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The Census Bureau is committed to data 
quality

• The Census Bureau's mission is to serve as the nation’s leading 
provider of quality data about its people and economy

• The Census Bureau’s goal is to provide the best mix of timeliness, 
relevancy, quality and cost for the data we collect and services we 
provide
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The Census Bureau is also committed to data 
privacy protection

• The Census Bureau operates, collects data, and publishes statistics 
under the authority of several titles of the U.S. Code

• Title 13, Sec.9: Neither the Secretary, nor any other officer or 
employee of the Department of Commerce or bureau or agency 
thereof […] may […] make any publication whereby the data 
furnished by any particular establishment or individual under this 
title can be identified
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The Census Bureau is modernizing the way 
we protect data

Traditional 
• Include techniques such as

• Geographic Aggregation
• Cell Suppression
• Variable Top-Coding 
• Category Collapsing

• Methods are ad hoc and based 
on known risks

• May require secrecy of methods 
and parameters

Modern
• Guarantee privacy against broad 

classes of attacks
• Do not depend on which datasets 

are now or will be available
• Have a calculable, global privacy 

loss for a given set of releases at a 
given accuracy

• Allow for transparency about the 
method, data accuracy, and privacy 
loss
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The Census Bureau is pioneering noise 
injection techniques

• Disciplined and careful noise injection can help provide estimates 
with favorable properties

• Differential privacy requires that statistical disclosure avoidance 
techniques, such as noise injection, meet mathematically defined 
bounds on privacy loss

• We must weigh noise injection against alternative disclosure 
avoidance methods

• Even when the properties of the noise injection are sub-optimal, the method 
can still outperform alternatives

• Especially true when the alternative is providing less output
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The use of formal privacy is expanding at the 
Census Bureau

In Use or Planned
• OnTheMap
• 2020 Census
• Post-Secondary Education 

Outcomes (PSEO)
• Census Barriers Attitudes and 

Motivators Study (CBAMS)

Ongoing Research
• American Community Survey
• Many more to come!
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• CBAMS is a nationwide survey designed to identify barriers, attitudes, 
and motivators toward Census response 

• Critical for an accurate and cost efficient Census
• Emphasizes hard-to-count populations
• Used to help allocate the media budget and pursue maximum impact of the 

media campaign

• The 2020 communication campaign requires sharing CBAMS data 
with external partners
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The Census Barriers Attitudes and Motivators 
Study (CBAMS) is critical for the 2020 Census



We choose modern methods for CBAMS
• The communications team needs tens of thousands of estimates from crosstabs
• Cell suppression was considered but it would be complex and time consuming   

• Anytime a cell needs to be suppressed, adjacent cells within a table and across linked tables 
would need to be suppressed to avoid reconstruction of the suppressed cell

• Combining categories to reduce the number of offending cells would result in some 
proportion of lost information

• We provide a protected microdata file using differentially private noise injection
• Provides partners with higher quality data than they would have otherwise received with 

traditional methods
• The communication strategy would need to be drastically changed without this solution 

• We employ the local model with two differentially private noise injection 
mechanisms to produce the protected CBAMS microdata file
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We add Laplace noise to continuous variables

• For a value 𝑥𝑥 we return 𝑥𝑥 + 𝜔𝜔, where 𝜔𝜔~ Laplace(0, 𝑆𝑆𝑥𝑥
𝜖𝜖

)
• 𝑆𝑆𝑥𝑥 is called the sensitivity 

• For this model, it is calculated as the
difference between the maximum and
minimum possible values 

• All continuous values are percentages, so
we have 𝑆𝑆𝑥𝑥= 100 – 0 = 100

• 𝜖𝜖 is the privacy parameter
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Randomized response is a valuable differentially 
private mechanism for categorical variables

• Originally developed as a survey method that allows respondent to respond to 
sensitive questions while maintaining confidentiality

• Example:

• Assume that the true percentage of respondents who have been arrested is 10%. Then we’ll 
have the expected proportion of answers:  

• Given that the true proportion of ‘yes’ answers is unknown, it can be reconstructed as

𝑌𝑌𝑌𝑌𝑌𝑌 =
𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃(𝑇𝑇)𝑃𝑃(𝐻𝐻)

𝑃𝑃(𝐻𝐻)
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been arrested?
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We apply randomized response to discrete 
variables

• Many survey questions have categorical responses
• Example: Is the Census used to decide how much money communities will get from the 

government?
(1) Yes, used for this
(2) No, not used
(3) Don’t know

• For a two-category variable the noise injection is displayed in the following design 
matrix, where є is the differential privacy parameter 

𝑃𝑃 =
𝑝𝑝11 𝑝𝑝12
𝑝𝑝21 𝑝𝑝22 =

𝑒𝑒𝜖𝜖

1+ 𝑒𝑒𝜖𝜖
1

1+ 𝑒𝑒𝜖𝜖
1

1+ 𝑒𝑒𝜖𝜖
𝑒𝑒𝜖𝜖

1+ 𝑒𝑒𝜖𝜖

• We use a multinomial version of randomized response to perturb each 
categorical variable

11



Noise Barrier

We proceed record by record to create the 
microdata

• Implement noise injection on each record variable-by-variable

• All data items must pass through the noise barrier
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The ROC curve displays the necessary tradeoff
• Shows the tradeoff between the amount of privacy lost and the accuracy of the data

• 𝜖𝜖 is our privacy parameter
• The root mean squared

error (RMSE) is our measure of accuracy
• Quantifying the tradeoff is a key

feature of differentially private 
methods

• Allows policy makers to balance
important social goods – data 
accuracy and data privacy

• We use 𝜖𝜖 = 7 for each variable 
• Publicly available via the Census Bureau’s

FOIA page
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New methods provide an opportunity for 
greater data privacy and data accuracy

• These techniques allow us to deliver a wealth of data to support the 
2020 Census communication team, and to help ensure the success of 
the Census itself

• The Census Bureau is actively expanding the use of new methods
• These methods allow us to fulfill our obligations to data users and to 

respondents
• These changes will let the Census Bureau better serve data users

• Transparency
• Data-driven decisions about balancing data privacy with data accuracy
• Continue to have a quality, trusted, reputable product for years to come
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Thank You!
Caleb Floyd
caleb.r.floyd@census.gov

Rolando Rodríguez
rolando.a.rodriguez@census.gov

FOIA link
https://www2.census.gov/programs-surveys/decennial/2020/program-management/census-
research/cbams/2020-CBAMS-Survey.zip
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