

# Current Trends in Mobile Technology for Survey Research Presented by Nathan Sikes, RTI International

RTI International is a trade name of Research Triangle Institute.

www.rti.org

## History of Mobile Surveys at RTI

- RTI involved in projects domestically and internationally since 1999 using mobile devices
- Comprehensive experience in survey data collection using mobile devices conducting over 3 million mobile device interviews
- Collect individual and public health data
- Interface with remote sensors
- Administer surveys in multiple languages
  - Global Adult Tobacco Survey (GATS) supports 30 languages and multiple character sets



## Industry Norms in Mobile Surveys

- Two Types of Data Collection in the Mobile Environment
  - Field Interviewer (FI)-based
  - Respondent-based
- Survey Data Collection Mostly FI-based
  - Forms-based systems
    - Data Stored on the Device with Periodic Collection
  - Web-based systems
    - Real-time/Immediate Data Collection with Wi-Fi or Cellular Connection
- Case Management Systems
- Informed Consent Administration



## Extending the Mobile Survey Model

- GPS Navigation for FIs (Interacting with the Mobile CMS)
- GPS Tracking and/or Verification of Cases
- Environmental data collection
  - Sensors for temperature, humidity, particulates, chemicals
- Personal health data collection
  - Sensors for heart rate, respiration, blood glucose, stress
- Interactive Personal Diaries (text and voice)
  - Momentary logging of diet, activity, location, and stress
  - Sensors can trigger mobile devices to personally interact with respondents and record answers to questions.



## Accessories Enhance Data Collection

- A wide variety of sensors are available on the market and can interact with most any mobile device.
  - Cardiac pulse monitor
  - 3-Axis Accelerometer
- Bluetooth "beacon" devices
  - Room Monitors (Indoor Tracking)
  - Weight Scales
- Built-in components
  - GPS Device
  - Camera
  - Video Player



## GPS Example: Interview Verification

- A GPS antenna attached to or inside a mobile device can be used to verify that an FI actually conducted the interview at the time and place they said they did.
- The GPS records on the mobile device:





## Software Captures GPS Coordinates



GPS Points are captured and descriptions are entered by the Case Management System or Field Interviewer



## Use of Google Earth for Comparison and Verification





## Potential Uses of GPS in Field Operations

#### Outliers Report

- Compares distance between GPS Coordinates captured by (FI) and the actual interview address.
- Compares time of GPS Capture with the Interview Start Time.

#### Verify ABS-selected Dwelling Units are In-Segment

- Current non-GPS-related procedures are prone to FI locating abilities and human error.
- GPS data would provide additional or certain confirmation that SDUs are within Census block.
- Monitor FI movement by passive receipt of GPS data.
  - (i.e., path of travel and efficiency of SDU contacting)



## Challenges for Mobile Surveys

#### Multiple

- Platforms
- Operating Systems
- Devices
- Formats
- Development Environments
- Programming Languages
- Data Transfer Cost (Monthly Cellular Plans)



# Solutions to Consider

- One Study One Device Type
  - Useful for FI-administered instruments
- Mobile Web Applications
  - Allow all web-enabled devices to access a website devoted to mobile devices
- Cross-Platform Development Software
  - Example:
    - **PhoneGap** (JavaScript, open source, free, runs on most platforms)
  - Some cross-platform development software addresses two or more platforms, not all.
- Connect to existing Wi-Fi or Broadband for Data Transfers



## Leveraging Investments in Legacy Systems

The Lenovo Multi-Touch IdeaPad, as an example, folds and converts from a Laptop PC to a Tablet with a Touchscreen.



- Years of Legacy Software developed for your Field Operations in the Microsoft Windows Environment can be implemented on this type of device.
  - Blaise, Other Instrument Software, Field Management Systems, Case Management Systems, CARI, etc.



# Software Platforms Compared

| Vendor             | Platform            | Programming<br>Language/<br>Development<br>Environment | User<br>Interface | Security                         | Distribution       |
|--------------------|---------------------|--------------------------------------------------------|-------------------|----------------------------------|--------------------|
| Google             | Android             | Java /<br>Windows, Mac,<br>Linux, Android<br>Devices   | Very<br>Good      | Requires<br>third-party<br>tools | Easy               |
| RIM/<br>Blackberry | Blackberry<br>OS    | Java /<br>Web-based<br>development                     | Very<br>Good      | Leads the industry               | Easy               |
| Apple              | iOS                 | Objective–C /<br>Mac                                   | Excellent         | Trying to catch up               | Very<br>Controlled |
| Microsoft          | Windows<br>Mobile 7 | C# or VB /<br>Windows                                  | Very<br>Good      |                                  | Lack of<br>Support |



## Mobile Device Spectrum Availability

| Vendor             | Smart<br>Phones | Tablets | Laptops | Netbooks  |
|--------------------|-----------------|---------|---------|-----------|
| Google             | Many            | Many    | ×       | Few       |
| RIM/<br>Blackberry | Few             | One     | ×       | ×         |
| Apple              | One             | One     | One     | ×         |
| Microsoft          | Few             | Many    | Many    | Many<br>I |

## 2011 Smartphone Statistics\*

- 65.8 million people in the U.S. own a Smartphone as of January 2011.
- For <u>respondent-based</u> instrument development consider the following:

| Vendor         | Market Share % |
|----------------|----------------|
| Google/Android | 31.2           |
| RIM/Blackberry | 30.4           |
| Apple          | 24.7           |
| Microsoft      | 8.0            |
| HP/Palm        | 3.2            |

\* Source – comScore, Inc. - March 7, 2011



### Conclusions

- Google and Rim/Blackberry
  - Successful Open-Source environments
  - Android runs on multiple size devices
- Apple Platform
  - Not Open-Source and distribution is very controlled
- Windows Phone Platform
  - Not Open-Source and distribution is very controlled
- Windows-based Netbooks and Laptops
  - Allow Legacy software to be retained and reused



*"What's going to happen and how technology is going to change our lives during the next 10 years is going to make the last 50 look like we were at a standstill."* 

- Robert Stephens, Best Buy, CTO and founder of Geek Squad



## More Information

### **Nathan Sikes**

Mgr., Research Computing 919.316.3320 sikes@rti.org

### **Co-authors:**

Chris Ellis Paul Kizakevich Donna Medeiros Yuying Zhang

