Developing Statistical Tools for Adaptive Design

FedCASIC 2015

March 4th, 2015

Amang Sukasih, Michael Sinclair, Debra Wright, Shilpa Khambhati, Brendan Kirwan

Outline

- Background
- Adaptive Design Method
- Examples of Implementation

Background

Response Rate Paradigm and Challenges

- Achieving a high response rate is often viewed as the primary mechanism for ensuring sample representativeness
 - OMB standards and guidelines for statistical surveys (September 2006)
- Challenges in data collection
 - Response rates lower than expected
 - Expended time and cost of data collection
 - Potential nonresponse bias of resulting survey estimates
 - Inflation of design effect due to more variation in nonresponseadjusted weights
- Achieving high unit and item response rates may require substantial costs and time
- Trade-offs between potential level of nonresponse bias at a given point in time with the expected amount of bias reduction, at what cost, and the impact on the schedule

Efforts to Mitigate Challenges

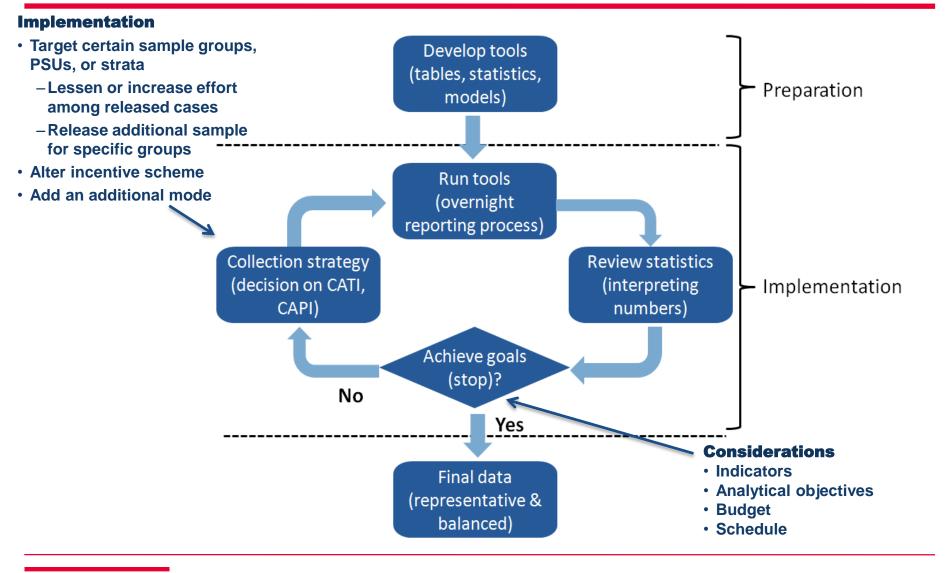
- Survey researchers have developed techniques, tools, and instruments
 - The use of incentives (monetary and non-monetary)
 - Scheduling phone interviews
 - Mixed modes of data collection
 - Data collection features and options that make it easier for people to respond to the survey (interactive website, shorten questionnaire, tablet, etc.)
- Low response rates do not necessarily indicate nonresponse bias, and high response rates do not guarantee that a survey is free of nonresponse bias (Groves 2006; Groves and Peytcheva 2008)
- Nonresponse bias is a function of
 - Response rate
 - Difference in survey outcome between respondents and nonrespondents
 - Correlation between response propensity and survey outcome

New Development and Direction

- Implement a state-of-the-art data collection protocol involving active monitoring of survey outcomes and intervention in fielding process to adjust or adapt the data collection strategies (adaptive or responsive design)
- OMB allows agencies to change their data collection procedures in their approved surveys (Harris-Kojetin 2014)
 - Ad hoc changes
 - When things are not going as expected
 - Consult with OMB on making changes
 - Adaptive designs
 - · Planned phases or experiments to inform subsequent phases
 - May plan additional consultation with OMB

Adaptive Design Method

Definition


- Gambino, Laflamme, and Wrighte (2010)
 - "An adaptive approach to survey data collection is one that uses information available prior to and during data collection to adjust the collection strategy for the remaining cases"
- Groves and Heeringa (2006) refer to responsive design as a set of the following components
 - Identification of design features *impacting survey costs and errors* and indicators of cost and error properties
 - *Monitoring* those indicators in the initial phases of data collection
 - Altering features of the survey in subsequent phases based on cost/error tradeoff assessments
 - Combining data from separate design phases into a single estimator

Motivation

- Nonresponse bias is a function of
 - Response rate
 - Difference in survey outcome between respondents and nonrespondents
 - Correlation between response propensity and survey outcome
- Objectives (may require trade-offs)
 - Increase response rate
 - Obtain survey results that are representative of the target population
 - Balance respondents
 - Increase number of completes
 - Be able predict, on a periodic basis, response propensity of the remaining sample
 - Reduce cost
 - Reduce time

Operation

Indicators and Measures

- Response rates
 - Are response rates homogeneous across sample characteristics?
 - Present tables and graphs by sampling strata, domain of analysis, sample characteristics
- Response propensity (probability or likelihood of response)
 - Predict response propensity of the remaining sample for effort decision in later phases
 - Use response propensities to evaluate representativeness of current respondents
- R-indicators (overall, partial, category level)
 - Are survey respondents representative of the sample?
 - If all units in the population share the *same probability of responding*, then no nonresponse bias
 - Calculate estimates of response probabilities and their variability

Indicators and Measures (cont.)

- Survey outcomes
 - Do additional respondents change outcomes (estimates or decision of tests)?
 - Does the estimate converge to a value?
 - Present tables and graphs for key outcomes
- Cost
 - Trade-off between cost and error
 - Cost model (different incentives, different modes)
 - Retrospective power analysis comparing Minimum Detectable Effects achieved at target response rate vs. if the survey is closed right now
 - Cost implication

Examples of Implementation

Example of Impact Evaluation Study

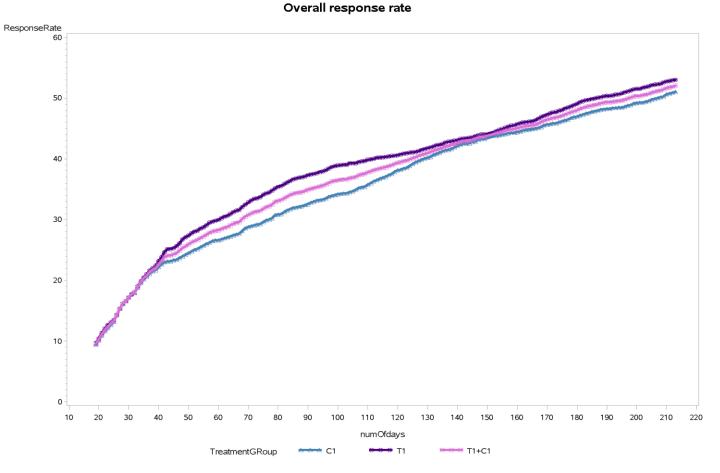
- Study design
 - Evaluate a demonstration by measuring the impact
 - Test whether the impact is positive
 - Pre- and post-intervention using treatment groups (T and C)
- Survey design
 - Baseline survey and follow-up survey
 - CATI with CAPI follow-up
 - Pre-specified target response rate
- Sample design
 - **Probability sample (or nonprobability sample)**
 - T vs. C balance across baseline or matching covariates
 - Stratified
 - Clustered

Example of Impact Evaluation Study (cont.)

- Goals of adaptive design
 - High response rate
 - Representative respondents
 - Balance T vs. C respondents across baseline covariates
- Monitoring (daily tables and plots)
 - Response rates: overall, T vs. C (overall and by baseline covariates)
 - R-indicators (overall, partial, category level): overall, T vs. C
 - Statistical tests
 - Respondents vs. nonrespondents (by baseline covariates)
 - T vs. C respondents (by baseline covariates)
- Producing individual estimate of response propensity

Example of Overnight Report

	Unweig	hted respons	R-indicators			
Variable	T Sample	C Sample	T+C	T Sample	C Sample	T + C
Overall	53.04	51.08	52.05	0.862	0.861	0.879
Site				0.036	0.034	0.030
Alabama	57.46	50.36	53.86	0.015	-0.002	0.006
Arizona/Southeast California	51.91	54.10	53.05	-0.004	0.010	0.003
Colorado/Wyoming	50.73	44.48	47.56	-0.005	-0.016	-0.01
DC Metro	52.19	48.26	50.20	-0.003	-0.008	-0.005
Greater Detroit	52.14	56.16	54.17	-0.003	0.018	0.007
Greater Houston	44.73	46.59	45.66	-0.025	-0.014	-0.020
Northern New England	54.89	51.49	53.15	0.004	0.001	0.002
South Florida	50.66	49.33	50.00	-0.008	-0.006	-0.007
Western New York	55.27	53.39	54.32	0.009	0.009	0.009
Wisconsin	57.96	54.08	56.02	0.016	0.010	0.013
Age category				0.038	0.031	0.035
<40	49.67	47.71	48.67	-0.015	-0.015	-0.015
40-<50	49.26	48.59	48.92	-0.020	-0.013	-0.017
50+	57.07	54.34	55.69	0.029	0.024	0.026
Gender				0.026	0.019	0.022
Male	50.52	49.21	49.86	-0.018	-0.013	-0.015
Female	55.69	53.02	54.33	0.018	0.014	0.016
Primary beneficiary				0.015	0.007	0.01
Yes	53.48	51.32	52.40	-0.015	-0.006	-0.010
No	48.46	49.32	48.96	0.004	0.002	0.003
Benefit duration status				0.004	0.002	0.004
Short duration	53.52	50.79	52.65	-0.004	0.001	-0.003
Long duration	52.55	51.17	51.70	0.002	-0.002	0.003

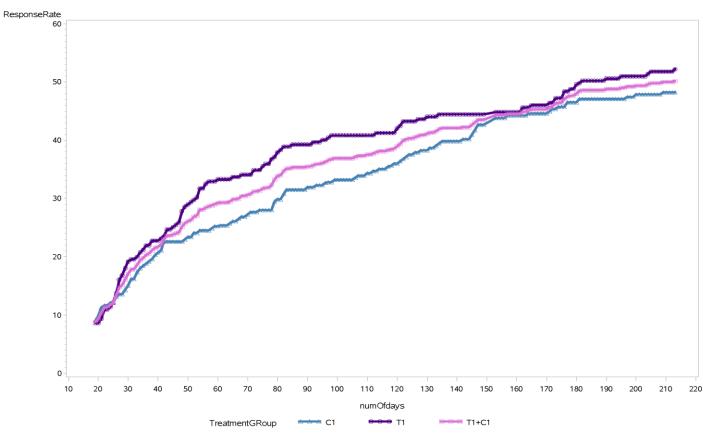

Example of Overnight Report (cont.)

	C	omparison o	f Respond	ent vs. Non	-Responder	Comparison of T vs. C Respondents						
Variable	Proportion		Standard Error of Proportion		Test Respondent vs. Non- Respondent		Proportion		Standard Error of Proportion		Test T vs. C respondents	
	Resp.	Non-resp.	Resp.	Non-resp.	Chi-test/ T-test	p-value	T resp.	C resp.	T resp.	C resp.	Chi-test/ T-test	p-value
Overall												
Site Name					38.774	0.000					1.230	0.999
Alabama	0.144	0.137	0.005	0.005	1.022	0.307	0.140	0.141	0.005	0.005	-0.136	0.892
Arizona/Southeast California	0.102	0.099	0.004	0.004	0.630	0.529	0.098	0.103	0.004	0.004	-0.737	0.461
Colorado/Wyoming	0.065	0.078	0.003	0.004	-2.511	0.012	0.071	0.072	0.004	0.004	-0.125	0.900
DC Metro	0.050	0.055	0.003	0.003	-1.012	0.311	0.053	0.052	0.003	0.003	0.041	0.967
Greater Detroit	0.101	0.094	0.004	0.004	1.184	0.236	0.098	0.097	0.004	0.004	0.137	0.891
Greater Houston	0.076	0.098	0.004	0.004	-3.907	0.000	0.088	0.087	0.004	0.004	0.251	0.802
Northern New England	0.103	0.095	0.004	0.004	1.250	0.211	0.098	0.100	0.004	0.004	-0.451	0.652
South Florida	0.148	0.162	0.005	0.005	-1.908	0.056	0.158	0.153	0.005	0.005	0.640	0.522
Western New York	0.102	0.094	0.004	0.004	1.515	0.130	0.098	0.098	0.004	0.004	-0.059	0.953
Wisconsin	0.108	0.089	0.004	0.004	3.162	0.002	0.099	0.097	0.004	0.004	0.338	0.735
Age Category					24.704	0.000					0.799	0.671
< 40	0.237	0.257	0.006	0.006	-2.315	0.021	0.244	0.250	0.006	0.006	-0.702	0.483
40 - < 50	0.259	0.288	0.006	0.006	-3.309	0.001	0.277	0.270	0.006	0.006	0.765	0.444
50 +	0.504	0.456	0.007	0.007	4.952	0.000	0.479	0.480	0.007	0.007	-0.077	0.939
Gender					32.065	0.000					0.296	0.587
Male	0.489	0.545	0.007	0.007	-5.670	0.000	0.520	0.515	0.007	0.007	0.544	0.587
Female	0.511	0.455	0.007	0.007	5.670	0.000	0.480	0.485	0.007	0.007	-0.544	0.587
Primary beneficiary					2.993	0.084					30.841	0.000
No	0.097	0.107	0.004	0.004	-1.732	0.083	0.086	0.119	0.004	0.004	-5.568	0.000
Yes	0.903	0.893	0.004	0.004	1.732	0.083	0.914	0.881	0.004	0.004	5.568	0.000
Benefit duration status					0.246	0.620					845.531	0.000
Long duration	0.629	0.634	0.007	0.007	-0.496	0.620	0.492	0.768	0.007	0.006	-30.293	0.000
Short duration	0.371	0.366	0.007	0.007	0.496	0.620	0.508	0.232	0.007	0.006	30.293	0.000

MATHEMATICA Policy Research

Overall Response Rates by T/C Group

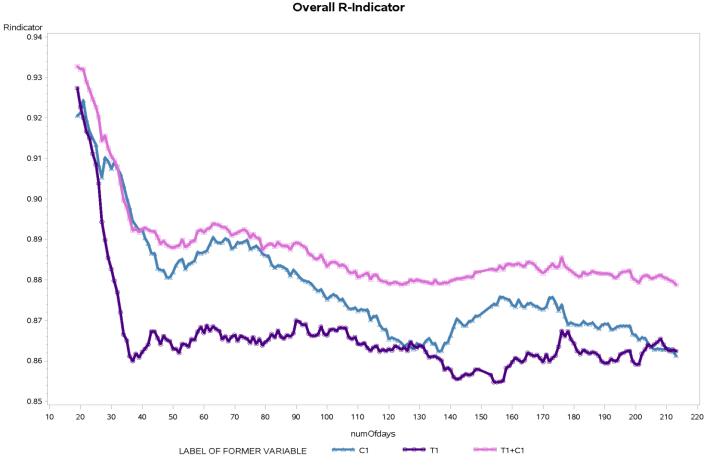
1



Overall response rate

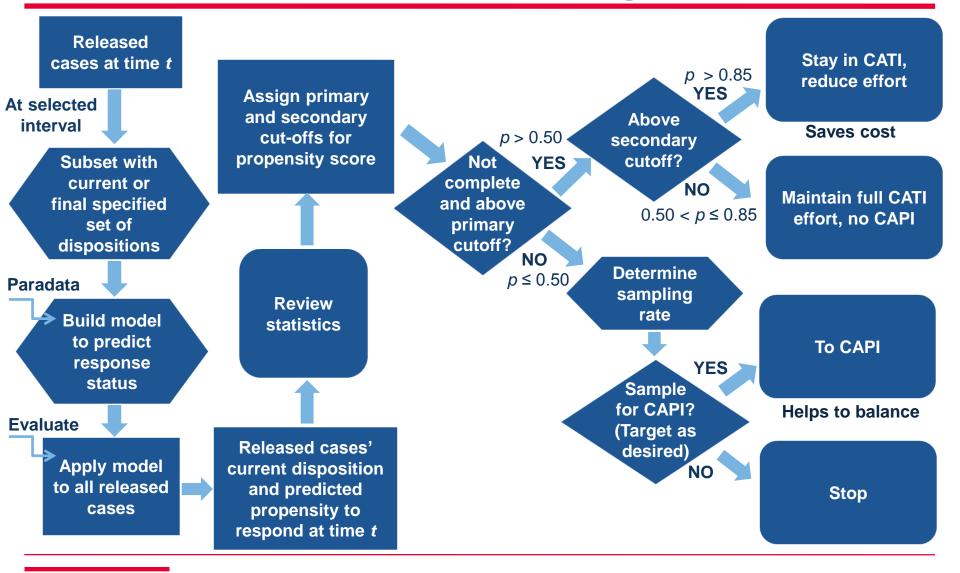
Particular Site Response Rates by T/C Group

Category level partial response rate 01_C_SITENAME - DC Metro 4



Overall response rate

Overall R-Indicators, by T/C Group


1

Overall Respnse Indicator

MATHEMATICA Policy Research

Example of Collection Strategy: Two-Phase Design

MATHEMATICA Policy Research

Example of Cost and Precision Trade-off Assessment

	CPC	\$ 200			CPC	\$ 600								
	Resp R	Rate CATI	CATI Follow-up		Resp Rate CAPI				Number of completes		Outcome variable			
Scenario	T	C	% of CATI NR Acceptable to send to CAPI	% of Acceptable CATI NRs Sampled For CAPI	т	С	Overall response rate (Unwgted)	Overall response rate (Wtd)	T	C	T+C	MDE	MDE % of Mean	Approx Interviewer Labor Cost
Scenario 1														
(no subsampling, 80% RR) (Reference - Original Plan)							80.0%	80.0%	3,819	3,889	7,708	\$213.16	16.9%	\$3,300,172
Scenario 2	32.2%	32.2%	85.0%	100.0%	37.9%	37.9%	52.5%	52.5%	2,506	2,552	5,058	\$305.08	24.2%	\$1,794,703
Scenario 3	49.0%	20.0%	85.0%	100.0%	59.0%	20.0%	52.5%	52.5%	3,475	1,587	5,062	\$322.28	25.5%	\$1,712,452
Scenario 3	44.0%	44.0%	85.0%	100.0%	64.0%	64.0%	72.3%	72.3%	3,453	3,516	6,969	\$234.68	18.6%	\$2,485,674
Scenario 4	44.0%	44.0%	85.0%	50.0%	64.0%	64.0%	58.2%	72.3%	2,777	2,828	5,604	\$282.08	22.4%	\$1,666,768

Notes: the numbers are made up for illustration purpose only.

For More Information

Amang Sukasih

ASukasih@mathematica-mpr.com

