A Comparison of Alternative Optimization Techniques for Sample Allocation in Surveys with National and Sub-National Precision Requirements*

John Chesnut and Shawn Baker

Demographic Statistical Methods Division, U.S. Census Bureau

2019 Joint Statistical Meetings Denver, Colorado

*Any views expressed are those of the authors and not necessarily those of the U.S. Census Bureau, DAO approval # CBDRB-FY19-ROSS-B0165

Sample Redesign Research Program

- Research and develop innovative cross-cutting improvements to the sample designs used by the major household surveys at Census
 - ► Current Population Survey labor force characteristics of the U.S. population (BLS)
 - Survey of Income and Program Participation income and govt. program participation of individuals and households in the U.S. (Census)
 - National Crime Victimization Survey characteristics and consequences of criminal victimization in the U.S. (BJS)
 - Consumer Expenditure Surveys two surveys that characterize the buying habits of American consumers (BLS)
 - American Housing Survey collects data on the Nation's housing stock, household characteristics, housing and neighborhood quality, housing costs, and recent movers (HUD)

Research Focus

- Are the household surveys with multiple objectives meeting their objectives in an optimal manner? (e.g., multiple key estimates and domains of interest)
- As a first step, consider the sample allocation problem for the CPS with precision standards at the national and state-level, explore alternative allocation methods

Previous Work on Sample Allocation for Multipurpose Surveys

- Neyman allocation (1934) univariate, insufficient precision for small strata
- Compromise solution for *P* variables, average the Neyman allocation solutions for each variable (Huddleston, Claypool, and Hocking, 1970)
- Define an objective function that is a weighted average of the variances $\bar{V} = \sum_{P} H_{P} V_{P}$, (e.g., Valliant and Gentle, 1996)
 - Choice of the importance weights $\{H_p\}$ is arbitrary optimality not clear
- Minimization of a convex objective function while satisfying inequality constraints for the variances, $V_p \leq V_{p0}$ (e.g., Bethel, 1989)
 - Gives the optimal solution
 - Complex analytical solutions, but can use numerical methods

Current Population Survey - Sample Design Requirements

- Designed primarily to produce national and state estimates of labor force characteristics
- Official design requirements (CPS Technical Paper 66, 2006)
 - ► A 0.2% change in the unemployment rate from month-to-month is statistically significant at the 10% level assuming a 6% unemployment rate
 - ► A maximum coefficient of variation (*cv*) of the annual average unemployment level for each state, the District of Columbia, and the metropolitan areas of New York and Los Angeles is 8%
- Unofficial design requirements
 - Approximate sample size of 60,000 housing units
 - Reliability for other labor force characteristics
 - Approximately self weighting national sample

Define the Sample Allocation Problem - Objective Function

- Rottach and Erkens (2012) developed a mathematical model that relates the national and state-level design requirements
 - Both requirements are converted into cv requirements for national and state-level monthly unemployment totals
 - At the national-level for a given month t, $cv(\hat{Y}_t) = cv(\hat{Y}_t)$ based on the linearization $cv^2(A/B) \cong cv^2(A) cv^2(B)$ and a negligible $cv^2(B)$
 - ► Assume { Ŷ_{t,s}}_{s∈States} are independent and assume the national and state-level unemployment rates are approximately equal
 - Therefore, $cv^2(\sum_s \hat{Y}_{t,s}) = \sum_s p_s^2 cv^2(\hat{Y}_{t,s})$ where $p_s = CLF_s/CLF$, (Civilian Labor Force)

Defining the Sample Allocation Problem - Objective Function

- Given direct estimates of the current state cv values and assuming that $cv^2 \propto \frac{1}{n}$, $cv_{new,s}^2(\hat{Y}_{t,s}) = \frac{SI_{new,s}}{SI_{current,s}}cv^2(\hat{Y}_{t,s})$ • Therefore, $cv^2(\sum_s \hat{Y}_{t,s}) = \sum_s \left(\frac{CLF_{new,s}}{n_{new,s}}\right) \left(\frac{1}{SI_{current,s}}\right) p_s^2 cv^2(\hat{Y}_{t,s})$
- The decision variables are the set of new state sample sizes $\{n_{new,s}\}$

Defining the Sample Allocation Problem - Constraints

- Translate the national-level minimum detectable difference requirement into a cv requirement for the national unemployment total
 - ► Rottach and Erkens (2012) determine a modeled correlation between subsequent monthly unemployment rates predict $corr(\bar{Y}_t, \bar{Y}_{t+1}) = 0.41$
 - Assuming a 6% unemployment rate, to detect a $\hat{Y}_t \hat{Y}_{t+1} = 0.002$ for an $\alpha = 0.10$ requires a $cv(\hat{Y}_t) = 0.0187$
 - \blacktriangleright Nation-level constraint, $cv^2(\sum \hat{Y}_{t,s}) \leq 0.0187^2$

Defining the Sample Allocation Problem - Constraints

• Translate the state-level *cv* requirement for the annual average monthly unemployment level into a *cv* requirement for the state monthly unemployment total

•
$$cv_s^2(\hat{Y}_s) = \frac{.08^2}{0.71\alpha_s + 0.20(1 - \alpha_s)}$$
 where $\alpha_s = \frac{V_{b,s}(\hat{Y})}{V_s(\hat{Y})}$

- Note that Rottach and Erkins derive the 0.71 and 0.20 factors using a model-based approach to predict the between and within correlation component values for all pair-wise combinations of months within a 12 month period
- State-level constraints, $\{cv_s \leq cv_{s0}\}_{States}$
- Additional soft constraints
 - ► $n_s \ge n_0$
 - $SI_s \leq SI_0$
 - ▶ *n* ≈ 60,000

Defining the Sample Allocation Problem - Selecting the Soft Constraints

10/18

Sample Allocation Methods

- Nonlinear optimization algorithm (NLOpt http://github.com/stevengj/nlopt)
 - Constrained optimization using the Augmented Lagrangian algorithm along with the Method of Moving Asymptotes (MMA)
- Maximum Sampling Interval (Max SI)
 - Iteratively decreases a "ceiling" for the sampling intervals to reduce the range of sample weights across the nation
- Greedy heuristic
 - Iteratively adds an additional sample to the stratum with the largest reduction in variance

Results - Comparing Allocation Methods

ted States

U.S. CENSUS BUREAU consus any

・ロト ・ 同ト ・ ヨト ・ ヨト 12/18

Comparing Allocation Methods

	Samp	ling Int.		
Method	Max	Min	CV	$n_{cv=1.9}$
Required <i>cv</i>	402	8,019	2.532	_
NLOpt	355	3,951	1.937	62,500
Max SI	405	2,750	1.873	58,700
Heuristic	405	3,172	1.866	58,400

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU census.gov

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Comparing the State-Level Precision Results

State-Level CV Values by Sample Allocation Method*

*States are ordered by their CV values attained via the Heuristic method of allocation

Economics and Statistics Administration U.S. CENSUS BUREAU census.gov

Conclusions

• Model relating the state and national-level precision requirements works well...

- Simultaneously optimizing on both requirements
- Accounts for the correlational structure of the composite estimator
- Useful tool for assessing current sample allocation
- Model limitations
 - Complex, may not generalize well to other surveys
 - * Model or empirical-based correlation estimates required as inputs
 - * Variance estimates rely on existing survey data
 - * Assumes the global and domain estimates are equal
 - * Univariate case with global and domain precision requirements
 - Assumes the first stage sample size is fixed

$Conclusions \{cont'd\}$

- Choice of allocation method depends on prioritization of a self-weighting design vs. desired precision levels
 - Maximum Sampling Interval method
 - \star Good control over the self-weighting design properties
 - * Requires slightly more budget to meet the CV requirements
 - * Benefits of self-weighting more relevant at the state level
 - Greedy Heuristic method
 - * Lower variance per unit cost national level estimate
 - * Sacrifices some control of the self-weighting properties
 - Nonlinear Optimization Algorithm
 - \star For the majority of states, effective at minimizing the state-level variances per unit cost
 - More conservative allocation for states with smaller variances penalized national-level precision result

- Investigate whether we can apply the model and allocation to other surveys
- Refine or explore additional constraints, e.g., better control of interviewer workloads
- Can we generalize the approach to the multi-variate case?

John Chesnut thomas.j.chesnut@census.gov

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU Census.gov