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Disclaimer

This report is released to inform interested parties of research
and to encourage discussion. The views expressed on statistical
issues are those of the author and not necessarily those of the
U.S. Census Bureau.
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Interest in signal extraction

The Census Bureau has a long history of signal extraction and
seasonal adjustment.

1954 released first “X-11” software for seasonal adjustment.

2012 released X-13ARIMA-SEATS our most recent
seasonal adjustment variant.

We currently maintain and research new methods to implement
in X-13ARIMA-SEATS.
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Overview of our SA methodology

Currently we seasonally adjust only monthly and
quarterly time series.

Xt = Tt + St + It

→ Can also include exogenous regressors e.g. trading day and
moving holidays

We estimate the latent components T̂t, Ŝt, Ît

The Census Bureau then publishes a seasonally adjusted
series:

XSA
t = T̂t + Ît = Xt − Ŝt
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Higher Frequency Time Series

There is more and more interest in publishing series at a higher
frequency than monthly and quarterly.

However, higher frequency series bring many more seasonal
patterns that are not present in monthly/quarterly data.

Consider a daily time series:

Xt = S
(1)
t︸︷︷︸

trend

+ S
(2)
t︸︷︷︸

day of year

+ S
(3)
t︸︷︷︸

week of year

+ S
(4)
t︸︷︷︸

day of month

+ S
(5)
t︸︷︷︸

day of week

+ S
(0)
t︸︷︷︸

irregular

Publish SA series XSA
t = S

(1)
t + S

(0)
t ?
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Daily data
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New Zealand Immigration Data

NZArr New Zealand residents arriving in New Zealand after an
absence of less than 12 months.

NZDep New Zealand resident departures for an intended period of
less than 12 months.

VisArr Overseas residents arriving in New Zealand for a stay of less
than 12 months.

VisDep Overseas residents departing New Zealand after a stay of
less than 12 months.

PLTArr Permanent and Long Term Arrivals includes overseas
migrants who arrive in New Zealand intending to stay for a
period of 12 months or more (or permanently), plus New
Zealand residents returning after an absence of 12 months or
more.

PLTDep Permanent and Long Term Departures includes New
Zealand residents departing for an intended period of 12
months or more (or permanently), plus overseas visitors
departing New Zealand after a stay of 12 months or more.
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MLE issues. The problem

Multivariate signal extraction can be accomplished through the
use of latent component models. e.g.

Xt = Tt + St + It.

Typically the number of parameters increases quadratically
with dimension. Linear filtering theory built on knowledge
of variance and covariance matrices.

Direct approaches to maximum likelihood estimation
(MLE) for N -dimensional time series encounter the
difficulty of numerical optimization over Rp, where the
number of parameters p is large, i.e., p > 100.

longer times to evaluate the objective function
long search times (large p)
termination at saddlepoints
results sensitive to initialization
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Research Goals

Explore Expectation Maximization (EM) Algorithm as
method to alleviate some computational burden without
losing full MLE appeal.

implicitly compute MLEs
approximate the true MLEs

We see the most promise in moderate dimensional signal
extraction problems.

Can be extremely beneficial as we look to analyze higher
frequency series.

more exotic seasonal patterns (spectral peaks)
higher dimensional seasonal vector form
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Overview of EM Algorithm

Start with complete likelihood. Act as if we could
observe the latent signals. Not observable.

L(Θ|X,T, S)

Take conditional expectation - map to a deterministic
quantity. (E-step)

E
[
−2 logL(Θ|X,T, S) | X,Θ(k−1)

]
Maximize this conditional likelihood (M-step). Get
updated parameter estimates Θ(k).

Iterate until convergence.
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Model Setup

Consider an N -dimensional vector time series {Xt} consisting of

J signals denoted {S(j)
t } and an irregular {S(0)

t }, which is
stationary. These are additively related:

Xt =

J∑
j=0

S
(j)
t .

Example:

Xt = S
(1)
t︸︷︷︸

trend

+ S
(2)
t︸︷︷︸

seasonal

+ S
(0)
t︸︷︷︸

irregular
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Difference Stationary Process

We formulate our signal extraction for difference-stationary
processes.

Let B denote the backshift operator. BXt = Xt−1

There exists a scalar differencing polynomial for each
component that maps it to stationarity. For j = 1, 2, . . . , J ,

δ(j)(B)S
(j)
t = S

(j)
t

where S
(j)
t is a covariance stationary and mean zero.

It is assumed δ(0)(B) = 1 because S(0) is stationary.
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Stationarity of Observed Data

It follows that δ(B) =
∏J

j=1 δ
(j)(B) is sufficient to reduce

{Xt} to stationarity.

Xt = δ(B)Xt = δ(B)S
(0)
t +

J∑
j=1

δ(−j)(B)S
(j)
t

where δ(−j)(B) =
∏

k 6=j δ
(k)(B).

Denote over-differenced stationary components as

S
(−j)
t = δ(−j)(B)S

(j)
t , S

(−0)
t = δ(B)S

(0)
t
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Example

To demonstrate a difference stationary construction and each
over-differenced component consider:

Xt = S
(1)
t︸︷︷︸

trend

+ S
(2)
t︸︷︷︸

seasonal

+ S
(0)
t︸︷︷︸

irregular

(1−B)S
(1)
t = S(1) ∼WN(0,Σ(1))

(1 +B +B2 + . . .+B11)S
(2)
t = S(2) ∼WN(0,Σ(2))

Then our over-differenced series are:

(1−B12)Xt =(1 +B +B2 + . . .+B11)S(1)

+ (1−B)S(2)

+ (1−B12)S(0)

= S(−1) + S(−2) + S(−0)
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EM proceedure

Each latent process is assumed to have the form of a scalar
ARMA equation driven by multivariate white noise.

The block Toeplitz covariance matrix of S
(−j)
t is given by

Γ(−j).

Start with the full data likelihood L(Θ|X,S(1), . . . , S(J)).

Rewrite as a divergence:

J∑
j=0

s(−j)′ Γ(−j)−1
s(−j) +

J∑
j=0

log det Γ(−j),
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E and M Steps

The conditional expectation of this divergence (E-step) can
then be computed:

J∑
j=0

tr
{

Γ(−j)−1
[
M (−j) + ŝ(−j) ŝ(−j)′

]}
+

J∑
j=0

log det Γ(−j),

where M (−j) is error covariance matrix for the jth
over-differenced signal.

Which has a critical point (M-step) at:

Σ(j) = (T − d)−1
T∑

k,`=d+1

Γ
(j)
k`

[
M

(−j)
`k + ŝ

(−j)
` ŝ

(−j)′
k

]
.

where Γ(j) is inverse covariance matrix of
over-differenced portion of Γ(−j).
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Pseudo Code for EM Procedure

1 Setup your model components.
This gives global Γ(−j) you fix once.

2 Initialize Σ(j), M (j), Ŝ(j) for all j = 1, 2, . . . , J

3 Update Σ(j) −→ (T − d)−1 ∑T
k,`=d+1 Γ

(j)
k`

[
M

(j)
`k + ŝ

(−j)
` ŝ

(−j)
k

]
.

4 Run sigex with updated covariance structure.
Get updated M (j), Ŝ(j)

5 Iterate 3-4 until convergence.
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Housing Starts Data
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Proposed Model

A proposed model to the housing starts data:

Xt = S
(1)
t︸︷︷︸

trend

+ S
(2)
t︸︷︷︸

seasonal

+ S
(0)
t︸︷︷︸

irregular

(1−B)2S
(1)
t = S(1) ∼WN(0,Σ(1))

(1 +B +B2 + . . .+B11)S
(2)
t = S(2) ∼WN(0,Σ(2))

Then our full-differencing operator:

δ(B) = (1−B)(1−B12)
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Housing Starts EM Fit

Likelihood is improved over method of moments estimator

Strongest correlation among signals was between south and
west regions
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Housing Starts Fit
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Back to Immigration Series
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Spectrum of Immigration Series
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Spectrum of Immigration Series
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Model for Immigration Series

Xt = S
(1)
t︸︷︷︸

trend & annual

+ S
(2)
t︸︷︷︸

weekly

+ S
(0)
t︸︷︷︸

irregular

It is advantageous to entertain a more nuanced weekly
specification.

S
(2)
t = S

(2,1)
t︸ ︷︷ ︸

1st weekly peak

+ S
(2,2)
t︸ ︷︷ ︸

2nd weekly peak

+ S
(2,3)
t︸ ︷︷ ︸

3rd weekly peak
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Estimated Components
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Estimated Components
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Estimated Components

PLTArr Estimated Components
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Estimated Components

NZArr Weekly Components
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Estimated Components

VisArr Weekly Components
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Estimated Components

PLTArr Weekly Components
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Conclusions

The M-step yields an explicit formula for the white noise
covariance matrices, which can be computed from a
knowledge of the extracted signal and the error covariances.

This formula is fast to compute (no matrix inversions), and
hence the speed of the method depends on our facility with
signal extraction.

Feel free to use this R package. It is up on my Github page
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Future Work

Further investigate convergence criteria

Sensitivity analysis

Dimension/parameter size feasibility
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Thank you.

Email: James.A.Livsey@census.gov
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