
1

Presentation prepared by Michael Egan for US Federal
CASIC Workshops, March 2005

--

2

3

An author is a person who converts questionnaire
specifications into Blaise code. Synonyms would be
“developer” and “programmer.”

A block is a collection of questions, answers, edits and flows,
normally relating to the same topic. A block can contain
another block, too.

4

Metrics can help you understand your development practices.
The more that development processes can be quantified, the
better able one is to estimate one’s services and timelines.
Also, you would be well placed to measure the impact of new
practices.

If you had to sell senior management on a new development
practice, what would you tell them? You’d tell them that,
using this new practice, development will take less staff time,
or less calendar time. They’ll want to know how much less. If
you’ve got the appropriate metrics in place (or you can put
them in place), you can provide a reliable answer.

5

Measurements are estimates, so it is better to use round
numbers than three digits of precision.

A picture is worth a thousand words, but a slightly blurred
picture is far better than a blank canvas. Over time, the
picture can be improved. Which means: an imperfect
measurement is better than no measurement at all, and an
imperfect measurement can be improved over time.

What else can be measured? Problem logs; Complexity.

6

Several years ago, a client said that they were registering
too many problem logs during block testing. There was an
implication that the authoring effort had been shoddy.

7

We examined every problem log that had been submitted for
the survey (over 700 at the time, it took a couple of days –
eventually over 1,000). We categorized logs by source of
error (specs/code) and nature of change (logic/text/field
def).

We decided to look at code changes, rather than at problem
logs, because it was a more accurate measurement of the
process (problem logs are requests to change the code).
Sometimes a problem log resulted in several code changes,
sometimes several problem logs resulted in one code change.
In the end, there were about a 1:1 relationship between code
changes and problem logs.

For this survey, we found that 90% of the code changes were
related to specification changes. 9 times out of 10, we were
changing code that was working exactly as specified.

8

We continued studying problem logs, eventually covering 11
surveys (varying sizes, clients, topics). We found that 80% of
code changes were spec related (never less than 70% at the
survey level).

As a result, we introduced rigorous block specification
reviews as a standard part of development. We ensured that
clients knew this would be done, during our initial talks
with them. They knew that specs would be considered “final”
only after they had been approved – not when they were first
delivered.

Authors who have been around for a while tell me that the
quality of initial specifications has greatly improved (are they
better because clients know they will be reviewed?). We also
think that relationships have improved, due to our earlier
involvement and due to reduced testing burdens.

Block testing goes much better since we have introduced
rigorous block specification reviews.

9

With a significant reduction in code changes during testing,
authors will obviously spend less time on a project. And that
will have an impact on our development estimates and on
development time lines. A little work up front pays off
mightily!

We have just introduced a new development stage, internal
QA, and we expect to see differences in the nature of
tickets submitted by clients. QA is a round of testing
performed by a separate group in ORDD, and we expect that
will identify almost all of the authoring errors. Ideally, if
there is no change to the specifications, clients will approve
blocks on the first round of their testing.

--

To make data comparable across surveys, you need to have
some sort of divisor (number of code changes is the
dividend). The obvious divisor is “fields”, but we prefer to use
“objects” (code changes per object).

“Objects” is a lead-in to the next section.

10

One day, a client said that testing was hard and it took too
long. It was not the first time a client had said this.

On this particular day, the immediate (unspoken) response
was “well, if you want testing to be easier and go faster,
make your blocks less complicated.”

How can you estimate how complex a block is? How do you
know when enough is enough?

11

We were looking for some way to quantify complexity, and
found this book.

Survey Automation

 A report on workshop proceedings – April 2002

 Robert Groves & William Kalsbeek

 Presentation by Thomas McCabe, pgs 116-137.

Mr. McCabe’s presentation addressed our actual issue:
complexity. Block testing was taking a long time because
blocks were extremely complicated, not because they were
extremely long.

Mr. McCabe presented a method to estimate the complexity
of a set of code, and guidelines for how complex a set of
code ‘should be’. The measurement is called “cyclomatic
complexity”; it is a count of the basis paths through a block
(the total number of unique paths).

12

To do the technical design, we draw a flowchart of the block.
We don’t need a full and formal specification from which to
work; most surveys have planning documents that describe
their content in enough detail.

In our flowcharts, circles represent questions, and diamonds
represent flow decisions (we have other shapes for edits,
blocks, etc.). Shapes are objects; they are connected by lines
(logic flows).

We count the objects (nodes), subtract the number of lines
(edges), and add two (to keep the number positive). The
result is the cyclomatic complexity of the block.

In this example, there are 11 objects and 14 Lines, so the
complexity estimate is ((14-11)+2)=5. The symbol used in the
book is a lowercase “v”.

13

The goals of technical design are to reduce complexity where
possible, and to isolate the remaining complexity.

Note: if the flowchart cannot be drawn without crossing lines, the requested logic
is unstable. The flowchart can also show other types of unstable logic: branching
into and out of decision flows. When this happens, we work with the specifiers to
stabilize the logic.

The benefits of simple blocks are numerous:

1)The specifications are easier to understand and review;

2)Authoring time is reduced (initial and test support);

3)Testing effort is significantly reduced;

4)Testing can be done with more accuracy and confidence.

Another problem we are trying to address is the order of
development. We want to start with the blocks that are going
to take the most time (the hardest and longest blocks).

14

The “10” figure is a strategy, not an unbreakable rule. You
can get false positives - lots of simple branches.
(“10” comes from Mr. McCabe – page 126 - - “less reliable and require higher
levels of testing”)

It must be stressed that technical design is not something
we do “to” clients, it is something we do “with and for”
clients. The original order of questions will never change as a
result of the technical design: we are adding a layer of design
to the original specifications. They will reap huge benefits
from a technical design: testing will take much less effort.

--

We have a document on how to do technical design. It is not a
difficult process.

15

((181-121)+2)=62!!

The colours represent how we created 13 sub-topic blocks
from the original topic block.

We have a formula for estimating the authoring time for a
block, based on objects and cyclomatic complexity. It
produces very reasonable estimates. Our estimate for
developing this topic in 13 blocks is about half (55%) of what
it would have been as one block.

Formula (cV = cyclomatic complexity):

Hrs = ((1.5 * Objects) / 60) + (15 * (cV ^1.4) / 100)

Any formula for estimating block development time must address field
definitions, type definitions and flow logic. The first part of this formula
addresses field and type definitions, and assumes the author is using CodeBuilder
to create the fields and types. Using CodeBuilder, an author can produce field
definitions at the rate of 40 per hour.

The second part of this formula addresses how long it takes to write the RULES
section, with the understanding that complexity has an exponential impact on how
long it takes to do it.

16

We have seen a significant reduction in code changes per
object (as we continue to review problem log metrics).

Our original idea was to use the authoring time estimate to
prioritize blocks for development. Where timing permits, we
use the results of this formula in our development estimates.

17

We need to get more people doing this type of work (expand
the expertise base).

We don’t currently track time at the SURVEY-BLOCK-TASK
level, so we can only take a very good guess at how accurate
the estimation formula is. It would be too much of a burden
on the authors to collect data at this level. We’ll try to do
this in a non-burdensome way.

18

We were already tracking (DevTracker):

Blocks in a questionnaire

Stages of development

Date stages were achieved

DevTracker (excel spreadsheet) was used as a record of
development. It showed what had happened when, and was
used during weekly with clients. It is an internal tool.

19

The most difficult part was figuring out how to measure the
elapsed number of working days between stages.

Using estimated initial authoring hours (from technical design
data!), we can track development by the amount of work
rather than by the number of blocks.

When tracking development, it is misleading to treat a 4-2 (objects-complexity)
block in the same manner as a 24-8 block. The latter is eight times more work
than the former.

--

What we measure with DevTracker is elapsed working days,
not staff effort. It does not keep track of how many people
are working on a project; it does not record overtime.

It answers the question: where did all the time go? If you
want to reduce the amount of time it takes to get an
application into the field, you need some way of knowing
where that time is spent.

20

This is a relatively new practice for us, so the development
practice changes resulting from this data are what’s next.

Having duration data with “initial authoring estimate” data
allows for comparisons across surveys. A three-hour block is
a three-hour block.

Results from one survey show that specifications took 70%
of development time, development activities took 18%, and
client testing took 12% of the time. From experience, we
understand that client testing is normally three or more
times longer than development, so our new practices are
clearly having a positive impact. (This survey went through
technical design, specification reviews and QA testing.)

Note: it had always been my impression that clients spent more calendar time
testing than specifying, and this data shows that that was wrong. Client testing
efforts are obvious to us, and they take place at a time when authors are doing
heavy work, too. All of the time spent the client spent creating the specifications
“got lost” in the past. Tracking activities from the start produces a much better
picture of all development: the time didn’t “get lost”.

21

One could do this …

 How much better is this new practice? Authoring was
reduced by 6%, and testing was reduced by 23%.

Metrics help you understand your development processes,
which can then help you look for improvements in appropriate
places. When you make changes in your development
processes, metrics can help you measure how effective they
were (or how ineffective they were!!).

22

