

Artificial Intelligence in Data Processing

Alexander Measure

Economist Office of Safety and Health Statistics FedCASIC 2013

www.bls.gov

Survey of Occupational Injuries and Illnesses (SOII)

Annual Survey

250,000 cases

Text narratives for:
 Occupation
 Injury/Illness Characteristics

Example Case

Job title: janitor

What was the employee doing just before the incident? mopping floor in gym

What happened? slipped on wet floor and fell

What part of the body was affected? fractured right arm

What object directly harmed the employee? wet floor

Occup: 37-2011 (Janitor)

Nature: 111 (Fracture)

Event: 422 (Fall, slipping)

Part: 420 (Arm)

Source: 6620 (Floor)

Limitations of Human Coding

- Time consuming
- Very difficult
 Detailed classifications
 Ambiguous data
- Inconsistent coding

I

Artificial Intelligence

Text Classification
 Rules
 Machine Learning

- Ex. Census
 - Rule based system: 192 person-months
 Machine learning: 4 person-months

 Source: Creecy et al., 1992

Machine Learning

3 Steps

- 1. Select feature representation
- 2. Select model
- 3. Fit model to data

Feature Representation

Each feature corresponds to a word

- Job title: "assistant nurse"
 - $\blacktriangleright X_{nurse} = 1$
 - $X_{assistant} = 1$
 - $\blacktriangleright X_{\text{mechanic}} = 0$

Logistic Regression Model

$$P(\text{code} = A) = \frac{\exp(w_{a1}x_{\text{nurse}} + w_{a2}x_{\text{assistant}} + w_{a3}x_{\text{mechanic}})}{Z}$$

$$P(\text{code} = \text{B}) = \frac{\exp(w_{b1}x_{\text{nurse}} + w_{b2}x_{\text{assistant}} + w_{b3}x_{\text{mechanic}})}{Z}$$

$$P(\text{code} = \text{C}) = \frac{\exp(w_{c1}x_{\text{nurse}} + w_{c2}x_{\text{assistant}} + w_{c3}x_{\text{mechanic}})}{Z}$$

Autocode

New Case: "assistant mechanic"

- $\blacktriangleright X_{nurse} = 0$
- $X_{assistant} = 1$
- $X_{\text{mechanic}} = 1$
- $\blacksquare P(code=A) = .05$
- $\blacksquare P(code=B) = .25$
- P(code=C) = .70 ←

Does it work?

Train on 250kTest on 10k

	Computer to Original (%)
Occupation	80
Part	81
Nature	80
Event	49
Source	60

Humans vs. Computer

1000 cases

3 re-coders

	Human to Original (%)	Computer to Original (%)
Occupation	66	80
Part	82	81
Nature	76	80
Event	47	49
Source	56	60

Limitations

Training data

New words

Linguistic complexity

_

Applications

Assisted Coding

Partial Autocoding

Useful Resources

Free Machine Learning Class <u>https://www.coursera.org/course/ml</u>

Free SoftwarePython (Scikit-Learn)

Free Support
 MetaOptimize Q&A
 Steely Overflow

Stack Overflow

Contact Information

Alexander Measure Economist Office of Safety and Health Statistics *www.bls.gov/iif* 202-691-6185 measure.alex@bls.gov

www.bls.gov