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Diversity Measures: Notation and Setup
• Let 𝑝𝑝𝑖𝑖 = proportion of cases in Category 𝑖𝑖, 𝑖𝑖 = 1, … ,𝐶𝐶

• 𝑝𝑝𝑖𝑖 ≥ 0 ∀𝑖𝑖
• ∑𝑖𝑖=1𝐶𝐶 𝑝𝑝𝑖𝑖 = 1

• 𝐶𝐶 “mutually exclusive and exhaustive” proportions ⇒ multinomial 
distribution

• Diversity measure, 𝐷𝐷 = 𝑓𝑓(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝐶𝐶) satisfies
• 𝐷𝐷 is bounded:  𝑓𝑓 𝑝𝑝𝑖𝑖 = 0 ∀𝑖𝑖 ≤ 𝐷𝐷 ≤ 𝑓𝑓 𝑝𝑝𝑖𝑖 = 1

𝐶𝐶
∀𝑖𝑖

• 𝐷𝐷 is invariant across all transformations that preserve the identity and integrity of 𝐶𝐶
categories



Diversity Measure: Majority-Minority Approach

• Assumes 𝐶𝐶 = 2
• Framework: let 

𝑝𝑝1 = proportion of individuals in 𝐶𝐶1
𝑝𝑝2 = 1 − 𝑝𝑝1 = proportion of individuals not in 𝐶𝐶1

• Approach: let 𝐷𝐷 = 𝑝𝑝1𝑝𝑝2 = 𝑝𝑝1(1 − 𝑝𝑝1)
• 𝐷𝐷 = 0.25 maximum when 𝑝𝑝1 = 𝑝𝑝2 = 0.5
• 𝐷𝐷 → 0 when either 𝑝𝑝1 or 𝑝𝑝2 → 1
• “Approach doesn’t capture true diversity because limited to two groups”



Diversity Measure: Generalized Variance
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• Also referred to as Simpson’s Index (Simpson, 1949)
• Properties:

• invariant under categorical permutations and relabeling
• 0 ≤ 𝐺𝐺𝐺𝐺 ≤ 𝐶𝐶−1

𝐶𝐶

• Normalized GV (𝑁𝑁𝐺𝐺𝐺𝐺) allows for better comparison of distributions with 
differing number of categories:
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• 𝑁𝑁𝐺𝐺𝐺𝐺 = −𝐸𝐸𝐸𝐸 𝜒𝜒2



Hypothesis Test for Uniformity

• 𝐻𝐻0:𝑝𝑝𝑖𝑖 = 1
𝐶𝐶
∀𝑖𝑖 = 1, … ,𝐶𝐶

• Test statistic:
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• 𝜒𝜒2

𝐶𝐶−1
= 1 −𝑁𝑁𝐺𝐺𝐺𝐺



Diversity Measure: Entropy

𝐻𝐻 = −�
𝑖𝑖=1
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𝑝𝑝𝑖𝑖 log2(𝑝𝑝𝑖𝑖)

• 0 ≤ 𝐻𝐻 ≤ log2(𝐶𝐶)
• Shannon’s diversity index (i.e. Shannon-Weiner) defines 𝐻𝐻 via ln vs. log2
• Like 𝐺𝐺𝐺𝐺, sensitive to number of categories/groups, so alternative is normalized 

entropy:
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• 𝑁𝑁𝐻𝐻 also referred to as an evenness index (Pielou 1966)



LRT for Uniformity

• 𝐻𝐻0:𝑝𝑝𝑖𝑖 = 1
𝐶𝐶
∀𝑖𝑖 = 1, … ,𝐶𝐶

• Test statistic:

𝑋𝑋2 = −2�
𝑖𝑖=1

𝐶𝐶

𝑝𝑝𝑖𝑖 ln
𝑝𝑝𝑖𝑖

1/𝐶𝐶
= 2.886 log2 𝐶𝐶 − 𝐻𝐻 = 2.886(1 −𝑁𝑁𝐻𝐻)



Example: 

Question: Is there an improvement with regard to diversity?



Answer:

Diversity 
Index

2011 2021

Sex GV 0.4335 0.4564

H 0.4282 0.4498

Race and 
Ethnicity

GV 0.4344 0.5483

H 0.3131 0.3858

Disability 
Status

GV 0.0534 0.0557

H 0.0430 0.0438

• 𝐺𝐺𝐺𝐺 measures are slightly higher than 𝐻𝐻
• High correlation between 𝐺𝐺𝐺𝐺 and 𝐻𝐻



Summary
• Indexes provide single numerical value describing the amount of 

(dis)similarity between the relative size of 𝐶𝐶 subpopulations defined by 
demographic and social categories

• Measure of scatter for categorical variables
• The “majority-minority” approach is insufficient
• “𝐺𝐺𝐺𝐺 generalizes the binomial distribution variance, easily interpreted as the 

likelihood of randomly picking out two individuals from the different groups 
in the population, and directly relates to Pearson chi-square test of 
uniformity and its associated measure of effect size”

• Entropy (𝐻𝐻) is based on information theory and related to the chi-squared 
test of uniformity and its associated measure of effect size

• 𝐺𝐺𝐺𝐺, 𝐻𝐻 very highly correlated



Summary (cont.): Special cases

• Binomial distributions (𝐶𝐶 = 2)
• 𝑁𝑁𝐺𝐺𝐺𝐺 and 𝑁𝑁𝐻𝐻 become closer to each other as (a) the two proportions are more 

similar to each other (i.e. 𝑁𝑁𝐺𝐺𝐺𝐺 = 𝑁𝑁𝐻𝐻 = 1), and (b) when population is concentrated 
in one of the groups (𝑁𝑁𝐺𝐺𝐺𝐺 = 𝑁𝑁𝐻𝐻 = 0)

• 𝑁𝑁𝐺𝐺𝐺𝐺, 𝑁𝑁𝐻𝐻 farthest apart when one group comprises 90% of the population and the 
other makes up the remaining 10%

• Trinomial distributions (𝐶𝐶 = 3)
• 𝑁𝑁𝐺𝐺𝐺𝐺, 𝑁𝑁𝐻𝐻 most divergent when population equally divided between two of the 

groups and the third group is empty



Summary: How many categories?

• Distribution of 𝐺𝐺𝐺𝐺 and 𝐻𝐻 statistics affected when 2+ categories combined 
to form one, and data recoding affects explanatory power of diversity

• Determine whether the extra categories increase the differentiation 
between the various cases.



Discussion

• Precise vs imprecise classification
• Appropriate test for diversity?
• Indexes for inclusivity and equity

https://sierraconstellation.com/careers/diversity-equity-inclusion/



https://belonging.berkeley.edu/inclusiveness-index



Inclusiveness Index: Methodology

• Data for indicators collected and processed for analysis as z-scores
• “Z-score calculated for all indicators in each dimension – Race, Gender, LGBTQ+, 

Religion, Disability and General Population, and adjusted (multiplied by ‘-1’) where 
higher values of indicators meant lack of inclusion (e.g. higher index values for 
government restrictions on religion)”

• Z-score values then scaled from 0-100 for each indicator
• Dimension index score = average of scaled scores of each indicator within the 

dimension
• Inclusiveness Index value = average of index scores for all dimensions

• Inclusiveness level (high to low) determined by sorting data in descending order, 
categorizing into quintiles



Analytics for 
Equity 
proposals due 
March 3, 2023
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