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Outline

• Database reconstruction is an issue, not a risk

• Examples from the 2010 Census of Population and Housing

• The risks in conventional statistical disclosure limitation

• 2018 End-to-End Test (block-by-block)

• 2020 Census (top down)

• How to think about the social choice problem of setting e
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Database Reconstruction
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2003: 
Database Reconstruction



The Database Reconstruction Theorem

• Powerful result from Dinur and Nissim (2003) [link]

• Too many statistics published too accurately from a confidential 
database exposes the entire database with near certainty

• How accurately is “too accurately”? 
• Cumulative noise must be of the order 𝑁
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2010 Census of Population: Summary
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Total population 308,745,538

Household population 300,758,215

Group quarters population 7,987,323

Households 116,716,292



2010 Census: High-level Database Schema
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Variables Distinct values

Habitable blocks 10,620,683

Habitable tracts 73,768

Sex 2

Age 115

Race/Ethnicity (OMB Categories) 126

Race/Ethnicity (SF2 Categories) 600

Relationship to person 1 17

National histogram cells (OMB Ethnicity) 492,660



2010 Census: Published Statistics
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Publication

Released counts 

(including zeros)

PL94-171 Redistricting 2,771,998,263

Balance of Summary File 1 2,806,899,669

Summary File 2 2,093,683,376

Public-use micro sample 30,874,554

Lower bound on published statistics 7,703,455,862

Statistics/person 25



The database reconstruction theorem is the 
death knell for traditional data publication 
systems from confidential sources.
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Internal Experiments Using the 2010 Census

• Confirm that the confidential micro-data from the hundred percent 
detail file can be reconstructed quite accurately from PL94 + balance 
of SF1

• While we've determined there is a vulnerability, the risk of re-
identification is small

• Experiments are at the person level, not household

• Experiments have led to the declaration that reconstruction of Title 
13-sensitive data is an issue, no longer a risk

• Strong motivation for the adoption of differential privacy for the 2018 
End-to-End Census Test
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Examples from the 2010 Census: PL94
• From PL94-171 (redistricting data) block level:

• P1 Race 
• Universe: total population 
• OMB race categories (26 – 1 = 63)

• P2 Hispanic or Latino, and not Hispanic by Race
• Universe: total population
• Hispanic ethnicity (2 ) x OMB race categories (63)

• P3 Race for the Population 18 Years and over
• Universe: total population age 18 years and over
• OMB race categories (63)

• P4 Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years 
and Over
• Universe: total population age 18 years and over
• Hispanic ethnicity (2 ) x OMB race categories (63)

• Note: implies 2 age categories 0-17, 18+
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Examples from the 2010 Census: SF1
• From SF1 (summary file 1) block level:

• P12 Sex by Age
• Universe: total population
• Sex (2) by Age in five-year groups (0-4, 5-9, …, 80-84, 85+; 23 groups)

• P12A-I Sex by Age iterated over OMB race groups (A-G) and Hispanic Origin (H, I)
• P14 Sex by Age for the Population under 20 years

• Universe: total population under 20 years old
• Sex (2) by Age (single-year age 0, 1, 2, …, 19; 20 groups)

• SF1 tract level
• PCT12 Sex by Age

• Universe: total population
• Sex (2) by Age in single years (0, 1, 2, …, 99, 100-104, 105-109, 110+; 103 groups

• PCT12A-O Sex by Age iterated over OMB race groups (7) x Hispanic Origin (2)
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Confidential Record Structure
• Confidential data for the 2010 tabulations

• Census tract + block geocode (15 digits)
• Sex (male, female)
• Age (0, …, 114+; 115 categories)
• Hispanic or Latino origin (yes/no)
• White (yes/no)
• Black or African American (yes/no)
• Asian (yes/no)
• American Indian or Alaska Native (yes/no)
• Native Hawaiian and Other Pacific Islander (yes/no)
• Some other race (yes/no)
• Note: race categories White, …, Some other race can be chosen multiply in any 

combination, but all cannot be no; 63 unique categories

14



Reconstruction Equation System

• For each of 10,620,683 habitable blocks and 73,768 habitable tracts:
• Record sample space 2 x 115 x 2 x 63 = 28,980 unique combinations

• Counts in PL94 tables P1-P4 and SF1 tables P1, P6, P7, P9, P11, P12, P12A-I, 
P14, PCT12, PCT12A-O provide constraints

• Margins of tables for total population and voting age population are exact (as 
per public documentation on PL94-171 and SF1)

• Only household-level record swapping was used; implies that zeros are 
unprotected except as swapping relocates them by geography (again, from 
public documentation on PL94-171 and SF1)
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Solving the Equation System I
• Stratify by block within tract: 

• Population counts and voting-age population counts are exact for all cells in these strata
• Implies that the correct number of records and the correct number of records for voting-age 

persons is known in each cell

• For each tract and block within tract: 
• Use every zero in the published tables to eliminate rows among the 28,980 feasible micro-

data images (a zero at the tract level eliminates the combination for all blocks on that tract)
• Select the first feasible multiset of records from among those that remain such that when the 

reconstructed micro-data are tabulated they match every count in the selected tract and 
block tables

• This is standard large-scale linear equation system that can be solved by open 
source and commercial software

• Because of its structure, the system is massively parallel in tracts

• Blocks within tract are solved as a group
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Solving the Equation System II

• Whether the problem is overdetermined (too many equations; no exact 
solution), exact (one unique solution), or underdetermined (too few 
equations; many exact solutions) depends upon the sparsity of the tables. 
• Because the tables originated from a single micro-data file (Hundred-percent Detail 

File, HDF), an overdetermined system implies an error in the problem set-up; there 
can never be more numbers in the published tables than can be created from HDF

• When the system is exact, only one configuration (multiset) from the sample space 
could have produced the published tables—the reconstruction is exact

• When the system is underdetermined there are infinitely many ways the records in 
the sample space could be selected to get the same publication tables

• Even when the system is underdetermined, all solutions could share some 
exact images
• For example, every 2010 reconstruction has exactly the same block-level geocode 

and voting age values
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Formal Privacy
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2006: 
Differential Privacy



The Disclosure Avoidance System Relies on 
Injecting Noise with Formal Privacy Rules
• Advantages of noise injection with formal privacy:

• Privacy operations are composable

• Privacy guarantees are robust to post-processing

• Provable and tunable privacy guarantees

• Protects against database reconstruction attacks

• Easy to understand

• Disadvantages:
• Entire country must be processed at once for best accuracy

• Every use of private data must be tallied in the privacy-loss budget

Global Confidentiality 
Protection Process

Disclosure Avoidance 
System

ε
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2020 Census of Population and Households



The Top-Down Algorithm
National table of US 

population

2 x 126 x 17 x 115

National table with all 500,000 cells 
filled, structural zeros imposed with 

accuracy allowed by ε1

2 x 126 x 17 x 115

Spend ε1

privacy-loss 
budget

Sex: Male / Female
Race + Hispanic: 126 possible values
Relationship to Householder: 17
Age: 0-114 Reconstruct individual micro-data 

without geography

330,000,000 records
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State-level
State-level tables for only certain 
queries; structural zeros imposed;

dimensions chosen to produce best 
accuracy for PL-94 and SF-1

Target state-level tables required for best 
accuracy for PL-94 and SF-1

Spend ε2

privacy-loss 
budget

Construct best-fitting individual micro-data with 
state geography

330,000,000 records now including state 
identifiers
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County-level

County-level tables for only certain 
queries; structural zeros imposed;

dimensions chosen to produce best 
accuracy for PL-94 and SF-1

Target county-level tables required for best 
accuracy for PL-94 and SF-1

Spend ε3 privacy-
loss budget

Construct best-fitting individual micro-data with 
state and county geography

330,000,000 records now including state and county 
identifiers

Pre-Decisional

330,000,000 records now including state identifiers
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Census tract-level

Tract-level tables for only certain 
queries; structural zeros imposed;

dimensions chosen to produce best 
accuracy for PL-94 and SF-1

Target tract-level tables required for best 
accuracy for PL-94 and SF-1

Spend ε4

privacy-loss 
budget

Construct best-fitting individual micro-data with 
state, county, and tract geography

330,000,000 records now including state, county, and 
tract identifiers

330,000,000 records now including state and county 
identifiers
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Block-level

Block-level tables for only certain queries; 
structural zeros imposed;

dimensions chosen to produce best 
accuracy for PL-94 and SF-1

Block tract-level tables required for best accuracy for 
PL-94 and SF-1

Spend ε5

privacy-loss 
budget

Construct best-fitting individual micro-data with 
state, county, tract and block geography

330,000,000 records now including state, county, 
tract identifiers

330,000,000 records now including state, county and 
tract identifiers
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Tabulation micro-data

Micro-data used for 
tabulating PL-94, SF-1

Construct best-fitting individual micro-data with 
state, county, tract and block geography

330,000,000 records now including state, 
county, tract, and block identifiers
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Tabulation micro-data

• How accurate are the tabulation 
micro-data?

Disclosure Avoidance Certificate
• Certifies that the disclosure avoidance 

system passed all tests
• Reports the accuracy of the micro-data 

used for tabulation 
• Requires εA

Micro-data used for 
tabulating 
PL-94, SF-1

Construct best-fitting individual micro-data with 
state, county, tract and block geography

330,000,000 records now including state, 
county, tract, and block identifiers
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Operational Decisions

• Set total privacy loss budget: ε
• Ensure that ε1+ ε2+ ε3+ ε4+ ε5 + εA = ε

• Within each stage, allocate privacy-loss budget between:
• PL-94
• Parts of SF-1 not in PL-94

• These are policy levers provided by the system.

• Levers are set by the Census Bureau’s Data Stewardship Executive 
Policy Committee

Pre-Decisional
29



Managing the Tradeoff
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How to Think about the 
Social Choice Problem

• The marginal social benefit is the sum of all persons’ willingness-to-
pay for data accuracy with increased privacy loss

• The next slide shows an example 

• This is exactly the same problem being addressed by Google in 
RAPPOR, Apple in iOS 11, and Microsoft in Windows 10
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Privacy-loss Budget 

Production Possibilities for Privacy-loss v. Accuracy Tradeoff

Estimated 
Marginal Social 
Benefit Curve

Social Optimum: 
MSB = MSC

Estimated 
Production 
Technology



But the Choice Problem for PL94-171 
Tabulations Is More Challenging
• In the redistricting application, the fitness-for-use is based on 

• Supreme Court one-person one-vote decision (All legislative districts must 
have approximately equal populations; there is judicially approved variation)

• Is statistical disclosure limitation a “statistical method” (permitted by Utah v. 
Evans) or “sampling” (prohibited by the Census Act, confirmed in Commerce v. 
House of Representatives)?

• Voting Rights Act, Section 2: requires majority-minority districts at all levels, 
when certain criteria are met

• The privacy interest is based on 
• Title 13 requirement not to publish exact identifying information

• The public policy implications of uses of detailed race and ethnicity
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Privacy-loss Budget 

Production Possibilities for Alternative Mechanisms

Randomized response: 
method used by Google, 
Apple and Microsoft

Simple differential privacy 
implementation with no 
accuracy improvements

Proposed 2020 Census differential 
privacy implementation with use-case 
based accuracy improvements
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Privacy-loss Budget 

Production Possibilities for Alternative Mechanisms

Randomized response: 
method used by Google, 
Apple and Microsoft

Simple differential privacy 
implementation with no 
accuracy improvements

Proposed 2020 Census differential 
privacy implementation with use-case 
based accuracy improvements

Where social 
scientists act 
like MSC = MSB

Where computer 
scientists act like 
MSC = MSB
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Privacy-loss Budget 

Production Possibilities for Alternative Mechanisms

Social Optima: MSB = MSC
Blue tangency (3.5, 94%)
Green tangency (1.0, 60%)

Estimated Marginal 
Social Benefit Curves

More privacy favoring

More accuracy favoring
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