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Privacy Protection out of the Shadows
• As I have argued since 2015, traditional statistical disclosure limitation is broken and 

must be fixed

• I am unaware of a single argument against using formal privacy methods that does 
not apply a fortiori to traditional SDL methods as well

• Privacy practices for many current statistical products depend upon obfuscation

• 2020 Census Disclosure Avoidance System is the most transparent view into Census 
Bureau privacy practices ever

• That system and all future systems depend on constant feedback and interaction 
with the user community

• Those feedback mechanisms must be built into the overall statistical design
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Lessons learned to date
• It is far easier to implement modern disclosure limitation when the alternative is full suppression: 

insist on modern methods for new products

• Sampling does not imply privacy protection by itself, you have to bound the information leakage first

• Tacking formal privacy onto the current design of official statistical products usually fails

• Formal privacy requires careful definition of the estimand and modification of the traditional 
estimators, but so do all statistical disclosure limitation methods if they are to be used reliably

• Understanding how to incorporate SDL into the statistical workload and how to evaluate the resulting 
estimators is the first order problem

• My thoughts are largely based on Abowd and Schmutte (Brookings Papers on Economic Activity, 
Spring 2015, https://www.brookings.edu/wp-content/uploads/2015/03/AbowdText.pdf ) which gives 
a full Bayesian analysis of the problem in the online appendix here: 
https://digitalcommons.ilr.cornell.edu/ldi/24/
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https://www.brookings.edu/wp-content/uploads/2015/03/AbowdText.pdf
https://digitalcommons.ilr.cornell.edu/ldi/24/
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Complete data likelihood function
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Y = complete data matrix N x K (index: i,j)
θp = process parameters
R = inclusion matrix N x K (rij = 1 if yij is included in the

sample design; 0, otherwise)
θD = design parameters
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Observed data likelihood function
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Y(obs) = observed data elements N x K (index: i,j)
Y(mis) = missing data elements N x K (index: i,j)
These correspond to rij = 1 and rij = 0, respectively 
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Inference and estimation without SDL
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Ignorability here covers ignorable sampling and/or missing data.
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Published data likelihood function
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Z = published data matrix N x K (index: i,j)
θS = SDL parameters
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Inference and estimation including SDL
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The inference or estimation should be conditioned on Z and R, 
which are not the same as the confidential observed data Y(obs).
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Inference and estimation including SDL-II
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SDL-aware inference and estimation
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These MCMC equations implement non-ignorable SDL, assuming an ignorable, known 
inclusion mechanism (sampling probabilities are public).
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Fewer privacy procedures allow for 
simpler and more adaptive workflows
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Source: Rolando Rodríguez, U.S. Census Bureau, COPAFS/FCSM ACS Confidentiality and 
Data Access Webinar, July 23, 2020.11
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Data users will gain the ability to validate 
modeled output
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Source: Rolando Rodríguez, U.S. Census Bureau, COPAFS/FCSM ACS Confidentiality and 
Data Access Webinar, July 23, 2020.12
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Thank you

John.Maron.Abowd@census.gov
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