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Measuring Identification Risk in Microdata

Release and Its Control by

Post-randomization

Tapan K. Nayak∗ Cheng Zhang† and Jiashen You‡§

Abstract

Statistical agencies often release a masked or perturbed version of survey data

to protect respondents’ confidentiality. Ideally, a perturbation procedure should

protect confidentiality without much loss of data quality, so that released data may

practically be treated as original data for making inferences. One major objective is

to control the risk of correctly identifying any respondent’s records in released data,

by matching the values of some identifying or key variables. For categorical key

variables, we propose a novel approach to measuring identification risk and setting

strict disclosure control goals. The general idea is to ensure that the probability
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of correctly identifying any respondent or surveyed unit is at most ξ, which is pre-

specified. Then, we develop an unbiased post-randomization procedure that achieves

this goal for ξ > 1/3. The procedure allows substantial control over possible changes

to the original data and the variance it induces is of a lower order of magnitude than

sampling variance. We apply the procedure to a real data set, where it performs

consistently with the theoretical results and quite importantly, shows very little

data quality loss.

Key words and Phrases: Correct match probability; data partitioning; data utility;

transition probability matrix; unbiased post-randomization.
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1. Introduction

Many statistical agencies aim to collect and release informative data to help policy makers

and researchers make appropriate inferences and decisions. But, agencies also need to

keep individual or unit level information confidential for legal reasons and upholding

public trust and support. So, they often release a perturbed or masked version of the

original data. Several books (e.g., Willenborg and de Waal, 2001; Duncan et al., 2011;

Hundepool et. al., 2012) and many papers discuss disclosure issues and various data

masking techniques, such as grouping, data swapping, cell suppression, random noise

infusion and post-randomization.

Data masking reduces data quality; it may suppress, dilute, and even distort some

features of the original data. Intuitively, one should examine the trade-offs between

disclosure risk and data utility (see e.g., Duncan and Stokes, 2004; Cox et al., 2011) to

choose suitable data masking procedures. But, it is hard to define and measure risk and

utility, as there are many scenarios and forms of disclosure and likewise a data set may be

used in numerous ways by diverse users. Thus, assessing risk-utility trade-offs in practice

is a difficult task. Broadly speaking, disclosure occurs when the released data give an

intruder R much new knowledge about a target unit B. According to Dalenius (1977),

rigorous confidentiality protection (or equivalently disclosure avoidance) means that the

released data should not enable any intruder to gain much new information about any

target unit. Thus, any intruder’s prior and posterior probabilities about any property of

any target unit should not differ much. However, this goal is not achievable, as shown

in Dwork’s (2006) pioneering paper. Thus, data agencies need to determine measures

of disclosure risk and data utility and their disclosure control goals specialized for each
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application. We believe, these are the fundamental challenges in practical data masking.

Dwork’s (2006) work also shows that the main reason why Dalenius’s criterion is

impractical is that it allows unrestricted choices for intruder’s target and prior information,

which is overly stringent. Thus, for developing practical disclosure control goals, it is

essential for the agency to consider intruders with limited prior information about their

target units. One common approach is to specify a subset of the survey variables as

identifying or key variables, whose values are fairly easily accessible from other sources,

and then assume that intruders may know only the values of some or all of the key variables

for their target units. The choice of key variables describes a universe of intruders that is of

concern to the agency. In this framework, an identity disclosure occurs when an intruder

correctly identifies the records of a target unit (B) in the released data, by matching B’s

values for the key variables (known to the intruder). Usually, this is considered to be

the most serious type of disclosure and has been discussed by many researchers including

Bethlehem et al. (1990), Greenberg and Zayatz (1992), Willenborg and de Wall (2001),

Skinner and Elliot (2002), Reiter (2005) and Shlomo and Skinner (2010).

In this paper, we focus on identity disclosure based on categorical key variables. First,

we shall propose a measure for identification risk and some associated disclosure control

goals. We suggest to ensure that no intruder’s confidence in his match of a target unit’s

record in the released data, based on the key variables, can justifiably be larger than ξ,

where both ξ and the key variables are specified by the agency. We believe that this goal

is strong and easy to communicate. Then, we shall present a method that accomplishes

the preceding goal for moderate ξ (essentially ξ ≥ 0.35). Actually, our method applies

PRAM (the Post-randomization Method, introduced by Gouweleeuw et al. (1998)) with

suitably chosen transition probabilities. In a sense, our work also gives a useful answer to
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the general question of how to choose the transition probability matrix of PRAM.

Valid inferences from released data should account for the masking mechanism that

was used by the agency. The probability distribution of the random observables whose

values constitute released data depends on both the sampling design and the masking

method. So, the agency should give full information about the masking procedure to

permit data users to derive appropriate likelihood functions and valid inferences, and in-

vestigate properties of statistical methods of their interest. However, as Cox et al. (2011)

noted, typically statistical agencies do not give much details about their masking proce-

dures, especially the parameter values of the used procedures, primarily due to disclosure

risk concerns. This lack of transparency constrains the scope for deriving principled infer-

ences from released data. Rubin (1993) made a related observation: It is imperative that

public-use microdata preserve the user’s ability to obtain valid inferences using standard

statistical methods, that is, without having to develop complex methods and software.

Thus, statistical agencies should apply masking procedures for which common inferential

methods for original data would remain valid, at least approximately, for masked data.

The preceding arguments suggest to develop and use data masking procedures which

(i) enable the data agency to evaluate, assure and communicate confidentiality protection

clearly and (ii) do not require much new theoretical derivations and extensive program-

ming for making valid inferences from masked data. We shall see that our procedure

accomplishes both goals fairly well. As our method is fully probabilistic, its properties

can be investigated analytically. The method is unbiased in the sense that for each cell,

the expected change in its frequency, due to data perturbation, is zero. Moreover, the

added variance due to our data masking is negligible in comparison to sampling variance.

In the next section, we briefly review some past approaches to assessing identification
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risk and then propose a new measure and an approach to setting strong, precise and

workable identification risk control goals. In Section 3, we review the Post-randomization

Method (PRAM) and some of its properties and introduce the inverse frequency rule post-

randomization (IFPR), which is a cornerstone of the general method developed in this

paper. In Section 4, we derive and examine identification risks under PRAM and thereby

develop methods for achieving certain disclosure control goals. We present a general post-

randomization method, consisting of four steps, in Section 5. It allows us to greatly control

the nature or magnitude of changes to the original data via data partitioning. In Section

6, we examine the effects of our procedure on data utility. We show that the additional

variance due to our method is negligible in comparison to sampling variance. In Section

7, we apply our method to a real data set containing values of many variables for 59,033

persons. As expected, the empirical and theoretical results agree well and for many sets

of variables that we examined, the distributions based on the original and perturbed data

sets are very close. We make some concluding remarks in Section 8.

2. Identification Risk and Its Control

2.1. A Review of Past Work

Extending the work of Duncan and Lambert (1986, 1989) and Lambert (1993), Reiter

(2005) developed an extensive Bayesian approach for measuring identification disclosure

risk. It incorporates the sampling design, dependencies among survey variables and in-

truder’s knowledge about the perturbation mechanism and his prior information about the

target. However, the method involves substantial modeling, guessing intruder’s behavior,
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estimation and computation, and as Shlomo and Skinner (2010) noted, the complexity of

the approach may limit its application in practice.

Another approach to measuring identity disclosure risk focuses on the units in the

sample that are unique by the key variables; see e.g., Bethlehem et al. (1990), Greenberg

and Zayatz (1992), Skinner and Elliot (2002) and Shlomo and Skinner (2010). This

essentially requires all key variables to be categorical, because for continuous key variables

almost all sampled units will be unique. Thus, suppose all key variables are categorical and

X is their cross-classification and that X has k cells (or categories), denoted c1, . . . , ck. For

confidentiality protection, the agency perturbs the original values of some (or all) of the

key variables. Let Z denote the perturbed version of X, with the same set of categories,

and for i = 1, . . . , k, let Ti and Si denote the frequencies of category ci before and after

data perturbation, respectively. The main concern is about an intruder trying to identify

a target unit B’s records in the released data by directly matching B’s X-category.

Suppose that B’s X-category is cj, denoted X(B) = cj, which is known to intruder

R. If Tj = 1 and R also knows that B is in the sample, then he will correctly identify

B’s record in the original data. If Tj = 1 and R does not know if B is in the sample

or not, he will have a correct match if B is unique in the population with respect to X.

Thus, the probability that a unit is population unique, given that it is sample unique, has

received much attention and several researchers discussed estimating it from the original

data, under certain sampling designs and models; see e.g., Bethlehem et al. (1990),

Greenberg and Zayatz (1992) and Skinner and Elliot (2002). This conditional probability

is useful for identifying sampled units that have high disclosure risk, if the original data

are released. However, it does not account for data perturbation and hence it is an indirect

(and inadequate) indicator of disclosure risk when a perturbed data set is released.
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Shlomo and Skinner (2010) took a more direct approach. In released data, R will

find a unique match if Sj = 1, but that match may or may not be correct because

of data perturbation and sampling. Building on the ideas of Bethlehem et al. (1990)

and considering unique match as the worst case (presuming that identification risk will

be lower if B’s key variables match more than one unit in released data), Shlomo and

Skinner (2010) defined identification risk (IR) as the probability that a unique match for

B is a (unique) correct match (UCM), that is,

IR(j) = P (UCM |unique match) = P (UCM |Sj = 1), (2.1)

where the probability is with respect to both sampling and data perturbation. Note that

the probability in (2.1) depends on the target unit only through its X-category. For any

population unit u, let Eu denote the event that unit u is sampled and X(B) uniquely

matches the value of Z for unit u, to be denoted Z(u), in released data. Then, (2.1) can

also be expressed as

IR(j) = P (EB)÷
∑
u∈U

P (Eu), (2.2)

where U denotes the set of all units in the population.

For an illustration of (2.2), suppose (similar to Shlomo and Skinner (2010)) that if

u ∈ U andX(u) = cj, then u is selected in the sample with probability δj and independently

of other units. Thus, the inclusion probability of each unit may depend only on its

value of X. Also, suppose that the original X-values are perturbed stochastically and

independently with known transition probabilities

pij = P (Z = ci|X = cj), i, j = 1, . . . , k.

Suppose X(B) = cj and X(u) = cm and let Fi denote the population frequency of X =
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ci, i = 1, . . . , k. Then,

P (Eu) = δmpjm[1− δmpjm]Fm−1
∏
l 6=m

[1− δlpjl]Fl

=
δmpjmηj

1− δmpjm
, (2.3)

where ηj =
∏k

l=1[1 − δlpjl]
Fl (which is the probability of finding no match for X(B) in

released data) and for the second equality we assume for simplicity (and realistically)

that δmpjm 6= 1. Now, from (2.2) and (2.3) it follows that

IR(j) =
δjpjj

1− δjpjj
÷

k∑
l=1

(
Fl ×

δlpjl
1− δlpjl

)
. (2.4)

We may mention that Shlomo and Skinner (2010) assumed that for any unit u ∈ U , its

selection probability depends on Z(u) (rather than X(u)), in which case (2.4) reduces to

IR(j) =
pjj

1− δjpjj
÷

k∑
l=1

(
Fl ×

pjl
1− δlpjl

)
. (2.5)

Clearly, (2.4) and (2.5) depend on X(B) and also on population frequencies {Fi}, which

are usually unknown. For two data masking procedures, Shlomo and Skinner (2010)

estimated (2.5) from original data using a Poisson log-linear model. They also suggested

to use the sum of (2.5), over all sample unique units, as an aggregate measure of disclosure

risk for a data set. We note some remarks on the preceding approach. First, the measure

in (2.1) depends on {Fi} and hence cannot be calculated from available information.

Evaluating and estimating (2.1) might be difficult for complex sampling designs. Even

for simple designs, estimation of (2.1) requires additional work and the results may depend

substantially on data modeling. Second, the sum of (2.1) (or (2.5)), over the sample unique

units, being small does not imply desirably small disclosure risk for all units. Indeed, some

units may carry high disclosure risks even when the aggregate measure is small. Finally,
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the search for a suitable masking procedure requires an iterative approach. For example,

to apply data swapping, as described in Shlomo and Skinner (2010), one would need to

evaluate the aggregate risk measure for various swap rates to choose a suitable swap rate

for actual application.

2.2. Our Approach

Our framework and perspective are similar to those of Shlomo and Skinner (2010), but

we consider more stringent and directly relevant disclosure control goals and eliminate

the estimation task. Also, while most approaches require a trial and error process for

selecting a suitable masking method, we can find procedures for achieving our disclosure

control goals directly. We consider the scenario where an intruder R knows X(B) = cj for

his target unit B and randomly selects one of the units in the released data with Z = cj,

if any, and concludes that to be unit B. If Sj = 0, R stops searching for B’s records

in the released data. Then, our general idea for a strong identification disclosure risk

control goal is to ensure that no intruder’s match, in the preceding scheme, for any unit

in the sample, or in important subsets, would be correct with probability larger than ξ,

where the value of ξ is chosen by the agency. This will lead to various specific goals when

different subgroups of sampled units and probabilities are used.

Considering all units and the conditional probability of correct match given Sj, i.e., the

number of matches an intruder finds for his target unit in the released data, the general

goal reduces to ensuring that

Rj(a) ≡ P (CM |X(B) = cj, Sj = a) ≤ ξ for all a > 0 and j = 1, . . . , k, (2.6)

where CM stands for the event that unit B is correctly matched under the scenario and
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matching scheme stated above. Conditioning on Sj is very sensible, perhaps even neces-

sary, because an intruder’s confidence in his declared match may depend on the number of

matches he finds in the released data for his target unit. We take (2.6) as a fundamental

identification disclosure risk control goal. Clearly, (2.6) implies P (CM |X(B) = cj) ≤ ξ,

i.e., the unconditional correct match probabilities do not exceed ξ.

Regarding the agency’s choice of a suitable value of ξ, note that the role of 1−ξ is sim-

ilar to the role of level of significance (α) in hypotheses testing. The intruder should have

strong evidence to rationally conclude a match, as in accepting an alternative hypothe-

sis. To declare a match, an intruder should confirm that relevant Rj(a) is substantial,

arguably larger than 1/2. We believe that in most practical situations, it is not necessary

to use a value for ξ that is less than 1/3. As Lambert (1993) explains, intruders are free

to declare matches or draw other conclusions without adequate justification and thereby

induce harm, but such actions are beyond any data agency’s control.

One difficulty in calculating {Rj(a)} and thereby verifying (2.6) is that the proba-

bilities {Rj(a)} depend also on the unknown population frequencies. We overcome this

challenge (and avoid estimation of {Rj(a)}) by considering correct match probabilities

conditional also on the original frequencies. Letting T = (T1, . . . , Tk)
′ denote the fre-

quency vector from original data, we can write

Rj(a) =
∑
t

P (CM |X(B) = cj, Sj = a,T = t)P (T = t). (2.7)

We shall denote P (CM |X(B) = cj, Sj = a,T = t) by Rj(a, t). Then, we can guarantee

(2.6) by ensuring that

Rj(a, t) ≤ ξ for all a > 0, j = 1, . . . , k and t. (2.8)

Note that in (2.7), P (T = t) depends on the population frequencies {Fi}. But {Rj(a, t)}
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do not depend on {Fi} when the data are perturbed using PRAM. In Section 4, we

describe methods for achieving (2.8) for moderate to large ξ. Essentially, we take (2.8) as

our disclosure control goal, which ensures that any correct match probability would not

be larger than ξ, even if the intruder knows the frequencies in the original data.

Remark 2.1. One common concern of data agencies is potential identity disclosure of

units falling in low frequency cells. This suggests another disclosure control goal, viz., use

a masking procedure under which the correct match probability for any unit in any low

frequency cell would be no more than ξ. Formally, this asks us to guarantee that

γ(j, t) = P (CM |X(B) = cj,T = t) ≤ ξ (2.9)

for all j such that tj ≤ b0, where b0 is a given value (defining ‘low frequency’). Note that

(2.8) implies (2.9) as

γ(j, t) =
∑
a

Rj(a, t)P (Sj = a|X(B) = cj,T = t)

≤ ξ × P (Sj ≥ 1|X(B) = cj,T = t) ≤ ξ.

3. The Post-randomization Method (PRAM)

3.1. Basic Mechanism

Motivated by randomized response methods (e.g., Warner, 1965, 1971; Chaudhuri and

Mukerjee, 1988; Nayak and Adeshiyan, 2009; Nayak et al., 2016) in survey sampling,

Gouweleeuw et al. (1998) introduced the Post-randomization Method (PRAM) for per-

turbing categorical data for protecting the confidentiality of respondents’ information.

PRAM can be applied independently to multiple categorical variables, or jointly to their
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cross-classification. However, the method can always be viewed as being applied to the

cross-classification, and that is also essential for ascertaining the method’s effects on confi-

dentiality protection and performing statistical analyses. Interesting properties, variations

and applications of PRAM have appeared in many publications including Willenborg and

De Waal (2001), Van den Hout and Van der Heijden (2002), Van den Hout and Elamir

(2006), Van den Hout and Kooiman (2006), Cruyff et al. (2008), Shlomo and De Waal

(2008), Shlomo and Skinner (2010) and Nayak and Adeshiyan (2015).

Let X be a categorical variable (or cross-classification of several variables) with cate-

gories (or cells) c1, . . . , ck. The basic steps for perturbing data on X using PRAM are: (i)

select a matrix of probabilities P = ((pij)) such that
∑

i pij = 1 for j = 1, . . . , k, and then

(ii) randomly change any original category cj to ci with probability pij (i, j = 1, . . . , k).

The randomization step is executed independently for all units in the data set. Clearly,

pij = P (Z = ci|X = cj), where Z denotes the perturbed variable. In general, proper anal-

yses of perturbed data require P . So, agencies should release P along with the perturbed

data to enable data users derive correct inferences.

If P is fixed, post-randomization is mathematically equivalent to a randomized re-

sponse (RR) survey, and known results in RR theory can be applied to post-randomized

data. As before, let T and S denote the frequency vectors before and after applying

PRAM, respectively. Let πi = P [X = ci], i = 1, . . . , k, and Π = (π1, . . . , πk)
′. Let n

denote the sample size. Then, under multinomial sampling, and fixed P , T ∼Mult(n,Π)

and S ∼Mult(n, λ), where

λ = PΠ. (3.1)
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From this, it follows that Π̂ = P−1(S/n) is an unbiased estimator of π and

V ar(Π̂) =
(DΠ − ΠΠ′)

n
+

[P−1Dλ(P
−1)′ −DΠ]

n
, (3.2)

where DΠ is a diagonal matrix with diagonal elements being π1, . . . , πk and Dλ is defined

similarly (see Chaudhuri and Mukerjee, 1988, p. 43). The first term on the right side of

(3.2) is the variance of Π̂0 = T/n, which is the UMVUE of Π based on the original data,

and the last term is the ‘variance inflation’ due to post-randomization.

We should note that RR theory is of limited help to data users, for two reasons. First,

data agencies usually give little information about how they have perturbed the data and

rarely release the transition probability matrix. Mostly, data users would not know P and

hence would not be able to use results from RR literature. Second, data agencies should

select their perturbation procedure after ascertaining particular disclosure control needs

for the original data set. For example, if nothing needs protection (i.e., disclosure risk is

negligible for all units), the data should not be perturbed at all. Thus, P should not be

fixed and should be chosen based on the original data, in which case mathematical results

in RR theory (for fixed P ) may not apply. One type of data dependent P , which also has

some attractive features, is discussed next.

3.2. Unbiased (Invariant) Post-randomization

As we noted earlier, agencies should perturb original data in such a way that standard

inferential methods for original data would remain valid, at least approximately, for per-

turbed data. A common unbiased estimator of Π, based on the original data, is Π̂0 = T/n.

So, one might desire Π̂∗ ≡ S/n to be a valid (viz. unbiased) estimator of Π. If P depends
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on the data only through T, then E[S|T] = PT and it follows that if P also satisfies

PT = T or equivalently P Π̂0 = Π̂0, (3.3)

then E[S|T] = T and Π̂∗ = S/n is an unbiased estimator of Π. So, Π can be estimated

without using P or its inverse, essentially by treating released data as original data.

Also, Π̂∗ is always a probability vector, while P−1(S/n) may not be so. Gouweleeuw et

al. (1998) noted these properties and defined a PRAM to be an invariant PRAM if P

satisfies (3.3).

We believe that the term ‘invariant’ is misleading, as it might give the wrong impression

that if P satisfies (3.3), then all inferential methods for original data remain valid for post-

randomized data. As Nayak and Adeshiyan (2015) noted, (i) under (3.3), V (Π̂∗)−V (Π̂0)

is positive definite, unless P = I, and methods for estimating V (Π̂0) cannot be used to

estimate V (Π̂∗) and (ii) keeping all inferential methods valid requires a stronger condition,

viz. PΠ = Π, which cannot be achieved in most applications due to Π being unknown.

The main implication of (3.3) is that S is an unbiasedly perturbed version of T, viz.

E(S|T) = T. Thus, when P satisfies (3.3), we shall call the procedure unbiased post-

randomization method (UPRAM).

We should mention that (3.3) always admits a solution for P ; in fact the solution space

is a convex set containing P = I. Thus, UPRAM can always be devised, although not

uniquely. One important point to bear in mind is that when there are several variables,

applying independent UPRAM to each variable does not amount to applying UPRAM to

the cross-classification of all variables, unless they are independently distributed. Under

independent UPRAM, the marginal distributions can be estimated unbiasedly from re-

leased data (with no adjustment for perturbation), but not joint distributions. Thus, it
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is important to apply UPRAM to the cross-classification of all variables.

We now briefly review, largely for later use, some results from Nayak and Adeshiyan

(2015) on the distribution of S under UPRAM. Let P = [P1 : · · · : Pk], i.e., denote the

ith column of P by Pi (i = 1, . . . , k), and rewrite (3.3) as

k∑
i=1

TiPi = T. (3.4)

Note that PRAM distributes all units originally falling in category ci to all categories

according to the multinomial distribution with parameters Ti and Pi. Let Fij denote

the number of units with original category ci and perturbed category cj, and let Fi =

(Fi1, . . . , Fik)
′. Then, S =

∑k
i Fi, and given T and P , {Fi} are independently distributed

with Fi ∼Mult(Ti, Pi), i = 1, . . . , k. These facts and (3.4) yield:

E(S|T, P ) =
k∑
i=1

E[Fi|T, P ] =
k∑
i=1

TiPi = T (3.5)

V (S|T, P ) =
k∑
i=1

Ti[DPi
− PiP ′i ] = DT −

k∑
i=1

TiPiP
′
i . (3.6)

From (3.5) and (3.6), it follows that Π̂∗ is an unbiased estimator of Π,

V (Π̂∗|T, P ) =
1

n
[DΠ̂0

−
k∑
i=1

(
Ti
n

)PiP
′
i ], (3.7)

and

V (Π̂∗) = V [E(Π̂∗|T, P )] + E[V (Π̂∗|T, P )]

= V (Π̂0) +
1

n
[DΠ − E{

k∑
i=1

(
Ti
n

)PiP
′
i}]. (3.8)

Note that the variance inflations under fixed P and UPRAM, given by the last terms of

(3.2) and (3.8), respectively, are quite different. If P is a function of T, which holds true for

our choice of P in the sequel, then E(Π̂∗|T, P ) = E(Π̂∗|T) and V (Π̂∗|T, P ) = V (Π̂∗|T).
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We can estimate V (Π̂0) = [DΠ − ΠΠ′]/n and DΠ by using Π̂∗ for Π. However, the

expectation in (3.8) makes estimation of V (Π̂∗) from perturbed data a difficult problem.

Nayak and Adeshiyan (2015) discuss this aspect in more details and also prove that

Vmax(Π̂∗) = (2− 1

n
)[
DΠ − ΠΠ′

n
], (3.9)

is a tight upper bound of V (Π̂∗), in the sense that [Vmax(Π̂∗) − V (Π̂∗)] is nonnegative

definite for all P satisfying (3.3) and V (Π̂∗) equals Vmax(Π̂∗) for some P . One can estimate

(3.9) from released data by using Π̂∗ for Π.

3.3. Choice of Transition Probabilities

The choice of the transition probability matrix P (also called the PRAM matrix), by

data agency, is crucial and also challenging, especially for large k, as is the case in most

applications due to X being the cross-classification of several variables. One practical

approach is to divide all categories into several blocks and then choose a PRAM matrix

for each block (see Gouweleeuw et al., 1998; Shlomo and De Waal, 2008; Nayak and

Adeshiyan, 2015). Thus, instead of choosing a matrix of large dimension, one would

choose several matrices of much lower dimensions. This also results in a block diagonal

P , after suitable rearrangement of the categories. Here, pij = 0 whenever ci and cj are in

two different blocks, and any perturbation occurs within one block.

Blocking is also very useful for avoiding undesired perturbations. If changing ci to cj

is unwanted, it can be prevented by putting ci and cj in two different blocks. Suppose,

for example, in the original data, age is recorded in five year intervals, 0-5, 5-10, etc.

Naturally, we would not like an original age of 5-10 to change to 70-75. Here, we may

put all categories with age between 0 and 20 in one block, between 20 and 40 in another
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block and so on. Other practical ideas can also be used to form blocks. For example, if

it is important to retain the original data on some of the variables, we should partition

the data (hence form blocks) by categories of those variables. Essentially, if X is the

cross-classification of X1 and X2, both of which may be compound variables, we may

apply UPRAM to X2 within each cell of X1, which will perturb X2 while keeping X1

unchanged. Finally, a block may also consist of a single cell, in which case, the records of

all units falling in that cell will remain unchanged.

Devising a UPRAM boils down to choosing one of many solutions of (3.3). We shall use

the following class of solutions in developing our proposed method in later sections. Note

that empty cells play no role in (3.3) and they remain empty after UPRAM. (However,

a nonempty cell can become empty after UPRAM.) Suppose, without loss of generality,

that Ti > 0 for i = 1, . . . ,m ≤ k and Tm+1 = · · · = Tk = 0. Let pii = 1 − (θ/Ti), pji =

θ/[(m− 1)Ti] for i, j = 1, . . . ,m and i 6= j, and pii = 1, pji = 0 for i, j = m+ 1, . . . , k and

i 6= j. It can be seen that these {pij} satisfy (3.3) for any 0 ≤ θ ≤ 1. This choice of P is

closely related to one class of solutions of (3.3) given by Gouweleeuw et al. (1998). For

our choice of P , if a unit’s original X-category is ci, then it changes to another category

with probability (θ/Ti), which is inversely proportional to the frequency of the category

in which the unit falls. Moreover, if the category is changed, the new category is selected

at random from one of the remaining nonempty categories. We shall call any PRAM with

P having the above structure an inverse frequency (rule) post-randomization (IFPR).

We shall use IFPR for its simplicity, easy interpretations and efficacy. The transition

probability matrix P of IFPR is determined by a single quantity, or design parameter, θ.

So, choosing P reduces to choosing just one number (for θ). Similarly, all effects of P on

confidentiality protection and data quality are determined only by θ. Investigating effects
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of θ and thereby choosing a suitable value of θ is much easier than similarly choosing

a general P . Considering Ti = 1, we can interpret θ as the probability of changing the

category of any sample unique unit. For any nonempty cell ci, the number of units that

change from X = ci to X 6= ci, due to IFPR, is a binomial(Ti, θ/Ti) random variable,

whose mean (θ) does not depend on ci. Thus, another interpretation of θ is that it is the

expected number of units that move out of (or move into) any nonempty category. In

our procedure, described later, we shall actually first form disjoint blocks of nonempty

categories and then apply IFPR in each block, with a common θ.

4. Disclosure Control by Post-randomization

4.1. Identification Risk Under PRAM

To devise methods for controlling disclosure risk, we shall evaluate and examine Rj(a, t)

first under general PRAM and then under IFPR. Recall that the intruder is assumed to

know the target unit B’s X-category and that B is in the original sample. For notational

simplicity, we shall consider R1(a, t), supposing that X(B) = c1, which implies that t1 ≥ 1.

Our arguments and results for R1(a, t) will hold similarly for Rj(a, t) for any j ≥ 2. For a

PRAM matrix P , which may depend on the original data, but only through t, note that

only the nonzero elements in the first row of P affect R1(a, t). Suppose, for notational

simplicity, that 0 < p1i < 1 for i = 1, . . . , k1 and p1i = 0 for i > k1, for some k1 ≥ 2. Note

that if p1i = 0 for all i ≥ 2, then for any UPRAM we must have p11 = 1, which implies

that S1 = T1 with probability 1 and R1(1, t) = 1/t1.

Let αi = p1i and βi = αi/(1−αi), i = 1, . . . , k1, and let Z(B) denote B’s category after
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applying PRAM. Then,

P (S1 = a, Z(B) = c1|T) = α1

∑ k1∏
i=1

(
T ∗i
ai

)
αaii (1− αi)T

∗
i −ai

= α1

[ k1∏
i=1

(1− αi)T
∗
i

]∑ k1∏
i=1

(
T ∗i
ai

)
βaii , (4.1)

where T ∗1 = T1 − 1, T ∗i = Ti, i ≥ 2 and the sum is over all integer-valued a1, . . . , ak1 such

that 0 ≤ ai ≤ T ∗i and
∑
ai = a− 1. We shall denote the sum in (4.1) by Σa−1. Similarly,

we obtain

P (S1 = a, Z(B) 6= c1|T) = (1− α1)
[ k1∏
i=1

(1− αi)T
∗
i
]
Σa. (4.2)

Now, since P (CM |S1 = a, Z(B) 6= c1,T = t) = 0, we get

R1(a,T) = P (CM |S1 = a, Z(B) = c1,T)P (Z(B) = c1|S1 = a,T)

=
1

a

[ α1Σa−1

α1Σa−1 + (1− α1)Σa

]
(4.3)

=
1

a

[
1 +

1

β1

Σa

Σa−1

]−1

. (4.4)

A common intuitive belief is that disclosure risk is largest when a = 1, i.e., X(B)

matches exactly one record in the released data (see e.g., Shlomo and Skinner, 2010). To

examine this assertion, we observe from (4.3) that in general, R1(a,T) ≥ R1(a + 1,T) if

and only if

α1Σa−1Σa + (a+ 1)(1− α1)Σa−1Σa+1 ≥ a(1− α1)(Σa)
2, (4.5)

and in particular,

R1(1,T) ≥ R1(2,T)⇔ α1Σ1 + (1− α1)(2Σ2 − Σ2
1) ≥ 0, (4.6)

as Σ0 = 1. Furthermore,

Σ1 =

k1∑
i=1

T ∗i βi =

k1∑
i=1

Tiβi − β1,
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Σ2 =
1

2

k1∑
j=1

T ∗j (T ∗j − 1)β2
j +

∑
i<j

T ∗i T
∗
j βiβj,

and so, 2Σ2 − Σ2
1 = −

∑k1
j=1 T

∗
j β

2
j and

α1Σ1 + (1− α1)(2Σ2 − Σ2
1) =

k1∑
j=1

T ∗j βj{α1 − (1− α1)βj}

= α1

k1∑
j=2

Tjβj{1−
βj
β1

}, (4.7)

as [α1 − (1 − α1)β1] = 0 and T ∗j = Tj for j ≥ 2. Clearly, (4.7) can be negative and in

view of (4.6), a unique match in released data is not necessarily the worst case in terms

of disclosure risk. In particular, if for a given t, β1 < βj or α1 < αj for j = 2, . . . , k1, then

R1(2, t) > R1(1, t). On the other hand, we have:

Proposition 4.1. For any t, a sufficient condition for R1(1, t) ≥ R1(2, t) to hold is:

β1 ≥ βj or α1 ≥ αj for j = 2, . . . , k1.

We may also note that for a = 1, (4.4) reduces to

R1(1,T) =
[
1 +

1

β1

( k1∑
i=1

βiTi − β1

)]−1

=
[
T1 +

1

β1

k1∑
i=2

βiTi

]−1

. (4.8)

Clearly, (4.8) is less than 1/T1, which is the probability of correctly identifying B in the

original data. Thus, PRAM does not increase B’s correct match probability when it yields

a unique match for B.

Next, we shall investigate effects of IFPR (as described in Section 3.3) on target B’s

identification risk (assuming as before that X(B) = c1). Actually, our procedure uses the

original data to form disjoint blocks of nonzero categories of X and then applies IFPR

to each block separately but with a common value of θ. Also, not all cells are included
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in the IFPR blocks. In particular, the records of all units falling in ‘high frequency’ cells

are not perturbed. Additional guidance on how to create IFPR blocks and choose a value

for θ will emerge in subsequent discussions. If the units in c1 are not perturbed, B’s

identification risk is 1/T1. If c1 falls in one IFPR block, B’s identification risk will depend

only on the post-randomization in that block. For notational simplicity, suppose c1 falls

in the block {c1, . . . , ck1}, with k1 ≥ 2. Recall that the transition probabilities for this

block are: pii = 1−θ/Ti, pji = θ/[(k1−1)Ti] for i, j = 1, . . . , k1 and i 6= j, with 0 ≤ θ ≤ 1.

First, consider the case of S1 = 0, which means B’s true category is empty in the

released data and hence the intruder terminates his effort to find a match for B. In

general, P (S1 = 0|T) =
∏k1

i=1(1− αi)Ti and for the above choice of P , it reduces to

P (S1 = 0|T) =
( θ
T1

)T1 k1∏
j=2

(
1− θ

(k1 − 1)Tj

)Tj
. (4.9)

Now, using the fact that for 0 < c < 1 the function f(t) = (1− c/t)t increases to e−c as t

increases from 1 to ∞, we get

( θ
T1

)T1(
1− θ

k1 − 1

)k1−1

≤ P (S1 = 0|T) ≤
( θ
T1

)T1
e−θ. (4.10)

The upper bound in (4.10) is independent of k1 and it increases as θ increases, and

decreases as T1 increases. Actually, the upper bound is fairly small for T1 ≥ 2. For

example, when T1 = 2, for θ = .2, .5, .7, .8, the upper bounds are 0.0082, 0.0379, 0.0608 and

0.0719, respectively. For T1 = 1 and some values of θ and k1, the last row of Table 1 gives

the upper bounds in (4.10) and the other rows give the lower bounds for corresponding

k1. Table 1 shows that for k1 ≥ 5, the upper and lower bounds are fairly close for all θ.

Next, we consider R1(1,T), the probability that a unique match for B is a correct

match. Note that for IFPR, β1 = (T1 − θ)/θ, βj = θ/[(k1 − 1)Tj − θ], j = 2, . . . , k1, and
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Table 1: Bounds of P (S1 = 0|T) when T1 = 1

θ

k1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 0.0900 0.1600 0.2100 0.2400 0.2500 0.2400 0.2100 0.1600 0.0900

3 0.0902 0.1620 0.2167 0.2560 0.2812 0.2940 0.2958 0.2880 0.2723

4 0.0903 0.1626 0.2187 0.2604 0.2894 0.3072 0.3154 0.3155 0.3087

5 0.0904 0.1629 0.2196 0.2624 0.2931 0.3132 0.3243 0.3277 0.3247

10 0.0904 0.1634 0.2211 0.2657 0.2989 0.3225 0.3378 0.3461 0.3487

15 0.0905 0.1635 0.2215 0.2666 0.3005 0.3250 0.3414 0.3510 0.3550

UB 0.0905 0.1637 0.2222 0.2681 0.3033 0.3293 0.3476 0.3595 0.3659

(4.8) reduces to

R1(1,T) =
[
T1 +

θ

T1 − θ

k1∑
i=2

θTi
(k1 − 1)Ti − θ

]−1

=
(
T1 − θ

)[
T1(T1 − θ) + θ2

k1∑
i=2

Ti
(k1 − 1)Ti − θ

]−1

(4.11)

≤ T1 − θ
T1(T1 − θ) + θ2

= ψ(T1, θ), say. (4.12)

The inequality in (4.12) follows from the fact that the summand in (4.11) is a decreasing

function of Ti and hence must be at least 1/(k1 − 1).

Two key features of the upper bound in (4.12) are that (i) it is independent of k1 and

(ii) it depends on T only through T1. Taking derivative of ψ(T1, θ) with respect to T1, it

can be seen that for any 0 < θ < 1, ψ(T1, θ) is a decreasing function of T1 at all T1 ≥ 2.

It can also be seen that ψ(1, θ) ≥ ψ(2, θ) if and only if θ ≤ 2/3. Thus, if θ ≤ 2/3, then

ψ(T1, θ) is maximum when T1 = 1 and for θ > 2/3, ψ(T1, θ) is largest when T1 = 2. Note
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that analogous conclusions for any target unit can be reached via appropriate notation

change in our derivations.

4.2. Choosing P to Control Identification Risk

Here, we shall use the preceding results and observations to develop methods for accom-

plishing three increasingly stringent disclosure control goals.

Goal 1. Suppose the agency’s primary concern is about correctness of unique matches

for sample unique units, and for a chosen value ξ, the agency wants to ensure that

Rj(1,T = t) ≤ ξ for all j such that tj = 1. (4.13)

This goal is of high practical significance. As the need for controlling identification

risk of sample unique units is commonly recognized, failure to address that need may

harm the agency’s reputation substantially. To achieve Goal 1, we shall choose IFPR

blocks and θ such that a common upper bound of {Rj(1, t)} equals ξ. For any j such

that tj = 1, from (4.12) we get

Rj(1, t) ≤ ψ(1, θ) =
1− θ

1− θ + θ2
.

Note that ψ(1, θ) is a strictly decreasing function of θ with ψ(1, 0) = 1 and ψ(1, 1) = 0.

So, for any 0 < ξ < 1, the equation ψ(1, θ) = ξ has a unique solution for θ, say θ = θ∗(ξ).

Now, Goal 1 can be accomplished as follows. First, form one or more IFPR blocks such

that each singleton cell (i.e., with frequency 1) is included in one of the blocks. One

option is to form just one block consisting of all singleton cells, if the number of such cells

is at least two. If there is only one singleton cell, we would need to combine it with one

or more other cells to form one block. Finally, apply IFPR to all units in each block with

θ = θ∗(ξ). This would guarantee Rj(1, t) ≤ ψ(1, θ∗(ξ)) = ξ for all j such that tj = 1.
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Goal 2. Suppose the agency wants to control the probability of any unique match for

any target unit being a correct match, irrespective of whether the unit is sample unique

in the original data or not. Formally, the agency’s goal is to guarantee that

Rj(1, t) ≤ ξ for all j such that tj ≥ 1. (4.14)

This goal is similar to that of Shlomo and Skinner (2010). Here, we shall describe how

Goal 2 can be achieved for any ξ > 1/3. Let h(θ) = maxT1 ψ(T1, θ). Then, from earlier

discussions we have:

h(θ) =


ψ(1, θ), if θ ≤ 2

3

ψ(2, θ), if θ > 2
3
.

It follows that h(θ) is a strictly decreasing function of θ with h(0) = 1 and h(1) = 1/3.

So, for any 1/3 < ξ ≤ 1, h(θ) = ξ has a unique solution, say θ = θ0(ξ), in [0, 1). Also

note from (4.8) that under any PRAM, Rj(1, t) ≤ 1/3 for all j such that tj ≥ 3. Thus, to

achieve (4.14) with ξ > 1/3, it is not necessary to perturb the units falling in categories

with frequency 3 or more. We only need to protect all units in singleton and doubleton

cells. Thus, for any ξ > 1/3, we can achieve Goal 2 by forming IFPR blocks in such a way

that each cell with frequency 1 or 2 is included in one of the blocks and then applying

IFPR to each block with θ = θ0(ξ).

Goal 3. Suppose the agency wants to guarantee (2.8) to control the probability of

any declared match being correct.

Clearly, this is a stronger version of Goal 2, which requires (2.8) to hold only for a = 1.

As with Goal 2, we shall consider ξ > 1/3; actually, our solution works well for ξ ≥ .35.

From (4.4), it follows that (2.8) holds for all a ≥ 3 if ξ > 1/3. So, we need to focus only

on a = 1 and a = 2. For IFPR, i.e., α1 = 1 − θ/t1 and αi = θ/[(k1 − 1)tj], i = 2, . . . , k1,
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Proposition 4.1 shows that R1(2, t) ≤ R1(1, t) holds true if

1− θ

t1
≥ θ

(k1 − 1)tj
for 2 ≤ j ≤ k1 or θ ≤ min

2≤j≤k1

[ 1

t1
+

1

(k1 − 1)tj

]−1

. (4.15)

Moreover, the right side of (4.15) ≤ (1−1/k1) (attained when t1 = tj = 1 for some 2 ≤ j ≤

k1) and so, R1(2, t) ≤ R1(1, t) will hold if θ ≤ (1− 1
k1

) or k1 ≥ (1−θ)−1. Similarly, we shall

have Rj(2, t) ≤ Rj(1, t) if category cj is included in an IFPR block that contains at least

(1− θ)−1 cells. This implies that for ξ > 1/3, our solution for attaining Goal 2, described

above, will also achieve Goal 3 if we put at least (1− θ)−1 cells in each IFPR block. For

certain values of θ, Table 2 gives the values of ψ(1, θ), ψ(2, θ), ξ = max{ψ(1, θ), ψ(2, θ)}

and the required block size, calculated as d(1− θ)−1e, the ceiling of (1 − θ)−1, i.e., the

smallest integer that is not smaller than (1− θ)−1.

Table 2: Minimum Block Size

θ ψ(1, θ) ψ(2, θ) ξ Required block size

.4 .789 .476 .789 2

.5 .667 .462 .667 2

2/3 .429 .429 .429 3

.75 .308 .408 .408 4

.8 .238 .395 .395 5

.9 .110 .365 .365 10

.95 .052 .350 .350 20

.99 .010 .337 .337 100

Obviously, as θ increases to 1, the required minimum block size d(1− θ)−1e increases

to ∞. However, requiring each block for IFPR to contain too many categories may be
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inconvenient and may affect data utility undesirably. Guided by Table 2, we recommend

to take ξ ≥ .350 so that (2.8) can be attained with θ ≤ .95 and required minimum block

size ≤ 20. In summary, for Goal 3, we suggest to take ξ ≥ .35 and then achieve it as

follows. First, calculate θ0(ξ), as the solution of h(θ) = ξ, and m0 = d(1− θ)−1e. Then,

form blocks for IFPR such that they include all cells with frequency 1 or 2 and each block

contains at least m0 cells. Finally, apply IFPR to all units in each block with θ = θ0(ξ).

5. A General Post-randomization Procedure

In this section, we propose a general procedure, by augmenting our approach for Goal

3 in the preceding section with certain suggestions on how to form IFPR blocks before

applying post-randomization. This will also further clarify the relevance and usefulness

of our previous results and observations. The procedure stated below accomplishes Goal

3, but it can be modified suitably to achieve the other two goals discussed in Section 4.

Suppose a data set involves p categorical variables X1, . . . , Xp and the data agency has

specified a subset of those as key variables and wishes to accomplish Goal 3 with a given

value of ξ > 1/3. Our procedure does not perturb values of quantitative variables, which

may be masked appropriately using other methods, e.g., noise addition or imputation.

Also, in many applications, quantitative variables are recorded using interval scales, in

which case those may be treated as categorical variables and covered by our procedure.

We organize the proposed procedure in 4 steps as follows.

Step 1. Use the given value of ξ to calculate θ0 by solving h(θ) = ξ, and then compute

m0 = d(1− θ)−1e. As discussed in Section 4, the number of categories in each block for

applying IFPR will need to be at least m0. In practice, we should consider taking ξ to be
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0.35 or larger, so that m0 ≤ 20.

Step 2. At this step we choose a variable set for post-randomization. Here, our task

is to divide the variables X1, . . . , Xp into two sets C and C̄, with the objective of post-

randomizing the cross-classification of all variables in C, to be denoted XC, and leaving

the values of other variables unchanged. Thus, the frequency of any cell in the cross-

classification of the variables in C̄ will remain unchanged. Two main considerations for

choosing C are as follows. First, all key variables should be included in C, for confidentiality

protection. Second, we should include certain non-key variables in C in order to avoid

unrealistic combinations of values of X1, . . . , Xp in perturbed data (and new edit failures).

For example, suppose C includes gender (say, X1) but not the number of pregnancies (say,

X2). Then, X1 will be perturbed and X2 will remain unchanged, which is likely to

generate a perturbed data set that will show a positive number of pregnancies for some

males. Here, both X1 and X2 should be put either in C or in C̄. As Nayak and Adeshiyan

(2015) noted, UPRAM does not yield any combination of values of the variables in C that

are not in the original data.

To recognize another issue, recall that under UPRAM (which includes IFPR), the per-

turbed frequency of any category of XC is an unbiased estimate of the original frequency.

However, the same conclusion may not be true for a category of the cross-classification of

some variables in C and some in C̄. Thus, some non-key variables may be included in C

to assure that joint frequencies of those non-key and all key variables are perturbed un-

biasedly. Suppose for example, p = 4 and X1, X2, X3 and X4 represent gender, education

level, income class and housing tenure, respectively. Suppose also that X1 and X2 are key

variable and the association between education and income is of substantial inferential

interest. Then, we should include X1, X2 and X3 in C and leave X4 in C̄.
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In principle, all categorical variables X1, . . . Xp can be included in C, leaving C̄ empty.

However, it is inconvenient to put many variables in C as XC would have a very large

number of categories, many with low frequencies, viz. 0 or 1 or 2. Also, our next step

(data partitioning) offers another substantial opportunity to preserve data quality. Thus,

in practice, non-key variables should be added to C if the need for doing so is strong. Note

that our method gives confidentiality protection guarantee with respect to all variables

in C. So, it will provide higher level of protection than what the agency requires if C

includes any non-key variable. For notational simplicity, suppose C = {X1, . . . , Xr} for

some r ≤ p, and thus XC represents the cross-classification of X1, . . . , Xr.

Step 3. Partitioning the data set. As we have seen in Section 4, our approach to

attaining Goal 3 only requires that (i) all units in singleton and doubleton cells (i.e., with

frequency 1 or 2) be post-randomized and (ii) each block for IFPR contain at least m0

cells. On the other hand, we shall see in the next section that to minimize data quality

loss the number of cells in each IFPR block should be kept as small as possible. Thus,

our IFPR blocks must cover all singleton and doubleton cells of XC, and the number of

cells in each block should be close to m0, but not smaller than m0. These constraints still

give us significant freedom for setting up IFPR blocks, which we shall utilize to preserve

data quality.

We may not want to perturb the values of certain variables in C either because of their

importance or to comply with regulations. For example, for a person level sample from a

state, regulations may require us to preserve the counts of individuals in age intervals (0,

18], (18, 65) and 65 and over, or keep the county of residence of each person unchanged.

Similarly, it may be desirable to preserve the original data on employment status and

poverty level of each individual. Also, perturbed values of ordinal variables, e.g., income
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class and age group, should be reasonably close to the original values. We propose to

utilize the flexibility in forming IFPR blocks to control the nature (magnitude in some

sense) of data perturbation and prevent undesirable changes to original records, by first

partitioning the original data set and then forming IFPR blocks within each partition set.

For simplicity, we suggest to control perturbation at individual variable level, but

cross-classifications of subsets of variables can be used similarly. A general framework

for implementing this idea is as follows. For each Xi in C, create a new variable X∗i by

merging categories of Xi. Let X∗C denote the cross-classification of X∗1 , . . . , X
∗
r . Then,

partition the data set by categories of X∗C . Thus, all units falling in one category of X∗C

constitute one partition set. Note that categories of X∗C also defines a partition of the

original cells of XC. As described in Step 4 below, we apply post-randomization within

each partition set. So, our procedure does not change the X∗C -category of any unit. Two

extreme types of X∗i are: (i) X∗i = Xi, in which case, the original data on Xi will remain

unchanged and (ii) X∗i merges all categories of Xi into one category, which means that

for Xi, the original category of any unit is permitted to change to any other category.

In Step 4 (below), we require that if a partition set contains at least one singleton or

doubleton cell of XC, then it must contain at least m0 nonempty cells. This condition may

not be satisfied if X∗1 , . . . , X
∗
r do not collapse the categories of X1, . . . , Xr adequately. If

a partition violates the requirement, we would need to merge partition sets or redefine

X∗1 , . . . , X
∗
r to coarsen the partition. On the other hand, excessive collapsing would yield a

small number of partition sets with large IFPR group sizes, missing further opportunities

for perturbation control (and reducing data quality loss).

Step 4. Applying post-randomization. At this step, we apply the followig procedure

to each partition set separately. First, we count the number (J) of singleton and doubleton
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cells (of XC) in the partition set. If J = 0, i.e., there are no singleton or doubleton cells,

we leave original categories of all units unchanged. If J ≥ m0, we take all singleton and

doubleton cells to form one IFPR block and then apply IFPR with θ = θ0, as calculated

in Step 1, to XC for all units in this block. If 0 < J < m0, we add (m0 − J) cells with

frequency 3 or more to the set of singleton and doubleton cells to form one IFPR block.

For minimal impact on data quality, cells with smallest frequencies should be added.

Then, we apply IFPR with θ = θ0 to all units in the IFPR block. In both cases (J ≥ m0

and J < m0) records of all units not included in the IFPR block are left unchanged.

Clearly, the procedure described above may be modified in several ways. As noted

earlier, one may use cross-classifications of subsets of X1, . . . , Xr for data partitioning. In

fact, it is not even necessary to use ‘rectangular’ data partition. In Step 4, if the number

of singleton and doubleton cells in a partition set is 2m0 or larger, we may divide those

to two (or more) IFPR blocks, each with at least m0 cells. This can be done by random

splitting for convenience or using contextual knowledge and judgment to optimize data

quality loss. However, in practice, large data sets need to be perturbed using computer

programs, without much human work. We believe, Step 3 provides a simple and practical

method for maintaining data quality while controlling identification risk.

6. Effects on Data Quality

In this section, we investigate effects of IFPR on cell frequencies. Taking X as XC, we shall

first examine V (S|T), as E(S|T) = T under IFPR. In our procedure, for any category ci

of XC, any difference between Si and Ti arises only from the IFPR applied to the block

that contains ci. So, we shall first assess block level effects of IFPR. Thus, consider one
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IFPR block and for notational simplicity, suppose it contains the cells c1, . . . , cm. Let S1 =

(S1, . . . , Sm)′, T1 = (T1, . . . , Tm)′ and let V = ((vij)) denote V (S1|T1). The ith column

of the transition probability matrix (P ) for this group is Pi = ( θ
(m−1)Ti

, . . . , θ
(m−1)Ti

, (1 −

θ
Ti

), θ
(m−1)Ti

, . . . , θ
(m−1)Ti

)′, i.e., the ith element is (1− θ
Ti

) and the rest are θ
(m−1)Ti

. Recall

that only nonempty cells participate in IFPR and so each Ti > 0. Using (3.6) and noting

that P is a function of T1, we obtain:

vii = 2θ − θ2
[ 1

(m− 1)2

m∑
j=1
j 6=i

1

Tj
+

1

Ti

]

= θ
(

2− θ

Ti

)
− θ2

(m− 1)2

m∑
j=1
j 6=i

1

Tj
(6.1)

for i = 1, . . . ,m and for i 6= j,

vij = − θ

m− 1

[
2 + θ

( 1

m− 1

m∑
l=1
l 6=i,j

1

Tl
− 1

Ti
− 1

Tj

)]
. (6.2)

Equation (6.1) shows that θ(2 − θ/Ti) − θ2 ≤ vii ≤ θ(2 − θ/Ti) and the lower bound

is attained when m = 2 and Tj = 1 for all j 6= i. Thus, if the units in category ci require

confidentiality protection, for minimum variation of the category’s count we should put ci

in one IFPR block that contains just one other singleton category. Suppose, for example,

θ = 0.8,m = 5, T1 = T2 = 1, T3 = T4 = T5 = 2. Then, (6.1) gives v11 = 0.96− 0.1 = 0.86.

If we add another category with frequency 1 to this block, v11 increases to 0.96−0.0896 =

0.8704. Adding 4 more categories with frequencies 2, 3, 3 and 3 increases v11 to 0.9205,

which is fairly close to 0.96, the upper bound of v11. Thus, (6.1) is fairly flat unless m is

very small.

The total variation of S1, measured by the trace of V (S1|T1), is

Vt =
m∑
i=1

vii = 2mθ − θ2
( m

m− 1

) m∑
i=1

1

Ti
. (6.3)
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If we add one cell, say cm+1, to the block {c1, . . . , cm}, (6.3) shows that the total variation

for the enlarged block will be

V ∗t = 2(m+ 1)θ − θ2
(m+ 1

m

)m+1∑
i=1

1

Ti
.

Then, we obtain:

V ∗t − Vt = 2θ +
θ2

m(m− 1)

m∑
i=1

1

Ti
− θ2(m+ 1)

m

1

Tm+1

> θ
[
2− θ(m+ 1)

m

1

Tm+1

]
≥ θ

[
2− (1.5)θ

]
> 0

for all 0 < θ < 1, as m ≥ 2 implies (m + 1)/m ≤ 1.5. Thus, as intuition suggests, we

should post-randomize the units in only the cells requiring confidentiality protection.

Next, to explore effects of merging (or splitting) IFPR blocks, consider two blocks

A1 and A2 containing m1 and m2 cells, respectively. Let Vt|s and Vt|c denote the total

variation of all m1 +m2 cells in A1∪A2 under two schemes: (1) apply IFPR to each block

separately and (2) combine the two blocks and then apply IFPR. Using (6.3), we get

Vt|s = 2θ(m1 +m2)− θ2
[( m1

m1 − 1

)∑
i∈A1

1

Ti
+
( m2

m2 − 1

)∑
i∈A2

1

Ti

]
,

Vt|c = 2θ(m1 +m2)− θ2
( m1 +m2

m1 +m2 − 1

)[∑
i∈A1

1

Ti
+
∑
i∈A2

1

Ti

]
and

Vt|c − Vt|s =
θ2

m1 +m2 − 1

[( m2

m1 − 1

)∑
i∈A1

1

Ti
+
( m1

m2 − 1

)∑
i∈A2

1

Ti

]
> 0. (6.4)

This shows that to reduce effects of IFPR on data quality, all cells for post-randomization

should be divided into disjoint IFPR blocks, each containing the minimally required num-

ber of cells for confidentiality protection. We also note that the relative difference between
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Vt|s and Vt|c is significant when m1,m2 and Ti, i ∈ A1∪A2 are very small. For a numerical

example, take θ = 0.8. Then, for m1 = m2 = 2 and Ti = 1 for all i, we get Vt|c = 4.6933

and Vt|s = 1.28, and so Vt|c = (3.67)Vt|s. In contrast, if m1 = m2 = 5 and Ti = 2 for

each of the 10 cells, then Vt|c = 14.8444, which is only 3.09% larger than Vt|s = 14.4.

Thus, if the required minimum number (m0) of cells in IFPR blocks is not too small, say

m0 ≥ 5 (see Table 2), we may not gain much from creating many blocks and satisfying

m0 minimally.

Typically, the number of variables and cross-classified cells are very large and indi-

vidual cell frequencies are not of much interest. In practice, lower level marginal rela-

tive frequencies are of much greater interest. To assess the post-randomization variance

of a marginal frequency, we first consider a subset of cells of one IFPR block. Sup-

pose the block consists of the cells c1, . . . cm. Let A be a subset of {1, . . . ,m} of size

b and SA =
∑

i∈A Si represent the total perturbed count of the cells ci, i ∈ A. Then,

V (SA|T) =
∑

i,j∈A cov(Si, Sj|T), and using (6.1), (6.2) and routine algebra, and letting

Ac = {1, . . . ,m} \ A, we find that

V (SA|T) =
2θb(m− b)
m− 1

− θ2

(m− 1)2

[
b2
∑
i∈Ac

1

Ti
+ (m− b)2

∑
i∈A

1

Ti

]
≤ 2θb(m− b)

m− 1
(6.5)

≤ 2θb, (6.6)

as 1 ≤ b ≤ m. The right side of (6.5) is the largest when b = m/2, and zero when b = m.

Note that our IFPR blocks depend on the original data through T, and change in

repeated sampling. However, in practice, we are interested in the (total) probabilities of

subsets of cells of XC, where the choice of the subsets do not depend on the data. Denote

the cells of XC by c1, . . . , ck and let πi = P (XC = ci), i = 1, . . . , k. Then, consider a subset
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D of {1, . . . , k} of size b and let πD =
∑

i∈D πi, TD =
∑

i∈D Ti and SD =
∑

i∈D Si. For

brevity, we shall use D also to denote {ci; i ∈ D}. To investigate V (SD|T), note that the

cells in D fall into different IFPR blocks and hence are perturbed differently. Any given

T = t yields a specific set of IFPR blocks and a unique distribution of the cells in D into

those blocks. Suppose bU of the b cells in D do not fall in any IFPR block (and hence

are not post-randomized), and the remaining bR = b − bU cells fall in L different IFPR

blocks, denoted G1, . . . , GL. Also, let bi denote the number of cells of D that fall in Gi

and let Wi denote the total frequency of those cells after post-randomization. Then,

V (SD|T = t) = V
( L∑
i=1

Wi|t
)

≤
L∑
i=1

2θbi

= 2θbR ≤ 2θb, (6.7)

by (6.6). Note that L and bR are functions of t and the upper bound (2θb) in (6.7) is

overly conservative when bU is large.

Next, consider the two estimators π̂D = TD/n and π̃D = SD/n, based on original

and post-randomized data, respectively, where n is the sample size. Both are unbiased

estimators of πD with V (π̂D) = [πD(1− πD)]/n and

V (π̃D) = V [E(π̃D|T)] + E[V (π̃D|T)] =
πD(1− πD)

n
+ E[V (π̃D|T)]. (6.8)

Furthermore, (6.7) shows that

E[V (π̃D|T)] ≤ 2θ

n2
E(bR) ≤ 2θb

n2
. (6.9)

Note that the first term on the right side of (6.8) is the sampling variance and it is of

order (1/n). In contrast, the second term, which is the variance inflation due to post-

randomization, is at most of order (1/n2). Note that E(bR) is a function also of n and
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E(bR) → 0 and n → ∞. Thus, we establish an important practical conclusion that the

randomness and uncertainty induced by our procedure is negligible in comparison to the

sampling variance. This feature is also well demonstrated in our example below.

7. An Example

In this section, we use U.S. Census Bureau’s 2013 one-year person-level Public Use Micro-

data Sample (PUMS) for the state of Maryland, to illustrate our procedure (as described

in Section 5), examine its empirical performance and affirm our theoretical results. The

PUMS data set was extracted from American Community Survey (ACS) data and some

values were perturbed by Census Bureau for confidentiality protection, but for our illus-

tration, we shall treat all values as original values. The data set and data description are

available at https://www.census.gov/programs-surveys/acs/data/pums.html. The data

set contains records of 59,033 persons for many demographic and economic variables.

For illustration, we selected five variables for post-randomization, which are gender (2),

age (92), race/ethnicity (9), marital status (5) and Public Use Microdata Area (PUMA)

(44), where the values in parentheses are the number of categories of respective variables.

Thus, C comprised these five variables, which we shall denote by X1, . . . , X5, respectively.

This generated a cross-classified variable XC with 364,320 cells (or categories). The data

set yielded 25,406 nonempty cells, of which 13,662 are singleton and 4,777 are doubleton

cells. Thus, if the original data are released, of the 59,033 units (persons) in the data set,

13,662 (or 23.14%) can be identified correctly with certainty and each of another 9,554 (or

16.18%) units (in doubleton cells) can be correctly identified with probability 0.5. Our

procedure methodically controls identity disclosure risk of the 13, 662 + 9544 = 23, 216
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singleton and doubleton units, which constitute 39.33% of all units.

For this illustration, we used θ = 0.8 and m0 = 5, which accomplish Goal 3 with

ξ = .395; see Table 2. For data partitioning, we created the following five (collapsed)

variables: X∗1 = X1 (i.e., no cells are merged); X∗2 collapses X2 (age) in 7 broader classes,

viz. 0 to 17, 18 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, and 65 and above; X∗3 regroups

X3 into the three categories: white, black and other races; X∗4 ≡ 1 and X∗5 ≡ 1, i.e., X∗4

and X∗5 merge all categories of X4 and X5, respectively, into one category. For these

choices, our procedure will keep gender unchanged and allow marital status and PUMA

(X4 and X5) to change freely. All age values will stay within the broader categories of X∗2 .

Thus, our procedure will preserve the numbers of voting age (18 or above) and senior (age

65 or above) persons, which may be important in legal and policy studies. Of the nine

categories of X3, white and black are two dominant categories and account for about 89%

of all persons in the data set. Our X∗3 preserves the two major race groups and merges

the remaining 7 into one category.

The cross-classification of X∗1 , . . . , X
∗
5 yielded 42 cells and all units falling in a cell

constituted a partition set. The total number of singleton and doubleton cells (of XC) in

the 42 partition sets ranged between 124 and 1480, all being much larger than 5. Thus, it

was possible to use a finer partition and exercise further control, which we did not pursue.

Finally, for each partition set, we took all units falling in singleton and doubleton cells

to form one IFPR block and applied IFPR with θ = 0.8 to create a perturbed data set.

Thus, our post-randomization changed the original XC-category of each singleton unit

with probability 0.8 and each doubleton unit with probability 0.4. When a category was

changed, the new category was picked at random from the remaining cells within the IFPR

block. The procedure also kept the records of all units falling in XC-cells with frequency 3
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or more unchanged. In the following, we report some results from one perturbed data set.

However, we had created several perturbed data sets by repeating the post-randomization

step (for the same data partitioning) and found similar results in all cases.

7.1. Empirical Identification Risk

Here, we examine several aspects of the perturbed data set for a broad empirical assess-

ment of identification risk. Some basic features of the perturbed data set are as follows.

Our procedure changed the XC-category of 10,954 (or 80.18%) of the 13,662 singleton

units and 3,807 (or 39.85%) of the 9,554 doubleton units. The procedure also turned

4,983 (or 36.47%) singleton and 360 (or 7.54%) doubleton cells into empty cells. Thus,

36.47% of (originally) singleton and 7.54% of doubleton units had no match in the per-

turbed data set. These two percentages are close to the corresponding theoretical values

of 35.95% and 7.19%, respectively, derived in Section 4.1.

For a given unit in the data set, let τ and τ ∗ denote the frequency of the unit’s

true XC-category in original and perturbed data sets, respectively. Alternatively, τ and

τ ∗ are the number of records in original and perturbed data sets, respectively, which

match the unit’s values of all variables in C. The values of τ and τ ∗ actually depend on

the unit considered, but for brevity we do not make that explicit. For any given unit,

the probability of correctly identifying the unit in released data is 0 if its XC-category

changed due to post-randomization, and 1/τ ∗ otherwise. We calculated this probability

for all 23,216 originally singleton and doubleton units. Averaging those probabilities

over relevant subgroups of units we obtained the empirical conditional correct match

probabilities reported in Table 3.
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Table 3: Empirical Conditional Probabilities of Correct Match

τ = 1 τ = 2

τ ∗ = 1 0.2315 0.3933 0.2849

τ ∗ = 2 0.1961 0.3477 0.2827

0.1348 0.3027

In our example, 5,066 units satisfied the conditions τ = 1 and τ ∗ = 1 (i.e., the unit

is unique in the original data and has a unique match in released data), of which 1,173

had correct (unique) matches, yielding P (CM |τ = 1, τ ∗ = 1) = 1173÷ 5066 = 0.2315, as

reported in Table 3. Similarly, 2,570 units satisfied τ = 1 and τ ∗ = 2, of which 1,008 had

their records unchanged. For any of these 2,570 units being the target unit, our intruder

would randomly select one of the two units whose released category of XC equals the

target unit’s XC-category and take that as the target unit. This would yield a correct

match with probability 1/2 for the 1,008 units whose records did not change due to data

perturbation, and with probability is 0 for the remaining 1,562 units. Using these, we

obtained P (CM |τ = 1, τ ∗ = 2) = [(1008) × (0.5) + (1562) × (0)] ÷ 2570 = 0.1961. All

other values in Table 3 were calculated similarly.

Here, we note a few points about the empirical probabilities in Table 3. As expected,

all values in Table 3 are less than 0.395. Both P (CM |τ = 1, τ ∗ = 1) = 0.2315 and

P (CM |τ = 2, τ ∗ = 1) = 0.3933 are very close to the corresponding upper bounds of 0.238

and 0.395, reported in Table 2. This is not surprising because in our example, the k1

of (4.11) takes large values (between 124 and 1480 as noted earlier), in which case the

sum in (4.11) is nearly a constant with respect to T and hence the inequality in (4.12)
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holds fairly tightly. The overall probability of correct match for an originally XC-unique

person is P (CM |τ = 1) = 0.1348, which is fairly low. The corresponding probability for

doubleton units, P (CM |τ = 2) = 0.3027, is noticeably larger. This shows that putting

too much emphasis on protecting sample unique units or judging a procedure by resulting

identification risk for sample unique units may be misleading. In our example, one reason

for the difference is that the percentage (36.47%) of singleton units with no match in

perturbed data is much larger than the corresponding number (7.54%) for doubleton

units.

In practice, an intruder would know the frequency (τ ∗) of the XC-category of a target

unit in released data, but not the frequency (τ) in the original data. Thus, P (CM |τ ∗)

are of much practical interest. As shown in Table 3, P (CM |τ ∗ = 1) = 0.2849 and

P (CM |τ ∗ = 2) = 0.2827, which can be regarded as empirical values of Rj(a) in (2.6)

for j = 1 and 2. Interestingly, the above two values are very close, which implies that

the correct match probability is almost the same for units showing up as singleton or

doubleton units in released data. We note importantly that the perturbed data set has

7,558 singleton and doubleton units, which is 66.44% smaller than the corresponding

number (23,216) in the original data.

7.2. Assessment of Data Utility Loss

In this part, we compare several sets of summary statistics from the original and perturbed

data, respectively, to assess the procedure’s effects on data utility. Our procedure kept the

values and hence marginal distributions of all variables, except X2, . . . , X5, unchanged.

Note that although X1 (gender) is included in C, it remained unchanged as we used it (with
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no collapsing) for data partitioning. On the other extreme, X4 (marital status) and X5

(PUMA) were changed freely, without any control. Tables 4 gives frequency distributions

of X4 for the original and perturbed data. In the second and third columns, the values in

parentheses are relative frequencies. The ‘never married’ category includes all persons who

are less than 16 years old. The fourth column gives the original count minus perturbed

count. The last column gives estimated sampling standard deviations (SD) under simple

random sampling with replacement (i.e., under binomial model). For example, the SD for

the category ‘married’ is obtained as [(59033)(.4182)(1− .4182)]1/2 = 119.84.

Table 4: Frequency Distributions of Marital Status

Marital Status Original Data Perturbed Data Difference SD

Married 24688 (.4182) 24678 (.4180) 10 119.84

Widowed 3156 (.0535) 3180 (.0539) -24 54.67

Divorced 4742 (.0803) 4704 (.0797) 38 66.03

Seperated 1040 (.0176) 1039 (.0176) 1 31.95

Never married 25407 (.4304) 25432 (.4308) -25 120.30

In Table 4, the difference values are quite small, in magnitude, in comparison to SD

values. This is consistent with our observation in Sec. 6 that asymptotically, the order of

magnitude of perturbation variance is smaller than that of sampling variance. We may

also mention that while 39.33% of all units were candidates for randomization, the cor-

responding percentage was much higher for widowed, divorced and separated categories,

which have relatively small frequencies. For example 76.78% of the 4742 units falling

in ‘divorced’ category were subject to post-randomization. Even for these groups, the
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original and perturbed relative frequencies are practically the same.

Similarly, the original and perturbed distributions of race (X3), given in Table 5, are

very close. The fact that the original and perturbed counts are exactly the same for white

and black is not a chance occurrence. Because of our choice of X∗3 and data partitioning,

the race of any white or black person remained unchanged. The original data set contains

exactly one person in ‘Alaska Native alone’ category, who can be identified correctly by

matching race alone. This person cannot be identified in our perturbed data set, as the

frequency for that category is zero. In any case, the probability of correctly identifying

any sample unique person, not just by race but by all five variables in C, in a post-

randomized data set (with θ = 0.8) is theoretically less than 0.238 (see Table 2). We had

also examined distributions of age based on the original and perturbed data. The plots

of the two cumulative distribution functions were almost indistinguishable and hence are

not presented here.

We shall next examine certain effects of our procedure on joint distributions of two

or more variables. Obviously, our procedure has no effect on the joint distribution of any

subset of variables of C̄. Thus, we shall examine combinations of variables from the 5

key variables (sex, age, race, marital status (mar) and puma) and 2 non-key variables,

viz. class of workers (work) with 9 categories and education level (edu) with 8 categories:

grade 6 or less, grade 7-12 but no high school diploma, high school diploma, some college

but not degree, Associate degree, Bachelor’s degree, Master’s or professional degree, and

Doctorate degree.

To compare the original and perturbed joint distributions, we shall use the total varia-

tion distance (TVD) between two probability distributions. For a discrete random variable
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Table 5: Distribution of Race or Ethnicity

Race or Ethnicity Original Perturbed

White 37201 (.6302) 37201 (.6302)

Black 15239 (.2581) 15239 (.2581)

American Indian alone 97 (.0016) 92 (.0015)

Alaska Native alone 1 (.000017) 0 (0)

American Indian & Alaska Native 42 (.0007) 46 (.0008)

Asian 3461 (.0586) 3345 (.0567)

Native Hawaiian & other Pacific Islander 20 (.0004) 21 (.0004)

Some other race alone 1349 (.0228) 1337 (.0227)

Two or more races 1623 (.0275) 1652 (.0280)

X, the TVD between two distributions p(x) and q(x) is

TV D(p, q) =
1

2

∑
x

|p(x)− q(x)|.

A useful interpretation of TV D comes from the fact that TV D(p, q) = supA |p(A)−q(A)|,

where the supremum is over all subsets A of the sample space of X. In our applications, p

and q will represent relative frequency distributions based on the original and perturbed

data. Then, for a given set of variables, letting fi and f̃i denote the frequency of the ith

cell in the original and perturbed data, respectively, the TV D measure becomes

TV D =
1

2

∑
i

|fi
n
− f̃i
n
| = 1

2n

∑
i

|fi − f̃i|, (7.1)

where n is the sample size.

Gomatam and Karr (2003) used TV D for measuring distortions due to data swapping.
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Shlomo and Skinner (2010) used relative absolute average distance (RAAD) per cell,

which relates to TV D by RAAD = 100[1 − 2 × (TV D)]. For several combinations of

variables, Table 6 gives the values of TV D and also the number of cells. All TVD values

in Table 6 are quite small and the joint distributions with three largest TVD values have

over 350 cells and involve one variable (puma or mar) that was post-randomized without

control.

Table 6: Total Variation Distances Between Original and Perturbed Distributions

Variables TV D Number of cells Variables TV D Number of cells

race, mar 0.0028 45 puma, work 0.0198 396

race, puma 0.0013 396 puma, edu 0.0324 352

race, edu 0.0088 72 sex, race, mar 0.0060 90

race, work 0.0035 81 sex, race, edu 0.0093 144

mar, edu 0.0127 40 mar, race, edu 0.0218 360

mar, work 0.0070 45 sex, race, work 0.0039 162

8. Discussion

In this paper, we presented a novel approach to measuring identification risk and setting

practical identification risk control goals and deductively devising post-randomization

procedures for achieving those goals, without having to estimate any unknown parameters.

We also exhibited attractive properties, both theoretically and empirically, of our data

perturbation procedure. For making statistical inferences, a perturbed data set may be
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treated as the original data set without much loss of accuracy.

One limitation of our procedure is that for Goal 3, it works well essentially for ξ ≥ 0.35.

However, our assumptions that the intruder knows the values of all key variables for his

target and that the target is in the sample are quite conservative. In practice, an intruder

would not know if the target is in the sample or not, especially when an agency releases

a subsample as in PUMS, and may know the values of only some (but not all) of the

key variables. Thus, the probability of a typical intruder’s match being correct would be

much smaller than ξ. Moreover, an intruder may not know much about the agency’s data

perturbation procedure (as noted above), and consequently find it very difficult to assign

any probability to his match being correct.

While the general procedure of Section 5 may be improved by modifying our methods

for data partitioning and forming IFPR blocks, the limitation mentioned above stems

primarily from the simple structure of IFPR involving only one design parameter (θ).

Larger classes of PRAM matrices (P ) with more complex structures and characterized

by multiple design parameters might be more versatile and useful for achieving stricter

disclosure control goals, which is a topic for future research. We hope that the ideas and

results in this paper will be practically useful and stimulate further research.
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