Where's Daddy?

Challenges in the measurement of men's fertility

Lindsay M. Monte, PhD
Jason M. Fields, PhD
U.S. Census Bureau

PAA Annual Meeting, 2021

May 6, 2021

This work is released to inform interested parties of ongoing research and to encourage discussion of work in progress. Any views or opinions expressed in the paper are the authors' own and do not necessarily reflect the views or opinions of the U.S. Census Bureau

Survey of Income \& Program Participation (SIPP)

- Nationally representative survey of the civilian, non-institutionalized population
- Panel survey, following respondents over 4 years
- Premier source of information on income and social program receipt
- Collects complete fertility history from both men and women
- Childlessness
- Total CEB
- Multiple partner fertility
- Grandparenthood

Table 1.
Fertility Indicators: 2014

Characteristic	Women aged 15 and over			Men aged 15 and over		
	Number (in thousands)	Percent	Margin of error ($\mathbf{~})^{1}$	Number (in thousands)	Percent	Margin of error (\pm) ${ }^{1}$
All adults	130,253	100.0	0.0	121,836	100.0	0.0
Have biological children.	89,523	687	0.4	72,151	50.2	0.4
Do not have biological children	40,730	31.3	0.4	49,665	40.8	0.4
Children ever born						
None	40,730	31.3	0.4	49,685	40.8	0.4
One	20,603	15.8	0.4	17,634	14.5	0.4
Two	33,916	26.0	0.4	27,843	22.9	0.4
Three or more	35,004	26.9	0.5	26,674	21.9	0.4
Age at first birth ${ }^{2}$						
Under 20	19,338	21.6	0.6	5,890	8.2	0.4
20-24. .	33,285	37.2	0.6	22,355	31.0	0.6
25-29. .	21,227	23.7	0.5	21,842	30.3	0.7
30-34. .	10,944	12.2	0.4	14,057	19.5	0.6
35-39.	3,875	4.3	0.2	5,636	7.8	0.4
40 and over	854	1.0	0.1	2,371	3.3	0.2
Multiple Partner Fertility ${ }^{2}$						
Does not have children with multiple partners. . .	74,618	924	0.4	61,653	95.4	0.5
Has children with multiple partners	14,905	16.6	0.4	10,498	14.6	0.5

Table 1.
Fertility Indicators: 2014

Higher childlessness in one sex requires the parents of that sex to have higher MPF.

Higher childlessness in one sex requires the parents of that sex to have higher MPF.

United States ${ }^{\circledR}$
EnSUS

The Big Picture

When data are comprehensive, the problems are evident

Parameterizing the Problem

Having complete fertility information from both men and women allows us to triangulate down to numbers of unique childbearing partners:

$$
\begin{aligned}
\text { Total fathers } & =\text { reported fathers }- \text { duplicated fathers } \\
& =\text { number of women's childbearing unions }- \text { duplicated fathers } \\
& =\text { number of women's childbearing unions x (1-men's MPF) }
\end{aligned}
$$

Competing reports of childbearing

(Numbers in thousands)

	Number of mothers	Number of fathers	Number of children of these parents	MPF rate for parents
Men's reports $(\mathrm{N}=121,245)$	70,835 (Men's \# childbearing unions x (1-women's \% MPF)	$\mathbf{7 2 , 1 5 1}$	$\mathbf{1 7 3 , 8 0 0}$	14.6% $(\sim 85,040$ unions reported)
Women's reports $(\mathrm{N}=129,645)$	89,518		92,050 (Women's \# childbearing unions x(1-men's \% MPF)	

SOURCE: US Census Bureau, Survey of Income and Program Participation, 2014 Panel, Wave 1 Numbers in blue are derived, not reported.

Competing reports of childbearing

(Numbers in thousands)

Competing reports of childbearing

(Numbers in thousands)

	Number of mothers	Number of fathers	Number of children of these parents
Men's reports	70,835	72,151	173,800
Women's reports	89,518	92,050	221,300
Children's reports			194,323 respondents with a living father 223,467 respondents with a living mother

So how many dads are we missing?

Estimating missing dads using children's reports

Children's (all ages) Living Fathers =
(Men in the survey universe x the number of children they have had)
$+$
(Men outside the survey universe x the number of children they have had)

If we assume that the missing men's parity follows the same distribution as reporting men's parity...
 (Numbers in thousands)

	(A) Proportion of men's children at each parity (REPORTED)	(B) If the children whose fathers are not captured in the SIPP sample are distributed by omitted father's parity in the same distribution as sampled fathers, how many children at each parity level are we missing?	(C) Men's single partner fertility at each parity (REPORTED)	NUMBER OF FATHERS MISSED ((B / parity) * C)
1 child	2,082	100%		
2 children	10.1%	6,576	90.2%	2,082
3 children	32.0%	5,424	78.1%	2,966
4+ children	26.4%	6,443	61.3%	1,412
TOTAL	31.4%	20,523 (REPORTED)	100.0%	7,268

SOURCE: US Census Bureau, Survey of Income and Program Participation, 2014 Panel, Wave 1

Estimating missing dads using mothers' reports

Fathers $=$
(Reported total number of fathers at each level of women's parity if each union represented unique fathers
x
Ratio of unique fathers to all unions at each level of women's parity)

Estimating missing dads using mothers' reports

 (Numbers in thousands)| | Reported total number of
 fathers if each union
 represented unique
 fathers
 (REPORTED) | Ratio of unique
 fathers to all unions
 (DERIVED) | Adjusted estimates of the total
 number of fathers discounting
 the impact of multiple partner
 fertility |
| :--- | :--- | :--- | :--- |
| Women's parity | 20,599 | .960 | 19,780 |
| $\mathbf{1}$ | 38,371 | .892 | 34,563 |
| $\mathbf{2}$ | 25,752 | .744 | 19,151 |
| 3 | 22,720 | .548 | 12,440 |
| $4+$ | 107,800 | | 85,933 |
| TOTAL | | | $85,933-72,151$ |
| Number of fathers missed | | | |
| from reported 72,151 | | | |

How many dads?

~72 million fathers
(SIPP men)

How many dads?

Our best guess is that the SIPP sample is missing between 5-12 million civilian, non-institutionalized fathers.

How many dads?

What does it all mean?

- Is it a sample issue or is it a data issue?
- Sampled men report their fertility with confidence
- We tried reweighting the existing sample to reflect these two parameters
- The data continued to violate a logical relationship between men's and women's paternity and multiple partner fertility
- We tried reweighting to a midpoint while overweighting MPF dads
- The data no longer violated paternity/MPF relationships, but still didn't quite align to children's or mothers' reports
$>$ Our missing men are fundamentally different from the men who responded to the SIPP
$>$ More likely to be fathers
$>$ More likely to be MPF fathers

Bureau

Conclusion

We know we have a man problem in survey research, but the SIPP data suggest that it is most prevalently a missing dad problem, and specifically dads who have had their children in multiple unions.

However, it is NOT that these men are not in the sampling frame. Instead, it is that they are non-respondents to the survey.

Unfortunately, non-response adjustments do not account for paternity. This means that the responding men - who less likely to be fathers AND less likely to be MPF fathers - are upweighted to replace the missing fathers, resulting in problematic estimates.

However, this is not a problem that is unique to the SIPP. Ultimately, these data do not suggest a need for better questions or better sampling frames, or any improvement specific to the SIPP, but they do suggest a need for more non-response analyses such as this one to determine the root causes of our data discrepancies so that we can map a way forward.

