

Evaluating a Propensity Score Adjustment for Combining Probability and Non-Probability Samples in a National Survey

FedCASIC 2015

Outline

2012 Canadian Nature Survey

- Research questions
- Survey design
- Weighting Methodology
- Results (Comparison of weighted estimates)
- Conclusions

Research Questions

National population survey of Canadian adults

- Complex sample design with hybrid probability and non-probability samples
- Multi-mode administration (Paper + Web)
- For probability sample (nationally):
 - 76,363 addresses sampled from ABS frame
 - 15,207 completes
 - 20% response rate (lower bound)

For non-probability samples (nationally):

- 8,897 completes

2012 CANADIAN NATURE SURVEY

Survey Design

2012 CANADIAN NATURE SURVEY

Survey Design

PAddress-Based Sample of Canadian Adults

- Drawn from Canada Post address file
- Stratification:
 - Province/Territory (all except Nunavut)
 - Urban/Rural address (Canada Post frame variable)
- Mode of Administration:
 - Paper, with Web option
- Within-HH selection by Last Birthday Method
- Targeted 1,000 completes in each province and territory

Web Panel Sample

- Canadian adults recruited via social media and websites
- Recruited to match key demographic distributions (race, age, education, income)
- In each P/T, fielded until target number of completes was reached

 Focus of current research is evaluation of weighting to combine the probability (ABS) and non-probability (Web panel) datasets for analysis

An ABS analytic weight was developed for ABS respondents

- Standard probability-based selection weight adjusted for non-response and poststratified to Census totals:
 - Province x Age x Sex
 - Province x Urban/Rural
 - Aboriginal/Non-Aboriginal

- The following approach was explored for combining the ABS and Panel respondents into a single weighted dataset:
 - 1. Estimate probability of observation in Panel (vs. Population)
 - 2. Score all (Panel and ABS) cases to assign a probability of observation under Panel design
 - 3. Assign probability of observation under ABS design to Panel cases
 - 4. Combine ABS and Panel observation probabilities to compute combined weight

- Estimate probability of observation in Panel (vs. Population) using weighted logistic regression
 - Outcome = Observation in Panel (vs. Population)
 - P(Observation) = P(Selection) * P(Response)
 - Weights:
 - For ABS cases, weight = ABS analytic weight (post-stratified to population)
 - For Panel cases, weight = 1

 Estimate probability of observation in Panel (vs. Population) using weighted logistic regression

– Predictors:

Effect	Comparison	Odds Ratio	_		
Province	AB vs QC	0.7			
	ON vs QC	1.1	ns		
Age	18 - 25 vs 76 - 100	7.9			
	26 - 35 vs 76 - 100	8.7			
	36 - 45 vs 76 - 100	7.7		- Base Model	Eull Mo
	46 - 55 vs 76 - 100	6.4		$R^2 = .11$	$R^2 = .$
	56 - 65 vs 76 - 100	7.3			
	66 - 75 vs 76 - 100	4.3			
Sex	Female vs Male	1.2			
Urbanicity	1 vs 2	1.2	_		
Nature-related Profession	0 vs 1	0.9	ns		_
Aboriginal	0 vs 1	1.1	ns		
Immigrant	0 vs 1	1.3			
Education (Highest)	1 vs 8	0.4			
	2 vs 8	1.4			
	3 vs 8	2.4			
	4 vs 8	1.8			
	5 vs 8	1.2	ns		
	6 vs 8	1.1	ns		
	7 vs 8	1.2	ns		
HH Income		0.9		_	

Score all (Panel and ABS) cases to assign a probability of observation in Panel

• Mean estimated probability of observation under Panel design:

Assign probability of observation under ABS design to Panel cases

- Probability of observation under ABS design computed as inverse of post-stratified ABS analytic weight
- Within post-stratification classes, same ABS probability was assigned to Panel respondents
 - This assumes that ABS and Panel cases within these classes have the same probability of observation under ABS design
- Result is that all cases in combined sample have a (true or estimated) probability of observation under both the ABS and Panel designs

AE		ABS	Panel
Sample Source	ABS	Inverse of post-stratified, NR- adjusted ABS sampling weight	Matched by post-stratification class
	Panel	Estimated Panel probability	Estimated Panel probability

P(Observation)

Combine ABS and Panel probabilities to compute combined weight

- $p(ABS \cup Panel) = p(ABS) + p(Panel) p(ABS) * p(Panel)$
- $w_{combined} = 1/p(ABS \cup Panel)$

Results

Demographics

Results

Conclusions

Unweighted panel data differed from benchmarks

- Demographics: More female, younger, lower income, less educated, more urban
- Outcomes:
 - Accurate (±2 points):
 - Nature-related profession
 - Aware of the concept of species at risk
 - Experienced a threat from wild animals
 - Experienced damage to personal property caused by wild animals
 - Overestimates (>2 points over):
 - Chose where to live in part to have access to nature
 - Participated in fishing
 - Underestimates (>2 points under):
 - Chose to spend more time outdoors in the last year to experience nature
 - Aware of the concept of biodiversity
 - Aware of the concept of ecosystem services
 - Participated in some form of nature-based recreation
 - Spent >\$40 in donations and membership dues to nature organizations

Conclusions

 Propensity score model was used to estimate probability of being observed in the panel compared to general population

- Model explained only some of the variance ($R^2 = .19$) room for improvement
- Nevertheless, estimated probability of observation
 - Brought panel demographics in line with population
 - Reduced bias in panel estimates for key survey outcomes
 - Made possible the combination of probability (ABS) and non-probability (Panel) data into a single, weighted dataset

Conclusions

Next steps...

- Building a more comprehensive model of P(Observation) under panel design
- Does reduction in bias via panel weight come at the price of increased variance? How accurate are estimates of sampling error from modeled probabilities of selection?

Thank You!

icfi.com | Passion. Expertise. Results.