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Dual Initiatives at the Census 

Bureau 

 Data Dissemination Transformation 
 Easier to access 

 More flexible and customizable 

 Combines multiple data sources into integrated 
data products 

 Disclosure Avoidance Transformation 
 Increase in publicly available data and 

sophistication of data mining techniques 

 To facilitate transformation of data dissemination 
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New Methods Research 

 Two ways to protect confidentiality 
 Suppress data 
 Perturb data 

 Microdata Analysis System (Discontinued) 
 Remote table server with official microdata as source 
 Table suppression as primary DA method  
 Discontinued research due to low data utility and 

unacceptable disclosure risk 

 Expanded use of synthetic data 
 Formal privacy mechanisms and criteria 
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Current Synthetic Products 

 Decennial Census and American Community 
Survey (ACS): group quarters data 

 Survey of Income and Program Participation 
Synthetic Beta 

 Synthetic Longitudinal Business Database 

 OnTheMap 
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ACS Household Data Synthesis: 

Overarching Questions 

 Can we provide high quality synthetic data 
that adequately preserve relationships across 
all ACS variables? 

 Which models should we use? 

 At which geographic level should we 
synthesize? 

 Should we do partial or full synthesis? 

 How best to incorporate survey weights? 
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Research Phase 1 

 Create synthetic datasets for: 

 Sex, Age, Race, Hispanic Origin, Educational 
Attainment, Marital Status, and Wages 

 Use ACS public-use microdata (PUMS) 

 Simulate wages to undo rounding and topcoding 

 Use a relatively small geography (n=2500) 

 Use Classification and Regression Trees (CART) 
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Classification and Regression 

Trees (CART) 

 Estimates univariate outcomes conditional on 
multivariate predictors 

 Produces recursive binary splits of the 
predictors to form relatively homogeneous 
groups 

 Creates synthetic data by drawing values from 
“leaves” 
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The Synthesis Models 
 Sex: Dirichlet model instead of CART 

 Age | Sex 

 Race | Age, Sex 

 Hispanic Origin | Race, Age, Sex 

 Educational Attainment | Hispanic Origin,  Race, Age, 
Sex 

 Marital Status | Educational Attainment , Hispanic 
Origin,  Race, Age, Sex 

 Wages | Marital Status , Educational Attainment , 
Hispanic Origin,  Race, Age, Sex 
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Tree to Predict Wages 
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CART versus Parametric Models: 

Pros 
 More easily applied, especially with irregular 

distributions 

 Can capture non-linear relationships and 
interaction effects that may not be easily 
revealed  

 Provides a semi-automatic way to fit the most 
important relationships in the data  

 

-- Reiter, Journal of Official Statistics, 2005 
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CART versus Parametric Models: 

Cons 

 Discontinuity at partition boundaries 

 Decreased effectiveness when relationships 
can be accurately described by parametric 
models   

 

-- Reiter, Journal of Official Statistics, 2005 
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Concerns with Continuous 

Variables  
 CART replaces data with actual observed values; could 

be too risky for continuous variables 

 Proposed solution: Apply kernel density smoothing 
 First proposed by Reiter, Journal of Official Statistics, 2005 

 Included in R package “synthpop” 

 Implemented in some public datasets 

 Disclosure Concerns 
 Attribute disclosure: Exact or within a range 

 Outliers are at particular risk 

 Person’s presence within a survey 
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Density Evaluation 

 Vary noise specifications on wages 

 Method 1: Kernel density support from bottom to the 
top of leaf 

 Method 2: Kernel density support extending above 
top of leaf for higher incomes 

 Both methods used for a variety of bandwidth sizes 

 Disclosure Risk: Evaluate threat for original 
dataset’s max income, for various maxes 

 Data Utility: Compare mean wages 

 

 13 



Synthetic Maxes for Method 1 
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Synthetic Maxes for Method 2 
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Mean Wages 
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Method 1 Method 2 

Mean SE Mean SE 

Original 69,311   69,311   

Noise Factor = 1 69,210 2,088 73,521 2,405 

Noise Factor = 2 71,482 2,147 77,186 2,579 

Noise Factor = 3 73,647 2,236 80,461 2,753 

Noise Factor = 4 74,845 2,273 83,280 2,892 

**Estimates in bold are significantly different from the original mean. 



Wages: Right Skewed 
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Skewness = 3.43 



Leaf Skewness 
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Mean Skewness = 0.33 
68% of leaves skewed right 



Conclusions 
 When releasing a single implicate, smoothing 

may provide enough protection if: 
 Bandwidth is large enough 
 Density support extends beyond leaf 

 Attacks are possible if releasing multiple 
implicates 
 Method 1: Examine max of the synthetic maxes 
 Method 2:  Examine average of the synthetic maxes 

 Smoothing can potentially create biased 
estimates 

 Some outliers may still be at risk 
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Next Steps 

 Explore noise more 

 How to avoid bias? 

 Vary noise bandwidth by local dispersion? 

 Add noise before synthesis for risky values? 

 Topcode certain variables? 

 Continue working on overarching questions 

20 



Questions? 

 

Amy Lauger 

Amy.d.lauger@census.gov 

 

Thanks! 
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