOKEN=25738000&__acm__=1463661605_7a7cdd751220c0f7c2b23808082cfca3
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Where social 
scientists act like 
MSC = MSB

Where computer 
scientists act like 
MSC = MSB



Some Examples

• Dwork (2008): “The parameter e in Definition 1 is public. The choice 
of e is essentially a social question and is beyond the scope of this 
paper.” [link, p. 3]

• Dwork (2011): “The parameter e is public, and its selection is a social 
question. We tend to think of e as, say, 0.01, 0.1, or in some cases, ln 
2 or ln 3.” [link, p. 91]

• In OnTheMap, e = 8.9, was required to produce tract-level estimates 
with acceptable accuracy
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http://link.springer.com/chapter/10.1007/978-3-540-79228-4_1
http://dl.acm.org/citation.cfm?id=1866758
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Source: Haney et al. 2017



Can We Make Our Science Better 
and Reproducible?
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http://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-data-product.html
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The Synthetic Longitudinal 

Business Database

Based on presentations by Kinney/Reiter/Jarmin/Miranda/Reznek2/Abowd

on July 31, 2009 at the

Census-NSF-IRS Synthetic Data Workshop

[link] [link]

Kinney/Reiter/Jarmin/Miranda/Reznek/Abowd (2011)  “Towards 

Unrestricted Public Use Microdata: The Synthetic Longitudinal Business 

Database.”, CES-WP-11-04

Work on the Synthetic LBD was supported by NSF Grant ITR-0427889, and ongoing work is supported by the 
Census Bureau. A portion of this work was conducted by Special Sworn Status researchers of the U.S. Census 
Bureau at the Triangle Census Research Data Center. Research results and conclusions expressed are those of the 
authors and do not necessarily reflect the views of the Census Bureau. Results have been screened to ensure that 
no confidential data are revealed.

http://www.vrdc.cornell.edu/news/nsf-census-irs-workshop2009/program/2-2-kinney-itr09/
http://www.vrdc.cornell.edu/news/nsf-census-irs-workshop2009/program/3-1-reznek/
http://www.census.gov/ces/search.php?search_what=paps&detail_key=101943


Bertrand, Kamenica and Pan (QJE 2015), doi: 10.1093/qje/qjv001
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Reproducible science and formal privacy 
protection are joined at the hip

• Reproducible science:
• Provenance control and certification

• Output verification from certified inputs

• Archiving

• Curation of data and metadata

• Formal privacy protection:
• A confidential database contains a finite amount of information

• Every published use exposes some of this information

• This privacy loss must be quantified

• Once quantified, it is public-policy decision how to manage it
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Putting the Pieces Together
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Suppose we wanted to design a new, continuously updated information system on 
local labor markets.

Use the ideas from “Data bloggers” to properly combine contemporaneous elements 
harvested from the data jungle with designed elements produced by the agency.

Use the ideas from “Let me model that for you” to produce local estimates and 
measures of reliability for all local areas every period, including periods when the 
designed content is not in the field.

Use the ideas from “What if all data were private?” to provably protect the design-
consistent, model-based estimates from all future privacy attacks.

Use the ideas from “Can We Make Our Science Better and Reproducible?” to open a 
portal to the underlying data that returns safe estimates of hypotheses (i.e., estimates 
that have a controlled false discovery rate) and incorporates them into future versions 
of the model.

There are working prototypes of all these pieces running now. That’s where I got the 
graphics in this talk.
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Thank you.
Contact: john.maron.abowd@census.gov
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