Field Data Collection Utilizing iPADs on the USDA's June Area Survey

National Agricultural Statistics Service

Presented by: Michael Gerling \& Claire Boryan

Overview of June Area Survey

- Annual survey that provides data on U.S. crops, livestock, grain storage capacity, and type and size of farm.
- Comprised of designated land areas (segments). Each segment is about 640 acres (1 square mile).
- 11,000 segments surveyed across the U.S.

Overview of June Area Survey

- Using a provided aerial photo, the interviewer divides segment into tracts representing unique land operating arrangements.
- Interviewers screen for whether tract is part of a farm and collect crop and livestock information for each tract.
- 42,000 Agricultural Tracts.
- Paper questionnaire used to record data.

Current Paper Version 24 or more pages.

Shows one of two pages used to collect tract and field level information.

Lots of rows and columns.

How many acres are inside thls blue tract boundary dramn on the photo (map)?
Now I would like to 3sk about each field inside thls blue tract boundary and its use during 2013.

Permanent Area Frame Research Grid Sampling

Laying a grid over the entire United States and sampling from this permanent frame.

Grid Segment Example

The Grid Challenge

The Grid Challenge

The Grid Challenge

Styluses

Adonit Jot Pro
Fine Point Stylus

Challenges for Field Staff

\author{

1. CAPI
}

2.iPADs

3. Instrument

4. Grid Segments

Number of Attempted Segments, Tracts and Fields by State

State	No. of Field Staff	Segments	Non-Ag Tracts	Ag Tracts	Fields
Indiana	4	26	134	112	347
Pennsylvania	4	8	31	51	130
Washington	1	2	6	5	13
Total	9	36	171	168	490

Problems with Aerial Imagery (Zooming, Splitting, Overall Functionality)

Problems with Aerial Imagery	Number of Tracts	Percentage
Yes	13	7.7
Sometimes	13	7.7
None	142	84.5
Total $1 /$	168	99.9

Connectivity - 3G/4G Problems

Connectivity Problems 3G/4G	Number of Tracts	Percent
Yes	2	1.2
Sometimes	5	3.0
No	158	94.0
No Answer	3	1.8
Total	168	100.0

Battery Life Problems Encountered

Battery Life Problems Encountered	Number of Tracts	Percent
Yes	3	1.8
Sometimes	1	0.6
No	161	95.8
No Answer	3	1.8
Total	168	100.0

Screen Visibility Problems (Glare, Sunlight, etc.)

Screen Visibility Problems

Time of Day Interview was Conducted

Time of Day	Number of Tracts	Percent
Afternoon	110	65.5
Morning	55	32.7
Evening	2	1.2
No Answer	1	0.6
Total	168	100.0

Location of Interview	Number of Tracts	Percent
Indoors	99	58.9
Outside	43	25.6
Other	5	3.0
No Answer	21	12.5
Total	168	100.0

Respondent's Acceptance of the Technology

Respondents' Acceptance of the Technology	Number of Tracts	Percent
Enthusiastic	55	32.7
Ambivalent	79	47.0
Reluctant	7	4.2
No Answer	27	16.1
Total	168	100.0

Length of Interview

 Compared to Paper Questionnaire| Length of Interview
 Compared to Paper
 Questionnaire | Number of Tracts | Percent |
| :--- | :---: | :---: |
| Shorter by at 1 to 9 min | 43 | 25.6 |
| Shorter by at least 10 min | 24 | 14.3 |
| No Difference | 60 | 35.7 |
| Longer by 1 to 9 min | 21 | 12.5 |
| Longer by 10 min or more | 12 | 7.1 |
| No Answer | 168 | 4.8 |
| Total | | 100.0 |

Minimal Issues

- Battery Life

- Connectivity
- Training Program: in-Person and Self-Paced/Remote Training
- Complex Paper Questionnaire - dynamic logic transforms to a short CAPI form.

Challenges

- Screen Visibility (Glare)
- Weather Conditions - rain, snow, extreme temps.

Larger Screen wanted by field staff.

- Speed - improve drawing out tracts and fields.

Possible Solutions -

Eliminating Glare

```
m
```


NEW!
Anti-glare

Anti-fingerprint Screen Prolectck
Frogrointsmubiblel

Attempt at Humor

Possible Solution for Rain/Snow Weather Conditions

2013 Consumer Electronic Show Panasonic unveils 20-inch Windows 8 Tablet

2013 - Test for differences in

Farmer Reported Acres (June Area Survey)

 VS.Geographic Information Systems (GIS) Calculated Acres

Pennsylvania, Indiana and Washington

Ninety Segments

Enumerators copied the tract and field information from the Aerial photo and into GIS instrument.

Shown in GIS Instrument

GIS Calculation vs. Farmer Reported (JAS) Acreage Test

Data with matching fields from (GIS) and JAS (farmer reported) contain 2,246 fields from 90 sampling segments from three states (PA, IN, WA).

- Errors in data that could be traced prior to analysis of the fields in GIS were removed from the analysis. Any fields in which acreage is not reported in JAS or estimated in GIS were also removed.
- There are 2,096 fields remaining once the above errors were removed

GIS vs. Farmer Reported Acreage Test

All Ag Tract fields
, Interior Ag Tract fields

- Exterior or Boundary Ag Tract fields
- Permanent Pasture fields
- Wooded fields

GIS vs. Farmer Reported (JAS) Segment Totals

Acreage differences for all data and states individually.

P-values for Wilcoxon signed rank test to test acreage differences for segment totals

State	Number of Segments	p-value
All Data	85	0.642
PA	27	0.662
IN	29	0.831
WA	29	0.110

- Tests the hypothesis that the mean (average) difference between GIRAFFE and JAS acreage estimation is equal to 0 .
- P-value $<0.1=$ SLIGHT evidence that difference is NOT EQUAL to 0
- P-value $<0.05=$ STRONG evidence that difference is NOT EQUAL to 0
- P-value $<0.01=$ VERY STRONG evidence that difference is NOT EQUAL to 0
- Tests indicate that the mean difference is approximately 0 for all states (i.e., the difference between GIS and JAS acreage estimates is equal to 0 on average).

GIS vs. Farmer Reported (JAS) All Agricultural Fields

Acreage differences for all agricultural fields and agricultural fields from each state.

Agricultural Fields P-Values - Wilcoxon Signed Rank Test

State	Number of Segments	p-value	p-value (sampled)
All Data	706	0.232	0.453
PA	310	0.965	0.874
IN	338	0.162	0.342
WA	58	0.704	0.757

- Tests for difference in agricultural fields (fields in which area used for agriculture is greater than 0).
- Tests indicate that acreage estimates are approximately equal on average.

Conclusion

- Most tests resulted in the conclusion that the average difference in acreage estimates between GIS and JAS is approximately 0 .
- Exterior Ag fields showed that there was moderate statistical evidence (p value, 0.035) that the mean difference in GIS and JAS acreage estimates is different than 0 . Especially in IN (p-value, 0.040). GIS appears to overestimate acreage based on plots of acreage difference.

Future...........

- Have Iowa Sate University (ISU) build the whole questionnaire and NASS port everything over to our servers, etc...
- Take what we learned from this JAS-CAPI experience and build an in-house solution.
- Work with ISU and update current JAS-CAPI to handle all states and build the rest of the questionnaire in EDR-CAPI. (Two window approach)

Contact Information

- Michael Gerling michael.gerling@nass.usda.gov
- Claire Boryan claire.boryan@nass.usda.gov

