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Methodology and Theory for Design-Based

Calibration of Low-Response Household Surveys
with Application to the Census Bureau 2019-20 Tracking Survey

Eric Slud and Darcy Morris, Census Bureau CSRM

ABSTRACT: Motivated by the Census Bureau’s 2019-2020 Tracking Survey, conducted
in two modes as a telephone probability survey and also as a nonprobability web survey,
this report studies methodological issues concerning household survey estimation following
weight-adjustment. The issues of interest include: the creation of base-weights for tele-
phone RDD (random-digit-dialing) surveys; the adjustment of base-weights in probability
and nonprobability surveys by generalized raking methods to calibrate respondents to na-
tional population targets for so-called ‘post-stratification’ variables; the handling of these
base-weighting and calibration methods when some of the respondents’ post-stratification
variable values are missing; the mathematical theory justifying the large-sample behavior and
variance estimation for survey estimates; and assessment of the success of weight-adjustment
in making survey respondents represent the US population. Well-established theory (Deville
and Särndal, 1992 JASA) says that when inverse-inclusion-probability survey weights are
calibrated to true totals in a probability survey with complete response, the design-based
estimates are design-consistent and have reduced variances, and the weights move very lit-
tle. Yet in raking real low-response surveys like the Tracking Surveys, the movement of most
weights is large. New design-based theory provided in this report justifies generalized raking
in settings where the correct weights (defined here for the first time in a design-based frame-
work) satisfy a parametric model, and large-sample theory is established for adjusted-weight
survey estimators and their variance estimates whether such a model holds or not. This
theory makes precise a sense in which weight calibration and variance estimation in surveys
with either low response or non-probability designs is unavoidably model-based. To assess
the validity of survey weight adjustments made by potentially misspecified models, survey
methodologists often compare with known national targets the survey-weighted estimated
proportions with respect to benchmark variables not used in the weight adjustment. In
the Tracking Survey, this is done using the raked weights for several benchmark variables
and also for augmented demographic benchmarks obtained by cross-classifying demographic
variables whose marginal totals have been used in calibration.

Key words and phrases: survey calibration, nonresponse adjustment, raking, nonprobability
survey, benchmark variables, item-missing data
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1 Introduction

The general setting for the survey inference problems we consider is a frame population list
U of N units, n units of which are respondents in a designed probability sample (of a larger
number of units) drawn from U . Unit nonrespondents from the larger designed sample are
ignored, or else no information about them is available, and we allow the possibility that the
respondent-set R is much smaller than the set S originally sampled. For purposes of survey
inference, we maintain the fiction that R = S, a fiction that forces us to modify the design
base-weights, the original single-inclusion probabilities πoi = P (i ∈ S), to reflect the response
mechanism as part of the sampling design. It is assumed that the design weights woi = 1/πoi
are available for all i ∈ R, along with the survey outcomes Yi and covariates Xi for the
respondent units. The covariates Xi are vectors of demographic and other observations on
survey respondents, which may be categorical or numeric, and some of which may be missing
for some survey respondents.

The setting described here applies to many political and social-science probability sur-
veys, including random-digit-dialing (RDD) telephone surveys. Characteristic features of
such surveys include (i) the low response rate (small size of n as a fraction of the total
number of residential telephone numbers initially ‘sampled’ and called), and (ii) the def-
inition of the frame U as the union of multiple frames, which in the RDD setting are the
separate frames of landline and cell telephones. The proper definition of the base-weights
for units in U requires knowledge of the national population of households with telephones
of each type, landline and cell, as well as the proportion of the total with phones of both
types. It is assumed that essentially 100% of the US population has some kind of telephone
service – although that may not be correct for the homeless or for some rural and American
Indian areas. All respondents to the 2019-2020 Tracking Survey were asked questions about
standard demographic categories (Age, Sex, Educational level, Race group, Owner/renter
status, geographic location [from which are derived Census Region and population density
of household location], Household size (# adults), Marital Status, whether a Language other
than English is spoken in the home), together with a few benchmark questions related to
Volunteering behavior, Blood donation, and Health. For all these survey variables, there are
high-quality national surveys from which national proportions of the outcome categories and
some low-order cross-tabulations of them can be derived.

A standard approach to the analysis of surveys like those described above, including
surveys with low response-rate, is to adjust the design- or base- weights subject to the
constraints that weighted survey totals of population subsets (domains) defined by specified
‘poststratification variables’ must agree with the totals from reliable estimates from large
national surveys or the census (Valliant, Dever and Kreuter 2018)1. That external source of
national totals is generally the demographic Population Estimates produced yearly by the

1In this report, the terms post-stratification and calibration will generally be used synonymously.
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Census Bureau as an update to the decennial census, augmented by variables tabulated in the
yearly American Community Survey or Current Population Survey which themselves have
been adjusted to agree with the Population Estimates. Nowadays, the same methods are
applied (with constant base-weights, cf. Valliant et al. 2018) to surveys that are obtained from
questionnaires administered online to self-selected internet panels in which broad invitations
are issued but no probability design is used to sample potential respondents.

The specific survey that motivated this report is the 2020 Census Tracking survey that
was designed to help inform advertizing decisions during the collection of the 2020 Census.
This survey collected daily data (aggregated monthly) on noninstitutionalized US adults
(aged 18 and above) from September 2019 through June 2020 on awareness, attitudes, self-
reported intent to participate in the U.S. 2020 Census, perceptions about how data would
be used, selected topics on messaging, and other questions about major events happening
during 2019-2020. The survey was conducted by a contractor (Team Y&R 2020), and the
data are publicly available through the University of Michigan Inter-university Consortium
for Political and Social Research. A similar survey had been conducted in 2010. This current
survey used two different samples and data collection modes, analyzed and described here as
separate surveys. One was a nationally representative probability telephone survey and the
other a non-probability opt-in web survey. Both had very low response rates (< 8%), and
the raw demographics of respondents in both surveys differed markedly from the general US
population. In both surveys,‘survey weights’ were derived (initially by the contractor, using
standard raking adjustments, a popular method of calibration or ‘poststratification’) with
the goal of making the respondents better represent the US population.

This report is organized as follows. Section 2 is an overview of current research top-
ics in survey methodology bearing on the choice of weight-adjustment method for a (low-
response-rate) probability survey. As part of this overview, we describe alternative types of
weight adjustment and briefly tell what methods exist to estimate variances of survey totals
estimated with these methods. In the last heading of the section are previewed some stan-
dard methods of assessment of adjusted weights in making a survey’s respondent population
representative of a targeted national population. Section 3 explains how base-weights are
derived in RDD surveys with some missing information relevant to determining the types
of telephones accessible to respondent households. Section 4 describes alternative methods
of handling occasionally missing poststratification variables in implementing otherwise stan-
dard ‘generalized raking’ weight-adjustments. The formal mathematical assumptions and
theory supporting survey inference following generalized-raking of low-response surveys (or
other surveys requiring large adjustments, such as those with frame coverage errors) is given
in Appendices A-B. The theory is exclusively design-based, treating the finite population
surveyed as a large array of unknown but nonrandom individual-level covariates Xi and
outcomes Yi. Probability sample design fully describes the mechanism of choice of sampled
units, but in surveys with low response-rate there is a further mechanism, unknown and
unmodeled, by which a subset of sampled units become respondents. The formal theory
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provides natural, but apparently new, assumptions defining when the set of final weights ob-
servable along with respondent attributes can serve as large-sample asymptotically correct
weights. The theory also shows how parametric assumptions related to the weight-movement
metric G used in defining generalized calibration enable conclusions about survey estimates
and variances comparably general to those of Deville and Särndal (1992) but in settings with
large weight-adjustments. Sections 5 and 5.1 respectively interpret the application of the
formal and technical results to survey totals and variance estimates in real surveys like the
Tracking Survey after weight-adjustment by calibration. Section 6 illustrates the theory of
the earlier sections on data from the RDD and Web Tracking surveys and implements several
data-analytic assessments of the adequacy of the weight-adjustments, both those made by
the contractor and by the methods of this paper, in the Tracking Survey. Section 7 provides
a summary discussion and conclusion of the report, also sketching implications of the paper’s
theory and assessment methodology for the choice of benchmark variables.

The novel methodological elements of this report are: (i) a method of variable-by-variable
treatment of missing item data in base-weighting (Sec. 3) and generalized-raking weight ad-
justment (Sections 4, 4.3 and 4.4); (ii) new design-based large-sample theory for generalized-
raking weight adjustment when either a parametric model-assumption holds for the ratio of
true over base weights or when no such model holds (Appendix and Sec. 5); (iii) valid
variance formulas for survey-weighted estimates in (ii) when the sampling before weight-
adjustment is arguably Poisson (Appendix and Sec. 5.1), and (iv) use in Sec. 6.2 of a metric
for discrepancies of adjusted-weight estimates from targets using cross-classified categori-
cal variables to approximate the total-variation distance, and (v) statement in Sec. 7 of
analytical criteria for choice of effective benchmark variables.

2 Current research issues in survey weight-adjustment

For the data setting of Section 1, a first task is to modify the initial or base weights woi (gen-
erally taken to be identical for all respondents i in a nonprobability survey) to reflect known
national category proportions for a set of demographic and geographic variables. The process
of modifying these inital weights to a set wi of final weights is called weight-adjustment , with
the goal of enabling estimates of population totals tY of survey attributes Yi to be calculated
from survey-respondents in the survey-weighted form t̂Y =

∑
i∈R wi Yi. The modifications

from woi to wi are generally made with the aid of non-constant auxiliary numeric variables
(covariates) X i = (Xi,k, k = 1, . . . , p) to satisfy exact or approximate calibration constraints

N−1
∑
i∈R

wiXi,k = X̄k for k = 0, . . . , p (1)

where the target population means X̄k = tXk
/N are known from external sources, and

we define Xi,0 ≡ X̄0 ≡ 1. We consider various weight-adjustment schemes of this sort,
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summarizing from the survey research literature and extending where necessary to account
for the possibility that some respondent covariate items Xi,k may be missing.

Two different kinds of model underlie weight adjustment. The first concerns frame cov-
erage, positing that the frame may be faulty but respondents to the survey are ‘accessible’
in the sense of being correctly identified on the frame list, reachable by the mode(s) of
survey delivery and able to accept the survey burden and the way in which questions are
asked. The second viewpoint is that the frame is correct but that the characteristics of
individuals predispose some to respond to the survey and others not. A shorthand for these
different formulations is that they respectively address frame coverage and propensity to
respond. The first suggests models in which survey weights (inverse inclusion probabilities)
differ from intended weights in the general population by a biasing mechanism involving only
those characteristics (typically, geography or address-type) that would be known in advance
from the frame, while the second suggests models for the probability of response in terms of
individual characteristics that would not be known before the subject responds.

The research issues that are most important for the present overview are:

(I). Models versus Metrics for wi/w
o
i

A modeling idea generally ascribed (by survey methodologists) to Oh and Scheuren (1983)
is the ‘post-randomization model’ that treats the decision to respond for a sampled individual
as a binary decision independent of data all other individuals conditionally given a covariate
vector Zi of individual variables, observable or not. This idea is taken up by biostatisti-
cians and social scientists in the form of a parametric model for conditional probabilities
Pθ(i ∈ R |Zi; i ∈ S), where Zi is a vector of covariates including any used for calibration
as Xi,k. A different, apparently nonparametric, optimization-based approach is generalized-
raking calibration as formulated by Deville and Särndal (1992) to minimize over final weights
wi a metric

∑
i∈RG(wi/w

o
i ) subject to (1). Economists and biostatisticians (cf. Tsiatis 2006)

are interested in efficient estimation of parameters, calibration theorists in qualitative non-
parametric results not depending heavily on the choice of G. These approaches are similar
when the weights woi are very far from those needed to satisfy the constraints (1).

(II). Missing Survey Items Xk,i – Model-based Imputation versus Complete-case analysis

Survey methodologists broadly recognize the need for a systematic imputation method
of filling in missing items, either singly for each covariate or sequentially for jointly miss-
ing items. Indeed, widely used survey software (Lumley 2010) assumes that there are no
missing items, i.e., that they have already been filled in before calibration or that calibra-
tion omits respondent records containing any missing data. Model-based imputations are
used by various authors interested in Multiple Imputation (Carlin 2015): a current set of
techniques known as Chained Imputation is embedded in the MICE software of van Buuren
(2015). Survey methodologists preparing for weight-adjustment often fill in missing items
using item-wise hot-deck imputation methods (Andridge and Little 2010) with a nonpara-
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metric flavor. An idea tried in the ANESrake R-package (Pasek et al. 2014) in the context of
raking is that each Iterative Proportional Fitting pass requires only the filling-in or omission
of missing items in a current raking variable, and we generalize that idea below to the class
of generalized-raking calibration methods of Deville and Särndal (1992). It turns out that
this method is equivalent to mean-imputation within each raking pass.

(III). Alternative Choices for Calibration Variables and Methods

Almost all of the various ratio-adjustment, linear-calibration, raking and other post-
stratification adjustment methods of weight-adjustment in the survey methodology literature
fit within the model-based or generalized-raking methods summarized in paragraph (I) above
(Valliant et al. 2018). (One example of a method, widely cited in the Causal Inference liter-
ature, that is not acknowledged to fall in the latter rubric, is ‘entropy balancing’ calibration
(Hainmuller 2012), but we will see below that this is another instance of generalized rak-
ing and is subject to the advantages and disadvantages of such calibration methods.) In all,
there is a choice of ‘post-stratification’ variables to use. In the calibration methods of Deville
and Särndal (1992) and Deville, Särndal and Sautory (1993), there is a choice of metric G.
Some of those metrics enforce weight-ratio trimming (uniform upper and lower on wi/w

o
i ),

but for those that do not (including ordinary raking), some practitioners do further ‘weight-
trimming’. In addition, there is the possibility of allowing more post-stratification variables
to be used by relaxing some of the constraints (1) to be ‘soft’ in the sense that they are not
forced to hold exactly but a penalty term containing a weighted sum of squared discrepancies
is added to the metric

∑
i∈RG(wi/w

o
i ) being minimized over {wi}i∈R (Slud and Thibaudeau

2010). This last idea is familiar to survey methodologists from the Benchmarking literature,
but is not usually presented as a weight-adjustment approach.

(IV). Variance Estimation of t̂Y after Weight-adjustment

Variance estimation following imputation and weight-adjustment is still largely an open
problem. Rao and Shao (1992) provided a method of variance estimation for randomized hot-
deck imputation (without calibration of weights, but involving some adjustment of weights
related to the imputation), and Deville and Särndal (1992) justified the use of GREG variance
formulas following generalized-raking calibration under the assumption that the base-weights
w∗i are correct inverse-inclusion probabilities. Perhaps practitioners of Multiple Imputation
hope that their variance estimates apply equally well when weights are adjusted following
model-based adjustment methods such as MICE, but that hope has so far not been theoret-
ically justified. In the present report, variance formulas valid for large samples are provided
in a generalized-raking context under an assumption that the base-weights differ by a para-
metric model from the correct base-weights. Those results, demonstrated in Appendix B and
summarized in Section 5.1, are the material of this report with the greatest methodological
novelty, but they do not address the level of variability due to missing covariate items.
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(V). Assessment of Weight-adjustments

An important element of survey measurement methodology is the comparison of survey-
weighted estmates of national outcome proportions from benchmark responses versus propor-
tions measured by well-established high-response-rate national surveys (Valliant et al. 2018).
Such external measures of quality are needed particularly in surveys with low respnse-rate,
as part of a general assessment of survey biases. This kind of comparison has been a staple
of the survey measurement literature comparing the quality of results of low-response-rate
probability surveys versus nonprobability (web) surveys, as in MacInnes et al. (2018), Pasek
and Krosnick (2020) and Yeager et al. (2011). We return to these quality assessments in
Section 6 in relation to the two arms of the Tracking Survey, and as part of a more general
discussion in Section 7 of what constitutes an effective benchmark variable.

3 Base-Weights in the RDD Phone Tracking Survey

It is customary in RDD surveys to ignore unit-level nonresponse, or rather to treat it as
an essential aspect of the sampling design. The ‘base weights’ woi are the reciprocals of the
effective single-inclusion probabilities, and this Section describes their construction in the
context of the 2019-2020 Phone Tracking Survey. The standard approach, chosen by Team
Y&R, is that of Buskirk and Best (2012), applicable to a survey receiving data from (at most)
one respondent adult (aged 18+) in each household, with respondents viewed as having been
a Simple Random Sample from the frame (Cell-phone or Landline) within which they were
sampled. Formulas (3)-(4) of Buskirk and Best (2012) are elaborated here because some data
are missing regarding household size and dual landline-cellphone status in the Phone Tracking
Survey, and our treatment of the missing data is non-standard. ‘Household size’ is used here
only for landlines and refers to all adults accessible by that landline. It is acknowledged that
residential situations with multiple landlines are not adequately addressed.

The basic assumptions of Buskirk and Best (2012), which we adopt here, are

(BB1) all adults in a household are equally likely to be sampled in a landline call,

(BB2) each cell-phone can reach only a single adult, and

(BB3) sampling from the landline and cell-phone frames is independent.

Assumption (BB1) is reasonable in the Tracking Survey because data are collected (sub-
ject to some callback nonresponse) on the adult in the household with the next birthday.
Assumption (BB2) is common in RDD work, although anecdotal evidence suggests it under-
estimates the number of adults actually reachable, and therefore will lead to baseweight
over-estimates. (BB3) correctly reflects the actual conduct of RDD surveys.
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Because dual-telephone status of respondent persons and numbers of adults in respondent
landline households are sometimes missing (as is true respectively of 1.24% and 2.43% of
respondents in the Phone Tracking Survey), we require two further assumptions about the
ignorability of the mechanism causing missing data.

(BB4) The proportion of landline households who would fail to provide number of adults if
sampled is the same among respondents and nonrespondents, and

(BB5) Within each of the subpopulations of adults reachable by landline and those reachable
by cellphone, the fraction of persons who would fail to provide information about dual
cell/landline telephone status is the same among respondents and nonrespondents.

(BB4) seems a harmless assumption, except that callback for nonresponse might be more
frequent in larger households. Similarly, (BB5) might fail in larger households in which some
household adults do not know which other adults have cell-phones. Since (BB2) might also be
less valid in larger households, we recommend – after using (BB1)-(BB5) in constructing base-
weights – to use household size as a poststratifying variable in constructing final adjusted
weights for RDD telephone surveys, and this is apparently not standard practice.

We assume that the overall size of the adult population Npop with telephones is known,
along with the ‘target’ national proportions (pCO, pLO, pD) of persons reachable by tele-
phone in the nation with Cellphone-only, Landline-only, or Both (Dual). The latter propor-
tions may be taken from a source such as the National Health Interview Survey (Blumberg
and Luke 2018). The 2019 estimated adult US population was 209.1 million, and Table 1
of Blumberg and Luke (2018) give the proportion of the national adult population in the
period Jan-June 2018 without telephones as 3.2% and with unknown Dual status as 0.1%,
and 55.2% with Cell-phone only, 4.1% Landline only, and 37.4% with both.

In terms of these target telephone-status proportions, we define respective population
fractions pL in the Landline and pC in the Cellphone universes as

pL = pLO + pD , pC = pCO + pD

In this Section, we treat the respondent-set R and sample S as identical, indexed by i or
j, and let n denote the size of this set. If there were no missing household-size or dual-status
information, then based on respective numbers nL, nC , and n of Landline, Cell-phone and
Total respondents, Buskirk and Best’s (2012) formula (3) defines base-weights in three steps:

(i) For each respondent i sampled by landline telephone, the inclusion probability is

πLi = {nL/(pL ·Npop)} / ADULTSi (2)

where ADULTSi denotes the number of adults living in the household with person i.
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(ii) For each respondent i sampled by cell-phone, the inclusion probability is

πC = nC/(pC ·Npop) (3)

(iii) Unnormalized weight woi for individual i is the reciprocal of the overall inclusion
probability taking account of the status of i belonging to the groups CO (Cell-phone only),
LO (Landline only), or D (dual), and w̄oi are normalized to average 1 among respondents:

woi = 1
/(

I[i∈LO∪D] · πLi + I[i∈CO∪D] · πC − I[i∈D] · πLi · πC
)
, w̄oi =

nwoi∑
j w

o
j

(4)

Buskirk and Best (2012, in their formula 4) provide a simplified version of formula (4) with
the third denominator term in woi removed, because that third term is generally very small.
(In the Phone Tracking Survey, nL = 20528, nC = 41082, n = 42161, and the L and C
inclusion probabilities are small enough that their product is negligible.)

3.1 Case of Missing Data

It remains only to explain the modifications of formula (4) when some respondent individuals
i are missing the information D (i.e., missing I[i∈D]), and some individuals sampled in the
landline frame are missing ADULTSi. For clarity, let LL and CP respectively denote the sets
of persons in the land-line and cell-phone frames.

Step 1◦. First, the frame population proportions of dual phone status pD|L = pD/pL
and pD|C = pD/pC are estimated from the non-missing data by

p̂D|L = P̂ (i ∈ D | i ∈ LO ∪D) =

∑
j I[j∈D]∑
j I[j∈LL]

p̂D|C = P̂ (i ∈ D | i ∈ CO ∪D) =

∑
j I[j∈D]∑
j I[j∈CP ]

where the sums over j are restricted to respondents in the survey with I[j∈D] not missing.

Step 2◦. Next, the numbers of respondents nL, nC in the survey who respectively
belong to the LL and CP frames are estimated using (BB5) as

nL = (#sampled by Landline) + (#sampled by Cell in D)

+ (#sampled by Cell with D missing) · p̂D|C (5)

nC = (#sampled by Cellphone) + (#sampled by Landline in D)

+ (#sampled by Landline with D missing) · p̂D|L (6)
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Step 3◦. We propose to impute the missing ADULTSi data among the survey respondents
using only a constant weighted average from the non-missing ADULTSj values sampled by
Landline or known to fall in the Dual-phone-status group D, as follows.

(1/ADULTS)avg =
(

sum of non-missing (1/ADULTSj) for j sampled by Landline or known in D

+ (sum of non-missing (1/ADULTSj) for j sampled by Cell and missing D) · p̂D|C
)/

(
#non-missing ADULTS sampled by Landline or known in D

+ (#non-missing adults sampled by Cell and missing D) · p̂D|C
)

All missing values 1/ADULTSj in the collected dataset are replaced by (1/ADULTS)avg.

Step 4◦. Because of the complexity of the formulas, we provide the modified formula for
weights woi (before renormalizing as in (4) to obtain w̄oi averaging 1) ignoring the small third
denominator term in (4) corresponding to the possibility of being sampled in both frames in
the same dual-frame survey. Let the quantities πLi and πC again be given respectively by
formulas (2) and (3) after modifying the definition of nL, nC by (5) and (6).

For respondents i with non-missing D, we apply the formulas (2) and (3) and define

1
/
woi = I[i∈LO∪D] · πLi + I[i∈CO∪D] · πC

For respondents i sampled by Landline with missing D, define

1
/
woi = πLi + p̂D|L π

C

For respondents i sampled by Cellphone with missing D, define

1
/
woi = p̂D|C π

L
i + πC

Step 5◦. For all respondents, w̄oi = nwoi /
∑

j w
o
j . As in Buskirk and Best (2012),

base-weights w̄oi summing to n are later scaled via calibration to sum to N .

Remark 1 Step 3◦ uses only non-missing Landline ADULTSi values; only those values for
sampled individuals in the Landline frame are used in constructing inclusion probabilities.

Remark 2 The form of Step 4◦ in the Base-weights recipe given here is designed to con-
form to the average of multiply imputed base-weights if the dual-telephone-status variable
Di were imputed when missing from survey respondents known to have Landline phones by
Bernoulli(p̂D|L) trials and from those known to have Cellphones by Bernoulli(p̂D|L) trials.

Remark 3 Note that in Step 5◦ and also in (4) if the third denominator term is ignored,
the telephone population-size Npop plays no role in w̄oi because it is a constant factor in all
woi and cancels out of w̄oi .
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4 Treatment of Missing Items in Poststratification

A review of documentation for raking and calibration software indicates that available weight-
adjustment methods are generally designed to work without missing items among the (usually
demographic and categorical) variables used for calibration. The software and documentation
reviewed so far include: the R survey package of T. Lumley; the anesrake R package of Josh
Pasek, which refers to a 2009 ANES technical report by M. DeBell and J. Krosnick along
with a 2010 Stanford report of J. Pasek and a full 2014 ANES report by Pasek, DeBell and
Krosnick; the WesVar package with 2002 documentation given in a StatCanada symposium
report of G. H. Choudhry and R. Valliant; an IBM document by Jon Peck (2011) on raking in
SPSS; and textbook literature (Agresti 2013, and Bishop et al. 1975) on raking and Iterative
Proportional Fitting in contingency tables. The documentation for survey software suggests
either that missing items be imputed in preprocessing steps, or that raking be done on
records for complete cases (survey respondents with no missing items in any variables used
for calibration). In the present Section, we sketch algorithms for weight adjustment in which
there are some missing items and different records may be missing different items, but where
a simultaneous imputation of all missing data is not needed.

These software packages share a common framework. Let (Yi : i ∈ S) be attribute
observations on the respondents in a survey of size n. Again ignore the distinction between
sample and respondents, with the understanding that inclusion-probabilities πi and weights
wi = 1/πi account both for probability of sampling and possibly incomplete unit-response.
Each unit i is assumed to provide observed categorical Xi vector covariates Xi,k, with first
entry identically 1 and with ‘missing’ or NA an allowed category for the other entries. Let
Dk denote the non-NA levels of Xi,k, and assume that the population-control counts cX,k,d =∑

i∈U I[Xi,k=d] over all distinct values d ∈ Dk are known or fixed in advance from estimates
(possibly from the current survey), along with the population total N . Then define cX,k,+ =∑

d∈Dk
cX,k,d. If the population counts are fixed from external sources with no missing values,

then cX,k,+ = N , but if the control counts are fixed from a survey with missing Xi,k items,
then the counts cX,k,+ may differ from N and vary with k.

Throughout this discussion, in a current survey (Xi, i ∈ S) may have some missing
entries. Let Ri denotes a binary vector of the same dimension p as Xi, with components
Ri,k defined as the indicators that Xi,k is observed rather than missing. When control totals
are fixed from the survey in terms of base weights woi scaled to sum to the true population
size N , the control counts are

cX,k,d =
∑
i∈S

Ri,k w
o
i I[Xi,k=d] , cX,k,+ =

∑
i∈S

Ri,k w
o
i

The goal is to provide adjustments to the weights woi depending only on Xi and Ri, in order
to apply the new weights to many interesting outcomes and benchmark variables Yi.
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A unifying notation, for categorical or continuous covariates used in generalized raking
calibration, is to take Xi as a numeric vector of components Xi,k with known population
averages X̄k = tXk

/N = N−1
∑

i∈U Xi,k, such that the vectors (Xi,k, i ∈ S) are linearly inde-
pendent. This can be done by replacing categorical covariates by dummy indicator-variables
I[Xik=d] for all levels d = 2, . . . , |Dk| other than d = 1 which serves as a reference category,
and then eliminating all dummy columns that are perfectly expressed by linear combina-
tions of dummy columns from earlier covariates. Such a restriction to linearly independent
numeric columns (Xi,k, i ∈ S) is maintained in Sections 4.3, 4.4, and beyond.

4.1 Raking when Items May be Missing

Personal communication with Josh Pasek (author of anesrake) confirmed that his version
of raking is done using in each raking pass all non-missing records for the survey variable of
that pass, and agrees with the anesrake software documentation. The relevant part of the
rakeonvar.default.R function (which is called by rakelist.R called by anesrake.R) in
the anesrake package is

if (lwo == (lwt + 1)) {

mis <- sum(weightvec[weighton == (lwt + 1)])

weightto <- c(weightto * ((sum(weightvec) - mis)/sum(weightto)),

mis)

}

for (i in 1:lwo) {

weightvec[weighton == i] <- weightvec[weighton == i] *

(weightto[i]/sum(weightvec[weighton == i])

}

Assume a survey starts from an initial set of population-control totals cX,k,d as described
in the opening paragraphs of Section 4 above. The anesrake code above implements a
raking pass with formulas below, for the categorical variable (Xi,k, i ∈ S), where wAi and
wBi respectively denote the updated weight-vector at the beginning and end of the pass.

• Redefine the control vector, adjusted in non-missing categories, and a missing-category
control equal to the sum of the weights of the observations with a missing value.

cAX,k,d =
cX,k,d
cX,k,+

∑
i∈S

Ri,k w
A
i , d ∈ Dk; cAX,k,NA =

∑
i∈S

(1−Ri,k)w
A
i (7)

• The new weights are calculated as the new adjusted target for the category times the
i’th weight proportion of the total of weights for that category.
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wBi = wAi
cX,k,di

∑
i∈S Ri,kw

A
i

cX,k,+
∑

j∈S w
A
j I[Xjk=di]

=
wAi c

A
X,k,di∑

j∈S w
A
j I[Xjk=di]

, i ∈ S, Ri,k = 1 (8)

For the special case of the missing (NA) category where Xik = NA,

wBi = wAi
cAX,k,NA∑

j∈S w
A
j I[Xj,k=NA]

= wAi (9)

These equations are for a single raking pass for the k’th raking variable. Each raking variable
goes separately through this procedure. This way of handling missing data within each
raking iteration is exactly the same as that described next in equation (10), and also agrees
approximately but not algebraically with the generalized raking formulation described in
Section 4.4 below.

4.2 Unified Notation for anesrake Raking Formula

This subsection provides a formula for direct raking as in anesrake when there are missing
items in unit-responders, in a consistent notation. This is not the algorithm used later
in solving the system of equations (17) that extends the scope of weight adjustment using
missing-item data to linear and generalized-raking calibration along the lines of Deville,
Särndal and Sautory (1993).

The method of anesrake is to rescale weight in each raking pass among the units so that
weight-proportions of the respondent Xi,k values follow the known population proportions.
Suppose that a pass is about to be done using totals for the k’th covariate entries (Xi,k, i ∈
S). Let Rk denote the set of indices i ∈ S for which Ri,k = 1, i.e., for which the k’th entry
is observed; Dk the set of distinct categorical data-values for Xi,k across i; and cX,k,d the
control total counts for variables Xi,k = d. Let wAi denote the weights just before this raking
pass, and wBi the weights just after. We define wBi = wAi for i /∈ Rk and rescale the weights
for i ∈ Rk by a common factor, leading to the raking formula for each fixed k, for all d ∈ Dk

and i ∈ Rk for which Xi,k = d :

wBi =
wAi cX,k,d∑
d∈Dk

cX,k,+

∑
j∈Rk

wAj

/∑
j∈Rk

wAj I[Xj,k=d] (10)

In this step,
∑

j∈Rk
wBj =

∑
j∈Rk

wAj , although later steps raking on other marginals can
modify this weighted total. Formula (10) describes a single raking-pass, for the k’th entry
of the categorical survey variables Xi. Passes cycle successively through all entries k for
post-stratification variables, ideally until convergence.
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4.3 Linear Calibration with Missing Items

In this and succeeding sections, the notation changes somewhat. From now on, the covariate
column-vectors (Xi,k, ; i ∈ S) are now numeric and linearly independent columns whose
population totals are known, along with the overall population size N . To work within this
framework, cateogrical variables are replaced by those of their dummy indicator-columns
I[Xik=d] that are not prefectly predicted by earlier columns.

We reformulate in this subsection the standard derivation of linear calibration, to ac-
commodate missing items. The usual derivation minimizes

∑
i∈S (wi − woi )2/woi subject to∑

i∈S wiX i = tX ≡
∑

i∈U X i, where i indexes survey respondents with unit-nonresponse-
adjusted weights wi, and X i = (1, Xi,2, . . . , Xi,p+1) are vectors of linearly independent co-
variates. This formulation assumes no X i entries are missing, so that the first entry of tX is
the population size tX,1 = N . When that is true, the same optimization problem is rewritten
in the form

min
w

∑
i∈S

(wi − woi )2

2woi
subject to

∑
i∈S

wi
(
Xi,k − tX,k/N

)
= 0 ∀ k = 1, . . . , p+ 1 (11)

Next let X̄k = N−1
∑

i∈U Xi,k = N−1tX,k for k ≥ 1. In (11), the sum involving only weights
would be unchanged by missing items, while for each k the last sum could be restricted to
i ∈ Rk in case there were missing items. The resulting modified linear calibration problem
becomes:

min
w

n∑
i=1

(wi − woi )2

2woi
subject to

∑
i∈S

wi = N,
∑
i∈Rk

wi (Xi,k − X̄k) = 0 ∀ k ≥ 2

(12)
Minimizing with Lagrange multipliers −(β1 +

∑p+1
k=2 βkX̄k, β2, . . . , βp+1) for the constraints

leads to equations

wi/w
o
i = 1 + β1 +

p+1∑
k=2

βkX̄k +

p+1∑
k=2

I[i∈Rk] βk (Xi,k − X̄k) (13)

That is, in terms of the quantities woi , Xi,k, and X̄k, one determines the column vector
β = (β1, . . . , βp+1) of Lagrange multipliers by using (13) to define wi and then by solving
the linear system of constraints in (12) for β. The solution is expressed neatly in terms of
the matrix X∗ with first column 1 (denoting a vector of n 1’s) and defined for k ≥ 2 by
X∗i,k = X̄kI[i/∈Rk] + Xi,k I[i∈Rk], which can be described as the original design matrix X with
entries in the k’th column imputed to the externally fixed population average X̄k wherever
the i’th unit’s item k value is missing. Then (13) is written equivalently as

wi = woi

{
1 + β1 +

p+1∑
k=2

βkX̄k +

p+1∑
k=2

βk(X
∗
i,k − X̄k)

}
= woi + woi

(
X∗β

)
i

(13′)

14



and the constraint in (11) or (12) is written equivalently as X∗ tr w = tX . Letting W o =
diag(wo) denote the n × n diagonal matrix with initial weights woi along the diagonal, we
combine the form of wi in (13′) and the constraint to write the equation determining the
Lagrange multipliers and the linear-calibration adjusted weights as:

tX −X∗trwo = X∗trW oX∗β ,
wi
woi

= 1 +
(
X∗ (X∗trW oX∗)−1(tX −X∗trwo)

)
i

(14)

This derivation shows that the linearly calibrated adjusted weights wi arising when respon-
dents may have missing item-data are precisely the same as the usual formula for g-weights
derived from GREG models (Särndal et al. 1992, p. 232) when the design matrix X is
replaced by the design matrix X∗ with population-averages imputed for missing items.

4.4 Generalized Raking with Missing Items

As formulated in Deville and Särndal (1992) and Deville, Särndal and Sautory (1993), raking
and other calibration extensions satisfies (11) with a different metric between wi/w

o
i and 1 in

the first summation, and we find a similar extension to missing items as in (12). According
to Deville, Särndal and Sautory (1993), the optimization problem (11) is replaced by

min
w

∑
i∈S

woi G(wi/w
o
i ) subject to

∑
i∈S

wiXi,k = tX,k ∀ k = 1, . . . , p+ 1 (15)

when no items are missing, where G(x) is smooth and satisfies G(1) = G′(1) = 0, G′′(1) = 1.
The most common choices for G apart from (x− 1)2/2 embodied in (11) are the functions

Grak(x) = x log(x)−x+1, Glogis(x) =
(1− L)(U − 1)

U − L
{

(x−L) log(
x− L
1− L

)+(U−x) log(
U − x
U − 1

)
}

respectively associated with raking and with a “logistic” form of calibration guaranted to
yield weight-ratios wi/w

o
i in a fixed interval (L,U) containing 1. Unlike linear calibration, the

generalized-raking methods using Grak or Glogis are guaranteed to result in positive weights.

The problem (15) can be generalized to allow missing item-data in a way exactly analo-
gous to the way (12) generalized (11). The resulting optimization problem is

min
w

∑
i∈S

woi G(wi/w
o
i ) subject to

∑
i∈S

wi = N,
∑
i∈Rk

wi (Xi,k − X̄k) = 0 ∀ k ≥ 2 (16)

and the solution is easily seen to have the same form (with Lagrange multipliers parametrized
by (13)) as the generalized-raking solution with the design matrixX replaced by the population-
average imputed design matrix X∗. The equation that generalizes (13′) to determine the
weights and Lagrange multiplier vector β in this setting is

G′(wi/w
o
i ) =

(
X∗β

)
i
∀ i =⇒ tX = X∗ tr w = X∗ tr

(
woi · (G′)−1

(
(X∗β)i

))
i∈S

(17)
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This system of equations reduces precisely to (14) when G(x) = (x− 1)2/2.

When G ≡ Grak, G′(x) = log(x) and the second part of equation (17) says for all k,

tX,k =
∑
i∈S

X∗i,k w
o
i

wi
woi

∀ i ∈ Rk =⇒
∑
i∈Rk

wi (Xi,k − X̄k) = 0

which is precisely the balance equation imposed by scaling the wi weights for i ∈ Rk in a
raking pass (10) on the categorical-variable calibration incorporating the k’th column of X.
For each ordering of covariates, the general theory of convergence of raking implies that the
solution obtained by successive single-variable raking passes is still unique in the presence
of missing data. However, despite sharing the same constraint equations, the Iterative Pro-
portional Fitting (IPF) style raking done in (10) does not in general lead to the same final
adjustments as the optimized calibration-style raking in (17).

Remark 4 (Entropy-balancing vs. Raking) Generalized-raking adjustments obtained by solv-
ing equations (17) are usually applied with design matrices X∗ consisting of dummy columns
for a set of single or pairwise-interacting cateogrical variables. An apparently different method
of weight-adjustment has recently been advanced in Census Bureau research by Rothbaum
and Bee (2021), after having been used in propensity-weighting for Causal Inference since
the publication of Hainmuller (2012). This method, called Entropy Balancing, involves the
solution of calibration equations like (17) below, with a few characteristic differences. First,
in Causal Inference one is often interested in calibrating based on known properties of the
national distribution of a continuous variable, such as income. In that setting, Hainmuller
(2012) and later investigators work with design matrices with columns containing low-order
powers of these continuous outcome variables, with normalized national totals equated to the
corresponding known low-order moments of the national distribution. A second apparent dif-
ference is that Hainmuller defined his balancing problem by minimizing the ‘entropy’ metric
function Gent(x) = x log x subject to constraints. However, in the Deville-Särndal minimiza-
tion problem (16), the number n of respondents is fixed and known, as is the population total
N =

∑
i∈S wi. This implies that, subject to

∑
i∈S wi = N plus other constraints, minimiz-

ing (16) for G(x) = Grak(x) = x log x − x + 1 is exactly the same as minimizing (16) for
G(x) = Gent(x). Therefore, the entropy-balancing idea of weight-adjustment is exactly the
same as generalized raking with metric-function G = Grak. 2

4.5 ANESrake versus Generalized Raking

The solution to the generalized-raking calibration equations (17) can be found by the function
calibrate in Lumley’s (1999) R-package survey. Using that package for linear calibration
(with argument calfun = "linear") leads directly to the weighted-least-squares GREG
solution (14), with sample-dependent g-weights (Särndal et al. (1992, p. 232). In the raking
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case, G = Grak in (17) and calfun = "raking" in the calibrate function. However, when
there is missing data in the raking calibration, the unique weight-solution is not obtained by
a cyclical sequence of single-pass updates as in (10) using single-variable balance equations.
The distinction between the two methods of raking with missing item-data can be seen
through the observation that the solution to (17) does not depend on the ordering of the
raking variables indexed by k, while the anesrake solution does. The differences between the
two solutions, as well as the dependence of the anesrake solution on ordering, is confirmed
numerically among the data results in Section 6.

5 Model-based Nature of Raking under Large

Movement of Weights

The well-known paper of Deville and Särndal (1992) has for decades been cited as large-
sample theoretical support for survey-weighted estimation and variance estimation using
weights adjusted for unit nonresponse by means of ‘generalized raking’, as described in
Sections 4.4 and Appendix A. However, its theory assumes that this calibration is done
to correct calibration-variable totals using base weights defined as correct inverse single-
inclusion probabilities, without unit nonresponse or missing respondent-data. A hallmark of
the Deville-Särndal theory is that for samples of large size n, the calibration-step moves each
weight an amount of order 1/

√
n. All these assumptions may be challenged, but the weakest

one is to require that the population underlying the calibration totals and the population
used to define the designed base-weights are the same. The failure of this assumption,
either due to strong self-selection of respondents or because the calibration totals reflect a
population very different frm the respondents, results in the commonly observed phenomenon
that calibration moves the individual base weights by amounts that are not small.

The published base or final weights for respondents in a survey can seldom be interpreted
as estimates of the inverse probabilities of selection-and-response for units in the target pop-
ulation, because it is not clear what information response depends on. In a design-based
setting, where the finite population attributes are viewed as nonrandom, the sampled units
are selected by a random mechanism fully known to the investigator, but response occurs by
self-selection. The indicator of response might be random, but even for respondents often
depends on characteristics not accessible to the investigator. A first step in understanding
the movement of weights toward a correct representation of population is to define what that
means in formal terms for large samples. The mathematical framework for this is to view
the population and sample as stages in a triangular array of larger and larger populations,
with relative frequencies of characteristics settling down to limits along these stages. This
framework has been adopted by many theoreticians of survey sampling (Krewski and Rao
1981, Deville and Särndal 1992, Rubin-Bleuer and Kratina 2005, Fuller 2009) and is now
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the established framework for design-based asymptotic theory. The Appendix of this re-
port extends the design-based theory of Deville and Särndal (1992) in essential ways. First,
(A.3) defines the large-sample limiting properties needed for a system of population weights
{w∗i }i∈U to be asymptotically correct with respect to attributes Xi and outcomes Yi. This
definition is novel in being fully design-based, but it is not the only possible definition: in par-
ticular, this one restricts sample-weighted sums of outcomes Yi in the presence of covariates
Xi in a way compatible with the missing at random condition of Little and Rubin (2019).
In this setting, one seeks large sample consistency and asymptotic normality and variance
estimation of survey-weighted estimates of Y -totals using weights adjusted by generalized
raking. The second extension of calibration theory given in Appendix B (Theorems 1–2)
is to establish these large-sample results (for variances, in a Poisson-sampling setting, un-
der a natural additional population-level assumption (A.6)) when correct weights satisfy
a parametric regression model (A.4) in terms of the post-stratification variables Xi. This
extension of Deville and Särndal’s 1992 results is accomplished in their own design-based
terms, although similar results are known in essentially model-based theoretical treatments
of parametric or semiparametric response-propensity models.

The operational conclusion of the new theory in the Appendix is that, when the para-
metric model (A.3) holds and there are no missing covariate entries, the estimated totals t̂Y
after (generalized) raking are consistent and asymptotically normal, with variances that can
be consistently estimated by exactly the same estimator that would be used after linear cal-
ibration starting from the calibrated weights ŵi. That is, after calculating ŵi using software
such as the calibrate function in the survey package in R (Lumley 2010), the variances can
also be estimated using these estimated weights in the role of base-weights; re-running the
linear calibration on the same data with the same covariates and design; and substituting
the GREG residuals into a standard design-based variance estimation formula such as (35)
in Theorem 2 for the Poisson sampling setting appropriate for RDD and Web surveys.

A further technical innovation in the Appendix is the extension of the theoretical results
to the case where the parametric model (A.4) relating correct weights w∗i to base-weights woi is
misspecified. This is unfortunately the most common case. Theorems 3 and 4 provide similar
information to that obtained by robustified variances in misspecified model M-estimation for
iid data. If asymptotically correct weights can be estimated by some means, such as a more
fully parametrerized model enabling consistent but not necessarily asymptotically normal
estimation (for example, consistency without any bound on the rate of convergence), then
Theorem 4 shows how to estimate the variance of survey-weighted estimates following weight-
adjustment by raking. This could be useful in statistical checks on the goodness of fit of a
specific calibration scheme in estimating benchmark totals.
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5.1 Variance Estimation after Raking

A preliminary, ‘naive’ estimator of variance2 of a survey-weighted total t̂w,Y =
∑

i∈S wi Yi
can be obtained by ignoring the post-stratification of the weights wi and treating the Yi’s
as though they are random and iid over U with variance σ2

Y . The formula is obtained by
modifying the PPS with-replacement variance formula in Cochran (1977, p. 254) in Hájek
ratio form and separating the estimator of superpopulation y-attribute variance from the
weights, is

V̂naive(t̂w,Y ) = (σ̂2
Y N

2)
∑
i∈S

w2
i

/(∑
i∈S

wi
)2

(18)

The same variance formula, with w2
i replaced by wi(wi − 1), is asymptotically correct for

the scaled-weight or Hájek estimator t̂w,Y ·N/
∑

i∈S wi in large surveys if the Yi attribute
values are constants and units i ∈ U are Poisson- (i.e., independently) sampled with inclusion
probabilities πi = 1/wi, as N = |U| and the expected sample size n =

∑
ı∈U πi tend to ∞.

However, the estimator (18) errs by ignoring the weight changes due to calibration or raking
that constrain weighted totals

∑
i∈S wi Xi close to 0 for the post-stratifying variables Xi.

Thus, (18) is expected to overstate the variance for attributes Yi with significant regression
on the poststratifying variables.

Remark 5 In remotely conducted surveys like the RDD and Web arms of the Tracking
Survey, with no clustering in their design, the sampling design including response may not
be far from Poisson (independent across sampled units), although the inclusion probabilities
depend on many unknown factors. With this in mind, we develop variance formulas as
though the base-weighted sample follows an unequally-weighted Poisson design. 2

Because of raking weight-adjustment, reported margins of error (MOE) in survey demo-
graphic totals for marginal post-stratifying variables may be extremely small. This holds
in the American Community Survey (ACS) , for example. After its multiple raking stages,
very small MOEs are reported for County level demographics in sex and coarse age- and
race-categories (some partially cross-classified!) represented in the Census Bureau’s Popu-
lation Estimates which serve as targets for raking-calibration. It is important, therefore, to
account correctly for the effect of raking weight adjustment on the variances of survey totals.

Consider the estimation of variance after raking for large surveys with minimal or no miss-
ing item data. Formula (18) for variance is too simplistic. At the next higher level of sophis-
tication, if weights are calibrated by generalized raking to true totals based on true inverse-
inclusion-probability design weights woi = 1/πoi , the theory of Deville and Särndal (1992),
which is re-proved in Theorems 1 and 2, establishes that the variances of survey totals t̂w,Y

2In the context of the Tracking Survey, Paul Biemer suggested this estimator of variance as a rough
comparator for the GREG-weighted and model-based variances discussed later in this Section.
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are close in large samples to the variances of GREG residuals of Yi regressed on the post-
stratifying variables. The formula is (18) with Yi replaced by the GREG residuals from
regression on the full set of post-stratifying variables Xi:

V̂GREG(t̂w,y) =
N2

n

[∑
i∈S

woi (Yi − β̂′Xi)
2
/∑
i∈S

woi

]
·
∑
i∈S

woi · (woi − 1)
/(∑

i∈S

woi
)2

(19)

where β̂ are the GREG regression coefficients for Yi in terms of Xi based on woi weighted
regression. Finally, if the parametric model (A.4) for correct weights in terms of base weights
holds, then the theory of this paper (Theorem 2 and formula (35) in Appendix B) justifies
replacing (19) by the same formula with woi replaced by ŵi and with β̂ denoting coefficients
obtained from ŵi-weighted least squares regression.

6 Data Results from the Tracking Survey

This section provides an extended description, from preprocessing to descriptive exhibits to
final results, of the weight adjustments developed for both the RDD and Web components of
the Tracking Survey introduced in Section 1. The general reference for the data collected is
the Team Y&R Project (2020). Other papers and reports discussing data quality, compar-
isons between the RDD and Web data and results, and interpretations of those comparisons,
can be found in Ellis et al. (2022a,b).

6.1 Pre-processing, Outcome Variables and Data Recoding

The choice of more than 200 measured survey variables was made in the Census Bureau’s
agreement with the contractor, Team Y&R (2020), which itself sub-contracted with ReconMR,
a commercial data-collector. Data were collected from a single adult in each respondent
household, chosen as the person aged at least 18 with the nearest birthday. Survey variables
included personal and household demographics, geographic location, telephone type (landline
or cell) and availability, and benchmark variables chosen for comparability with data collected
at national level in high-quality government surveys. Data were collected on a monthly
basis. In the RDD survey, approximately 1400 respondents were interviewed per month
from September through December 2019, and a total of 36675 respondents supplied data
from January through June 2020. The Web survey was designed to be 50% larger, 2100
respondents per month in 2019 and 54,000 in all of 2020. In both surveys, the actual data
collection was self-contained and self-terminating in each month of 2019, but spilled over
across months during 2020. This aspect of the data collection was highlighted by Team
Y&R, which did data-imputations, base-weighting (for the RDD survey) and raking weight-
adjustments separately for each month of 2019 and in 2020 re-computed base-weights daily
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and weight-adjustments weekly, separately for RDD and Web (Team Y&R 2019, p. 10).
Because of the separate data collections monthly in 2019 and in all of 2020, the Census
Bureau Tracking Survey analysis team weighted and analyzed the data separately for each
2019 month and for the 2020 months lumped together.

The contractor chose a standard set of variables, household size, number of Adults
in household, and telephone type (landline or cell or both), for use in base-weighting the
RDD survey, and the Census Bureau analysts used these same variables. (Base-weights
for all respondents were equal by definition in the Web Survey.) The contractor also chose
8 variables for post-stratification of both surveys: 6-group Age cross-classified by Sex, 3-
level Education by Sex, 4-level Census Region, 3-level Education by 5-group Age, 2-level
Education by (indicator of) White Alone non-Hispanic, Owner/Renter, and (quartile of)
Population Density. The contractor used these variables for poststratifying the Web sur-
vey, and in the RDD survey these same variables together with TelStatus (a categorical
variable telling whether the respondent used landline or cell telephone or had both tele-
phone types available). The Census Bureau analytical team used the same variables as the
contractor (for both surveys) together with the additional variable Adults telling whether
there were 1,2,3 or more than 3 adults in the respondent household. These post-stratifying
variables were targeted to 2018 national proportions from the ACS 5-year 2014-2018 data
(which themselves were calibrated to the 2018 Population Estimates published by the Cen-
sus Bureau). Missing values for the base-weighting and post-stratification variables were
imputed in the Y& R analyses, for purposes of weight-adjustment only, by a randomized
hot-deck imputation method using (a subset of) the same set of post-stratifying variables.

The outcome variables of interest in the Tracking Survey measured its respondents’ at-
titudes toward the Census Bureau and decennial census and (in later 2020 months) self-
response to the census. Results for these outcome variables will be reported elsewhere (Ellis
et al. 2022a,b). The analytical team was also tasked with assessing and comparing the
quality of data from both the RDD and Web surveys. The methodology for this assessment,
following that of Yeager et al. (2011) and MacInnes et al. (2018), consisted of comparing
the survey-weighted estimates from the two surveys with each other and national target pro-
portions, on the primary demographic variables used in post-stratification, on secondary de-
mographic variables (such as Marital Status, non-English language spoken in the home,
and on a few benchmark variables (indicators of Volunteering, Giving Blood, and self-
reported Health levels, and an indicator of Work for Pay). The national target proportions
for the demographic and Work-for-Pay variables were derived from ACS, with other targets
respectively derived from the Current Population Survey (for volunteering), NHANES (for
donating blood and activity) and the National Health Interview Survey (for health). There
was one further benchmark question included on the Tracking Survey, a question drawn from
NHANES about physical activity. However, because of different ordering and skip-patterns
of the Activity question in the Tracking survey versus the NHANES survey, that question
turned out not to be usable as a benchmark and is therefore not discussed further.
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The data collected from the Tracking Survey respondents had many missing items (coded
as ‘unknown’), but our descriptive summaries in this report are limited to the post-stratification
and benchmark variables used to compare the effectiveness of weight adjustment. Across
the whole Telephone survey, with 42334 respondents, the counts of missing items were:

AGE HISP REG EDUC RACE TELSTAT ADULTS CPS VOL BLOOD
1693 1080 1903 547 1978 524 972 386 265

SEX and RENT responses were never missing. In addition, the self-reported Health variable
from a survey question similar to that asked in NHANES, showed 57 missing values, but
the question was administered in the Telephone survey only in the 2019 months (which had
a total of 5649 respondents). For each of these variables, the missing items appeared at
approximately the same rate (as a proportion of all respondents) across the 2019 months
and over all of January to June 2020.

In the Web Tracking survey, the data collectors must have imposed as a requirement
for acceptable responses that the poststratifying demographic variables not be missing or
unknown. The Age, Hisp, Reg, Educ and Race responses were never missing or ‘unknown’
in the Web survey, and the counts of household Adults (which we use in poststratifying but
the Team Y& R analysts did not) were missing for just 302 respondents out of a total of 62494.
The rate of missing benchmark responses was not markedly smaller in the Web survey than
in the RDD survey, with 462 missing for CPS VOL and 265 for the NHANES-styled question
about donating Blood.

We tabulated the extent to which multiple demographic variables were simultaneously
missing in the Telephone survey. For the seven variables Age, Hisp, Reg, Race, Educ,

TelStat, and Adults, Table 1 shows the proportions of respondents in each month of data
(monts 9-12 were in 2019, 1-6 were in 2020) with numbers of missing variables 0 to 7. The
Table shows that the proportions in the categories 0:7 were remarkably stable across months,
regardless of the different month numbers sampled (approximately 6000 per month in 2020
months 1-6, 1400 per month in 2019 months 9-12). The proportion of respondents with
at least one missing demographic variable (equal to 1 minus the entry in the first row of
Table 1) ranged from 0.124 to 0.151.

Some re-coding of basic demographic variables was done in the Tracking surveys, sepa-
rately for the respondents in the RDD and Web samples, to reduce detailed ordinal variables
(such as Age, Household Size, Educ (educational level) to categorical variables with a
small number of levels. Thus, ages in the range 18 to 97+ were converted to AgeGp5 inter-
vals 18-24, 25-34, 35-44, 45-64, 65-97; 12 Educational levels were reduced to 3: High school
or less, some college, and BA+; and household sizes ranging from 1 to 8 were truncated
at 4. The number of adults in the household, which was used in base-weighting the RDD
survey, was also capped at 4. While missing HH Size and missing Adults could each occur
without the other, by definition Adults was taken to be 1 when HH Size was 1. As a result

22



Table 1: Monthly proportions of RDD survey respondents with numbers 0-7 of missing
demographic variables (out of 7). Column for each month sums to 1.

Months
missing 1 2 3 4 5 6 9 10 11 12

0 0.864 0.858 0.876 0.863 0.875 0.869 0.876 0.876 0.863 0.849
1 0.094 0.104 0.094 0.096 0.093 0.089 0.082 0.092 0.091 0.107
2 0.024 0.022 0.017 0.021 0.019 0.024 0.031 0.018 0.026 0.025
3 0.008 0.008 0.006 0.008 0.006 0.008 0.005 0.006 0.014 0.006
4 0.004 0.003 0.002 0.004 0.002 0.002 0.001 0.005 0.004 0.003
5 0.003 0.003 0.002 0.002 0.001 0.002 0.003 0.001 0.002 0.005
6 0.002 0.002 0.002 0.005 0.003 0.004 0.001 0.001 0.001 0.004
7 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.001

of the re-coding summarized in this paragraph, all survey variables were categorical, and
the generalized-raking operations were done (separately for RDD and Web data) on design
matrices X =

(
Xi,k

)
consisting of an initial column of 1’s followed by the dummy columns

(one fewer than the number of levels) for the post-stratification variables.

The generalized-raking weight adjustment in (17) required further recoding. Item nonre-
sponse was initially coded in the raw data as ‘unknown’ category levels, usually 98, 99. The
unknowns were first changed to ‘missing’ (NA); then the categorical values were written out
as multiple dummy-variable columns (the columns that will later become (Xi,k, i ∈ R) of the
design matrices with rows Xi), all dummy-entries of which were stored as NA whenever the
corresponding categorical variable (from which dummy-column k was derived) was missing.
Finally, all the missing elements Xi,k were replaced by respondent averages

X̄k =
∑
j∈R

I[Xj,k 6=NA] w
o
i Xj,k

/ ∑
j∈R

I[Xj,k 6=NA] w
o
i

where woi are Base-weights in the RDD and Uniform (woi all equal) in the Web survey.

6.2 Base-weighting & Poststratification in RDD & Web Surveys

The steps for base-weighting and poststratification weight adjustment in the Tracking sur-
veys were described in Sections 3, 4, and 4.4. These are largely standard except for the
treatment of missing poststratification variables in respondent data. The contractor Y&R
used standard formulas for base- and poststratification-weighting (raking) after first filling in
missing respondent data by a randomized hotdeck procedure using the R package hotdeck.
As explained further below, we (the Census Bureau analysis team) rejected that approach
for three reasons. First, at least in the smaller monthly samples, randomized hot-deck im-
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putation injects a marked degree of randomness into the base-weights and final weights.
Second, the use of complete-data formulas following imputation makes every formula for
base-weighting and raking depend on a joint imputation model filling in all data, while our
method of Sections 4–5 depends only on filling in the variable needed for one balance equa-
tion index k at a time in (17). A third reason is that our single-variable imputations could be
done by mass-imputation based on known national categorical proportions, while the joint
imputation models (of hotdeck and other available packages like MICE) are generated only
from observed data and are noisy and unvalidated. Model-based imputation methods might
be better if respondent samples are large and can take account of interactions expressing local
geographic patterns of missing data, but even then a routine approach to model-development
is likely to lead to noisy and unreliable model specification.

For the RDD survey, we implemented the dual-frame approach of Buskirk and Best
(2012) in the case of missing Adults or TelStatus data in Steps 1◦− 5◦ of Section 3. Team
Y&R had filled in these missing data by randomized hot-deck imputation before applying
the complete-data base-weighting formulas of Buskirk and Best (2012). In the Web Survey,
which involved self-selection in response to a general unweighted list of invitations to supply
data, there was no probability design and thus no base-weighting, so that woi are all chosen
equal to the reciprocal of the number of respondents in each survey time-block (that is, in
each month of 2019, and in the set of all months of 2020 lumped together).

After estimating base-weights in the RDD survey for each survey time-block, we compute
in the RDD survey the post-stratified adjusted weights with respect to the target ACS
variables, ten variables AGE6xSex, EDU3xSEX, REG, ED3xAGE5, EDU2xWNH, AGE2xWNH, RENT,
POPDENSITY, TELSTAT, ADULTS for the RDD survey, and the same set without TELSTAT was
used to post-stratify the Web Survey. We poststratified a few different ways within the
generalized raking framework of Sections 4.3 and 4.4, using G = Glin, Grak, and another
‘logistic’ choice that enforces pre-chosen bounds on weights. All these produced similar
adjusted weights. Because a few adjusted weights with linear calibration (Glin) were negative,
and those done by raking (Grak) were nicely bounded without any further intervention (such
as weight-trimming) or modification of G), we present only the raking results in exhibits,
and these are the weights we used in developing survey estimates and their standard errors.

Note that all base-weights and adjusted weights in the descriptions that follow are nor-
malized to have average 1 within each survey time-block within both the RDD and Web
Surveys. Table 2 displays summary statistics for the distribution of RDD Base-weights
across the five Tracking Survey time-blocks. These weights draw meaningful differences be-
tween the probabilities of selecting different households, but with a factor of no more than
about 15 from smallest to largest in each time-block, the difference is not concerningly large.
The spread is roughly as large as for the base-weights constructed by Team Y&R, using
randomized hot-deck imputation to correct for missing Adult and TelStat.

The distribution of these base-weights across different survey time-blocks is quite stable.
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Table 2: Base Weights in the RDD Tracking Survey within each survey time-block, normal-
ized to average 1, summarized through overall range and interquartile range.

Sep2019 Oct2019 Nov2019 Dec2019 Yr2020
Min 0.558 0.558 0.561 0.561 0.564

1st Qu 0.763 0.764 0.765 0.764 0.766
Median 1.204 1.104 1.200 1.197 1.191
3rd Qu 1.204 1.211 1.200 1.197 1.191

Max 8.316 8.283 5.275 5.279 8.583

The apparent anomaly of some maximum base-weights being particularly small is not so
concerning when we note that the respective numbers of survey base-weights greater than 5
in the five survey time-blocks are respectively 2, 1, 1, 1, 8 and that the number of respondents
in the Yr2020 time-block is roughly 26 times the number in each of the 2019 months.

One way to assess the spread of base-weights and the movement from base-weights to
adjusted weights is through the subject-level ratios of those weights. These are shown by
survey time-block in Table 3, both for the RDD and the Web surveys. The distributions
look rather stable across survey time-block and even across RDD and Web. In this Table,
the slightly concerning feature may be the very small size of the smallest weight-ratios in the
first three months of the RDD survey. There may be a real difference between the smallest
weights obtained by raking in those months as compared with Dec2019 and Yr2020, but it is
not large, because the numbers of respondents with adjusted weights < 0.06 are respectively
5, 5, 6, 0, 0 in the RDD survey and 0, 3, 0, 0, 0 in the Web survey. Another similar table (not
shown here) of the distributions across survey time-blocks of the adjusted weights in the RDD
survey (without dividing by base-weights) actually has less spead than the upper portion of
Table 3, with respective maximum values 6.319, 7.239, 6.042, 5.490, 7.690.

The ratio of maximum to minimum adjusted weights within each survey time-block are
definitely larger for our adjusted weights raked as in Section 4.4 than for the Team Y&R
weights. The differences between these sets of adjusted weights is illustrated for the Nov. 2019
time-block of the RDD Survey in the scatterplot of Figure 1. In this month as in the other
time-blocks, for both surveys, the adjusted weights computed by Y&R are on one hand
more scattered than ours, due to the hot-deck imputations that preceded the Y&R raking
steps. On the other hand, the Y&R final weights are then compressed by weight-trimming
both above and below. The Y&R weights for the five time-blocks in the RDD survey are
trimmed below with lower limit in a range [0.18, 0.23] for 2019 months and [0.12, 0.15] for
2020 months, and are trimmed above with upper limit in a range [3.6, 4.7] in 2019 months
and [4.2, 4.9] for 2020 months.

In any case, it is completely clear from Table 3 that very substantial weight adjustments
are required to calibrate the Telephone and Web Tracking Surveys to the target proportions
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Figure 1: Scatterplot of adjusted weights for subjects in Nov. 2019 RDD Tracking Survey,
as computed by the methods of this paper (mean imputation, no weight-trimming) versus
those of Team Y&R. Note that the horizontally placed weights have been trimmed both on
the right and left.
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Table 3: Ratios of Adjusted over Base Weights in the RDD and Web Tracking Surveys within
each survey time-block, summarized through overall range and interquartile range.

RDD Sep2019 Oct2019 Nov2019 Dec2019 Yr2020
Min 0.000 0.000 0.000 0.089 0.075

1st Qu 0.566 0.517 0.570 0.511 0.581
3rd Qu 1.291 1.260 1.287 1.320 1.333

Max 5.247 8.264 7.109 9.754 9.188

Web Sep2019 Oct2019 Nov2019 Dec2019 Yr2020
Min 0.100 0.042 0.148 0.158 0.089

1st Qu 0.590 0.626 0.583 0.602 0.593
3rd Qu 1.237 1.154 1.230 1.236 1.244

Max 5.293 8.568 6.442 8.071 6.357

used here for 9 or 10 ACS survey variables. Another way to confirm this is through the
descriptive statistics of average changes in respondent weights contained in Table 4. This
is only to be expected due to the self-selection of respondents in very low-response surveys,
whether those surveys have a probability sampling design like the Tracking RDD Survey or
reflect acceptance of an invitation to participate in a Web Survey where the composition of
the invited population is unknown. Therefore the classic theory of Deville and Särndal (1992)
for large-sample distributional behavior of post-calibration survey-weighted estimators does
not apply, and the newer theoretical developments of Section 5 are needed.

Table 4: Average absolute weight changes ∆ by respondent, and fraction of respondents with
small weight changes (approximately 1/2 the mean), from Base to Final adjusted weights, in
RDD and Web Tracking Survey within each survey time-block. Both Base and Final weights
within each survey are normalized to have average value 1.

Survey Sep2019 Oct2019 Nov2019 Dec2019 Yr2020
mean(abs(∆)) RDD 0.499 0.573 0.502 0.548 0.482

Web 0.427 0.436 0.441 0.427 0.430
frac(|∆| < 0.2) RDD 0.268 0.240 0.273 0.229 0.271

Web 0.270 0.320 0.259 0.288 0.295

Remark 6 For linear calibration as in Section 4.3, based on nonsingular matrix inversion,
redundant columns are removed from the design matrix. The need for this arises because
several of the paststratification variables cross-classify pairs of variables with common un-
derlying categorical variables (specifically AGE, EDUC3, SEX and indicator of White-alone
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non-Hispanic). Thus, even in the presence of missing data certain columns are redundant.
Removing redundant columns also makes sense for generalized raking: after this step, all the
quasi-Newton numerical maximization steps can be based on matrix inversion rather than
generalized inverses or methods based on more careful singular value decomposition. 2

Remark 7 Section 4.5 mentioned the verification for the Tracking telephone survey data
that the anesrake IPF-style raking with update steps (10) differs algebraically from calibration-
style raking (17). We did this in two ways: by direct comparison of IPF-style and calibration-
style raked weights, and also by comparing the IPF-style raked weights calculated with the 3
categorical marginal variables (AGE×SEX, Race, NHWA) entered in their 6 possible orderings.
(Here NHWA is the indicator variable for Non-Hispanic persons self-identifying their race as
White alone.) The results were that, across the 1412 respondent records, the mean absolute
difference between the IPF-style raked weights (with variables entered in any order) and the
calibration-style raked weights were approximately 0.03, while the mean absolute differences
between the IPF-style raked weights computed via (10) with variables entered in different or-
ders ranged from 0.001 to 0.003. These calculations show that the ordering of variables in the
successive raking passes of (10) cannot be completely ignored but may not be important for
most purposes unless there is a high rate of item missingness. There were very few entries
(18 total) in which the anesrake weights based on differently ordered marginal totals were
in fact different, and all of these occurred in units with at least one missing item. 2

6.3 Metrics of Successful Weight-Adjustment

A preliminary assessment of the quality of the adjusted survey data from the two Tracking
Surveys is based on the level of agreement achieved after poststratification between survey-
weighted estimates of population proportions of demographic and benchmark outcomes with
their targets obtained from high-quality national surveys. The estimated proportions are
compared with the targets, with the discrepancies standardized by estimated standard errors
of the survey estimates. This was the methodology used by Yeager et al. (2011) and MacInnes
et al. (2018) in their comparative studies of the quality of RDD probability surveys and
of Web surveys. We follow the same basic methodology here. A fuller account of the
same methodology applied to more questions from the Tracking Surveys can be found in
Ellis et al. (2022a,b). In this Section, we restrict attention to the following subset of 7
demographic and benchmark outcome proportions: Age 18-34, Age 45-64, WA.Hsp, BA,
HH1:2Rent, HH3+Own, CPS Vol.Y. (Here WA denotes White Alone, BA Black Alone, Hsp
Hispanic, and HH1:2Rent denotes Renter households of size up to 2, while HH3+Own denotes
Owner households of size 3 or more.) The target values for these 7 outcome proportions,
drawn from the 2019 Population Estimates or ACS, are as follows:

Age18:34 Age45:64 WA.Hsp BA HH1:2RENT HH3+OWN VOL.Y
0.298 0.327 0.146 0.130 0.236 0.251 0.278
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Of these outcomes, the age-categories were poststratification variables, the WA.Hsp and
HHsize x Rent categories are pairwise interactions of categories exactly or roughly used
in poststratification (since number of Adults and not HH-size was the poststratification vari-
able used), and and BA and volunteering activity as measured in CPS were not used in
poststratification. All these outcome variables have national target proportions available
from 2019 single-year ACS figures. (Other simple pairwise interaction variables, such as
HHsize x SEX, are apparently not available from published ACS tables although they could
be estimated from ACS public-use microdata.)

Table 5 displays the survey-weighted estimates of the 7 outcome variables at the un-
weighted, base-weighted, and poststratified stages of weighting, for the RDD and Web sur-
veys, by survey time-block. Then Table 6 shows, for each outcome variable and survey
time-block in the RDD and Web surveys, the final weighted survey estimate after raking to-
gether with its estimated standard errors (SE), the discrepancies between the final weighted
estimate and its target, and finally the ratio of this discrepancy over the SE. This last stan-
dardized ratio is like a Wald statistic to determine whether the discrepancy is large: the
p-value associated with this standardized ratio referred to a standard normal distribution
would be the p-value for a hypothesis test that the discrepancy is large. In Table 6, the
threshold absolute value for this standardized ratio is chosen as 3 because so many different
estimated outcomes are being scrutinized.

The upshot of the comparisons in Table 5 is first of all that all weighted estimates are
extremely stable across survey time-blocks, that the outcome estimates made unweighted or
with base weights are hardly different (although we saw in Table 2 that there is consider-
able variability in the Base-weights), that the outcome variables involving poststratification
variables are better estimated by the Raked weights than the uniform (all equal) or the
Base weights, and that our Raked weights (computed without weight-trimming and with
single-variable mass imputation rather than hot-deck imputation) are generally closer to the
targets than the Y&R adjusted weights. The Raked-weight estimates for the Age outcomes
in the RDD survey are particularly close to the targets, with particularly small SEs shown in
Table 6, because Age was a raking variable and it had very little missing data. For Age and
a few other variables in Table 6 closely related to poststratification variables, SEs were very
small because there was no missing data among the Web Survey’s raking variables except
for a few missing Adults responses.

It is striking how far some of the final raked estimates can be from their targets. For exam-
ple the WA.Hsp population proportion estimated in the RDD survey is about half the target
proportion, and the Vol.Y benchmark proportion is very poorly estimated in both the RDD
and Web surveys. No doubt, these large discrepancies are ultimately due to the very differ-
ent compositions of the RDD and Web unweighted respondents and the marked difference
of those self-selected populations from the national population. The unweighted-population
characteristics for the outcome-variables Age18:34, WA.Hsp, HH1:2Rent and Vol.Y are very
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Table 5: Estimates of each of 7 outcome variable proportions for each survey time-block, at
various stages of weighting for each of the two Tracking Surveys.

Time Telephone Target Web Variable
Unwt Base Raked YR.fnl Unwt Raked YR.fnl

Sep2019 0.196 0.229 0.278 0.282 0.298 0.303 0.290 0.301 Age18:34
Oct2019 0.170 0.193 0.275 0.291 0.303 0.290 0.303
Nov2019 0.192 0.219 0.275 0.284 0.313 0.290 0.303
Dec2019 0.192 0.216 0.277 0.286 0.292 0.290 0.300

Yr2020 0.196 0.218 0.278 0.285 0.305 0.290 0.304
Sep2019 0.354 0.349 0.318 0.330 0.327 0.341 0.331 0.342 Age45:64
Oct2019 0.340 0.342 0.314 0.330 0.341 0.331 0.341
Nov2019 0.334 0.337 0.314 0.327 0.333 0.331 0.342
Dec2019 0.338 0.340 0.316 0.326 0.337 0.331 0.342

Yr2020 0.337 0.338 0.317 0.329 0.325 0.331 0.339
Sep2019 0.052 0.055 0.072 0.060 0.146 0.100 0.083 0.083 WA.Hsp
Oct2019 0.044 0.049 0.079 0.062 0.086 0.075 0.075
Nov2019 0.051 0.057 0.070 0.054 0.076 0.072 0.075
Dec2019 0.057 0.063 0.086 0.079 0.083 0.075 0.075

Yr2020 0.055 0.059 0.073 0.063 0.096 0.083 0.084
Sep2019 0.077 0.075 0.112 0.085 0.130 0.131 0.123 0.120 BA
Oct2019 0.063 0.063 0.102 0.085 0.129 0.137 0.130
Nov2019 0.081 0.082 0.116 0.081 0.131 0.146 0.134
Dec2019 0.074 0.070 0.120 0.081 0.134 0.138 0.133

Yr2020 0.093 0.092 0.120 0.091 0.109 0.117 0.105
Sep2019 0.147 0.155 0.194 0.156 0.236 0.220 0.209 0.195 HH1:2Rent
Oct2019 0.143 0.151 0.202 0.162 0.202 0.217 0.207
Nov2019 0.149 0.159 0.195 0.157 0.202 0.211 0.186
Dec2019 0.148 0.153 0.212 0.165 0.199 0.206 0.183

Yr2020 0.161 0.169 0.204 0.161 0.188 0.213 0.191
Sep2019 0.301 0.317 0.276 0.346 0.251 0.267 0.259 0.287 HH3+Own
Oct2019 0.316 0.328 0.279 0.367 0.301 0.266 0.297
Nov2019 0.304 0.314 0.264 0.338 0.277 0.278 0.316
Dec2019 0.311 0.323 0.259 0.339 0.289 0.290 0.318

Yr2020 0.307 0.318 0.262 0.348 0.308 0.273 0.313
Sep2019 0.439 0.430 0.383 0.390 0.278 0.339 0.350 0.344 Vol.Y
Oct2019 0.447 0.445 0.402 0.390 0.314 0.315 0.316
Nov2019 0.435 0.433 0.415 0.419 0.336 0.348 0.345
Dec2019 0.446 0.445 0.402 0.404 0.339 0.352 0.350

Yr2020 0.418 0.410 0.380 0.380 0.352 0.359 0.354
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different from the Web to the RDD respondent populations and from both to the ACS tar-
get. Nothing guarantees that generalized-raking weight-adjustment will make the respondent
population in a low-response-rate survey resemble the national population.

These remarks about the measurement of difference between adjusted-weight survey es-
timates and their targets are reinforced in Table 6. Perhaps the most interesting additional
conclusion from that table is how similar from RDD to the Web survey is the pattern of
significant differences between estimates and targets. This finding is surprising in light of the
previous comparisons by Yeager et al. (2011) and MacInnes et al. (2018), generally in favor
of the superior quality of RDD surveys. The failure to distinguish the quality of estimates
between the two Tracking Surveys may reflect problems with RDD data quality highlighted
in the reports of Ellis et al. (2022a,b), and may in particular be due to the data collectors
ensuring that poststratification variables had almost no missing data in the Web survey while
10-15% of RDD subjects had missing data among these variables.

A more detailed measurement of weight-adjustment quality requires a different metric.
Table 6 already showed that variables successfully estimated close to their national targets
by poststratification may in their pairwise interactions be quite poorly adjusted. (For exam-
ple, in the Web Survey HHsize and Renter proportions are nearly perfectly adjusted to their
national targets by the raked adjustment, but HH1:2Rent is consistently off by a few percent-
age points.) Taking this idea further, we could cross-classify several demographic/geographic
poststratifying variables and define as an alternative metric of adjustment quality between
two different sets of weights the mean of absolute differences of their cell-by-cell weighted es-
timates.The quality of adjustment of a single set of weights to national targets could similarly
be measured by the cell-wise sum of absolute discrepancies. An obstacle to implementing
the latter metric of adherence to targets is that it is not easy to find multiply cross-classified
characteristics reliably estimated in national statistics. The Census Bureau’s Population
Estimates are one such public source, a yearly national tabulation updating the decen-
nial census. The file SC-EST2019-ALLDATA5.csv (Population Division 2020) was our source
for 2019 national cross-classified proportions, aggregated to 5-group AgeGp5, 4-group Race

(White Alone, Black Alone, Asian Alone, and Other), 4-Division Region (with categories
grouping states into Northeast, Midwest, South, and West), SEX (M,F), and Hisp (Yes, No).
The resulting 5-way table partitions the adult US 2019 population of 255,200,373 into 320
cells, and after dividing all cell counts by the total we treat it as a 5-way table of population
proportions summing to 1.

The degree of cross-classification that makes sense in assessing agreement between survey
and target proportions derived from multiple categorical variables depends on the sample size
and extent of missing or unknown items. Therefore, we compare our adjusted weights and
targets at a sequence of orders of cross-classification. For each order k of cross-classification,
from 1 up to a maximum number K of variables for which cross-classified national data exist
(here, K = 5), we compute for each set of k variables the sum of absolute cross-classified
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Table 6: For 7 outcomes and 5 survey time-blocks, column of entries: estimated proportion with
raked weights, SE, discrepancy from target, and absolute discrepancy over SE (bolded when > 3)

Survey Time [18,34] [45,64] WA.Hsp BA HH1:2Rent HH3+Own Vol.Y

RDD 09/19 0.278 0.318 0.072 0.112 0.194 0.276 0.383
0.004 0.000 0.009 0.010 0.009 0.010 0.013

-0.020 -0.009 -0.073 -0.018 -0.042 0.025 0.105
5.081 * 8.245 1.804 4.711 2.540 7.845

10/19 0.275 0.314 0.079 0.102 0.202 0.279 0.402
0.020 0.017 0.011 0.013 0.016 0.017 0.018

-0.024 -0.013 -0.067 -0.028 -0.034 0.028 0.124
1.204 0.761 5.804 2.128 2.097 1.641 6.888

11/19 0.275 0.314 0.070 0.116 0.195 0.264 0.415
0.018 0.017 0.009 0.015 0.015 0.015 0.018

-0.023 -0.013 -0.075 -0.014 -0.041 0.013 0.137
1.300 0.748 8.034 0.946 2.700 0.924 7.762

12/19 0.277 0.316 0.086 0.120 0.212 0.259 0.402
0.018 0.017 0.012 0.015 0.016 0.015 0.017

-0.022 -0.011 -0.060 -0.010 -0.024 0.008 0.124
1.185 0.620 5.069 0.650 1.486 0.504 7.133

2020 0.278 0.317 0.073 0.120 0.204 0.262 0.380
0.004 0.003 0.002 0.003 0.003 0.003 0.003

-0.021 -0.010 -0.072 -0.010 -0.032 0.011 0.102
5.893 2.865 34.68 3.640 10.62 3.693 30.33

Web 09/19 0.290 0.331 0.083 0.123 0.209 0.259 0.350
0.003 0.000 0.006 0.006 0.006 0.008 0.011

-0.008 0.004 -0.063 -0.006 -0.027 0.008 0.072
3.350 * 10.87 0.999 4.626 1.061 6.564

10/19 0.290 0.331 0.075 0.137 0.217 0.266 0.315
0.013 0.013 0.008 0.010 0.012 0.013 0.013

-0.008 0.004 -0.070 0.007 -0.019 0.015 0.037
0.654 0.351 9.324 0.750 1.613 1.205 2.811

11/19 0.290 0.331 0.072 0.146 0.211 0.278 0.348
0.012 0.013 0.007 0.010 0.011 0.012 0.013

-0.008 0.004 -0.073 0.016 -0.025 0.027 0.070
0.678 0.359 10.75 1.689 2.197 2.266 5.209

12/19 0.290 0.331 0.075 0.138 0.206 0.290 0.352
0.012 0.013 0.006 0.010 0.011 0.012 0.013
0.008 0.004 -0.070 0.008 -0.030 0.039 0.074
0.677 0.358 10.85 0.870 2.723 3.263 5.669

2020 0.290 0.331 0.083 0.117 0.213 0.273 0.359
0.002 0.003 0.001 0.002 0.002 0.002 0.003
0.008 0.004 -0.063 -0.013 -0.023 0.022 0.081
3.426 1.726 43.60 7.086 9.919 9.480 30.32
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Table 7: Tabulated sum of absolute cellwise differences between RDD survey-weighted esti-
mates and Pop-Estimate targets, by weighting-stage, survey time-block, and order of cross-
classification. The five variables used in these cross-classifications were: AgeGp5, (4-category)
Race, Region, Hisp, and Sex. The four weighting-stage results are shown in a column of 4
for each time-block and order of cross-classification.

Weight Order 1 2 3 4 5
Sep2019 Unwt 0.129 0.208 0.288 0.383 0.495

Baswt 0.115 0.188 0.259 0.356 0.469
Raked 0.057 0.114 0.181 0.288 0.437

Y&Rwt 0.062 0.113 0.189 0.297 0.428
Oct2019 Unwt 0.160 0.260 0.357 0.461 0.587

Baswt 0.147 0.239 0.323 0.425 0.556
Raked 0.064 0.130 0.202 0.311 0.462

Y&Rwt 0.061 0.119 0.205 0.329 0.487
Nov2019 Unwt 0.130 0.224 0.308 0.409 0.526

Baswt 0.116 0.198 0.273 0.370 0.492
Raked 0.059 0.125 0.201 0.302 0.446

Y&Rwt 0.070 0.133 0.214 0.328 0.473
Dec2019 Unwt 0.151 0.250 0.334 0.431 0.542

Baswt 0.139 0.233 0.311 0.403 0.520
Raked 0.055 0.119 0.198 0.306 0.449

Y&Rwt 0.051 0.112 0.186 0.283 0.416
Yr2020 Unwt 0.112 0.189 0.261 0.336 0.409

Baswt 0.104 0.170 0.232 0.299 0.370
Raked 0.049 0.098 0.147 0.196 0.254

Y&Rwt 0.049 0.096 0.147 0.208 0.277

cellwise differences between survey-estimated and/or target proportions. (In calculating this
sum, survey data with missing variables are omitted, so that the cellwise survey proportions
are defined by summing the weights for all survey subjects with the non-missing levels of
survey data for the cross-classified variables and dividing by the total of weights for survey
subjects with non-missing data for those variables.) We report for each k from 1 to K = 5 the
average of these summed-absolute-deviation metrics over all sets of k cross-classifiying vari-
ables. Table 7 shows these discrepancy metrics between survey weights and Pop-Estimates
targets, by survey time-block, for Unweighted, Base-Weighted, Raked, and Y&R-adjusted
RDD survey data. The corresponding Table for the Web survey looked similar, and so is not
shown.
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Table 8: Tabulated sum of absolute cellwise differences between survey-weighted estimates
and Pop-Estimate targets averaged over all 3-way cross-classifications of 5 variables, dis-
played by survey time-block and weighting-stage, for both the RDD and Web surveys.

RDD Web
Unwt Baswt Raked Y&Rwt Unwt Raked Y&Rwt

Sep2019 0.288 0.259 0.181 0.189 0.251 0.217 0.219
Oct2019 0.357 0.323 0.202 0.205 0.252 0.212 0.220
Nov2019 0.308 0.273 0.201 0.214 0.197 0.185 0.177
Dec2019 0.334 0.311 0.198 0.186 0.205 0.195 0.191

Yr2020 0.261 0.232 0.147 0.147 0.202 0.159 0.158

The summed absolute deviation metric here is a categorical version of total variation

distance between two probability measures. Unsurprisingly, this metric is larger for very
detailed (4- and 5-way) cross-classifications, and it is remarkably high at orders 4 and 5, even
after raking. It is generally but not perfectly consistent across months for the same level of
survey weighting. In Table 7, at each order of cross-classification, the survey weights ranked
from highest to lowest metric value are usually in the order Unwt, Baswt, Y&Rwt, and Raked.
By this metric, as in Table 6, our Raking often but not always outperforms the Y&R raking
with randomized hotdeck imputation and weight-trimming.

Table 8 displays the differences in these summed-absolute-difference metrics month-to-
month and between the RDD and Web surveys, restricting attention only to the 3-way
cross-classifications. (The RDD portion of Table 8 was already displayed in the Order-3
column of Table 7.) By this measure, our raking and the Y&R raking are about equally
good. But in this table, the distance between the 3-way cross-classified unweighted RDD-
survey is seen to be definitely farther from the national targets than was the Web-survey
population. This is yet another way in which the populations accessed by the data-collectors
favored the Web survey by comparison with the RDD.

6.4 Comparison among SE estimators at the final weighting stage

The standard errors in Table 6 are obtained as described in Section 6, the theory for which
is developed rigorously only for the case where the base-weights are regarded as fixed and
given, where the poststratification variables are never missing for survey respondents, and
(A.4) holds for the true survey weights. Throughout our discussion, supported by Remark 5
in Section 5.1, we assume that unequally-weighted Poisson sampling adequately describes the
RDD and Web data-collection. We display in Table 9 the differences between SE estimates
done at the three different levels of sophistication discussed in Section 6, the highest of which
has informed the values computed for Table 6. The simplest version, formula (18) treats the
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final (raked) weights wi as though they were given and known, and does not take into account
the data-dependent aspects of base-weighting or raking. The next, more reasonable, variance
formula is (19), computed using a weighted-least-squares set of GREG model estimates with
the (uniform or) base-weights woi . The most general variance formula again has the form
(19), but now with GREG coefficients computed using the adjusted weights ŵi from (17),
and with ŵi replacing woi . As suggested in Section 5.1, the first of these three SEs is generally
larger than the second because the second takes into account the raking weight adjustment.
This is especially noticeable for the variables closely related to raking variables (Age, and the
HHsize by Rent interaction), less so for other variables. The other general statement from
Section 5.1 confirmed in Table 9 is that the third SE estimate that takes into account the
large change from base to final weights (i.e., that relies on the correctness of (A.4) rather
than the correctness of the base-weights woi ) is larger than the estimates (19). The third
SE estimate is hardly larger than the second for some of the outcome variables (WA.Hsp,
BA, HH1:2Rent, HH3+Own) but the excess is often greater for the other variables, although
for unexplained reasons the difference between the second and third SE estimates varies
noticeably across month and from the RDD to the Web survey.

7 Summary & Conclusions

Many of the answers to questions asked in sample surveys are strongly conditioned on demo-
graphics. Therefore, surveys whose respondent populations have major demographic cate-
gories appearing in markedly different proportions than the national population are adjusted
to make these differences disappear. These adjustments, generically called post-stratification,
are usually made via cell-based ratios or by some form of (generalized) raking (Valliant et
al. 2018). However, for reasons of simplicity and numerical feasibility, the adjustments are
usually based on control totals of important categorical demographic variables singly or in
cross-classified pairs. Since many survey outcome variables measuring social characteristics
or attitudes are strongly predicted by single demographic categories or pairs of them, these
outcome variables as measured by surveys align better with reliable national measurements
after poststratification than before. However, many other survey outcome variables do not
align so predictably with marginal demographics, and these outcome variables – that may
have received responses from particular respondent populations that are very unrepresenta-
tive of the national target population – may not align better with the national population
after poststratification. These remarks apply equally well to surveys conducted with proba-
bility samples as to nonprobability web samples and are especially relevant to surveys with
extremely low response rates (e.g., rates of 10% or less), like the Tracking Surveys.

There is nevertheless a large body of social-science and survey-measurement research
that shows well-designed poststratified probability surveys achieving fairly good agreement
on non-demographic benchmark survey questions (such as whether an individual holds a
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Table 9: For each of 7 outcomes and 5 survey time-blocks, column of 3 differently calculated
SEs for survey-weighted estimates for Poisson sampling with final raked weights. First is
the naive SE (18) treating final weights as though known; the 2nd is the large-sample form
(19) treating base-weights woi are essentially correct, but accounting for calibration; and 3rd
is the variance (19) under (A.4), with woi replaced by ŵoi .

Survey Time [18,34] [45,64] WA.Hsp BA HH1:2Rent HH3+Own Vol.Y
RDD 09/19 0.0149 0.0155 0.0087 0.0107 0.0129 0.0147 0.0158

0.0038 0.0000 0.0087 0.0097 0.0087 0.0098 0.0134
0.0040 0.0000 0.0089 0.0098 0.0089 0.0099 0.0134

10/19 0.0164 0.0170 0.0099 0.0111 0.0142 0.0160 0.0173
0.0136 0.0154 0.0067 0.0078 0.0112 0.0149 0.0157
0.0197 0.0169 0.0115 0.0131 0.0160 0.0168 0.0180

11/19 0.0154 0.0159 0.0088 0.0111 0.0131 0.0148 0.0163
0.0140 0.0152 0.0080 0.0091 0.0118 0.0144 0.0158
0.0180 0.0168 0.0094 0.0148 0.0153 0.0145 0.0176

12/19 0.0155 0.0161 0.098 0.0115 0.0137 0.0151 0.0165
0.0137 0.0153 0.0084 0.0085 0.0114 0.0149 0.0157
0.0183 0.0172 0.0118 0.0148 0.0159 0.0153 0.0174

2020 0.0029 0.0030 0.0017 0.0021 0.0025 0.0028 0.0030
0.0027 0.0030 0.0015 0.0019 0.0023 0.0029 0.0030
0.0035 0.0033 0.0021 0.0026 0.0030 0.0031 0.0034

Web 09/19 0.0114 0.0119 0.0069 0.0083 0.0103 0.0110 0.0121
0.0030 0.0000 0.0062 0.0066 0.0060 0.0076 0.0108
0.0025 0.0000 0.0058 0.0064 0.0058 0.0076 0.0110

10/19 0.0125 0.0130 0.0073 0.0095 0.0114 0.0122 0.0129
0.0104 0.0111 0.0068 0.0079 0.0098 0.0111 0.0112
0.0129 0.0128 0.0075 0.0099 0.0119 0.0127 0.0133

11/19 0.0116 0.0121 0.0066 0.0091 0.0105 0.0115 0.0123
0.0110 0.0112 0.0065 0.0080 0.0097 0.0107 0.0115
0.0124 0.0125 0.0068 0.0096 0.0112 0.0121 0.0134

12/19 0.0116 0.0120 0.0067 0.0088 0.0103 0.0116 0.0123
0.0107 0.0111 0.0065 0.0082 0.0098 0.0107 0.0114
0.0125 0.0126 0.0065 0.0096 0.0110 0.0121 0.0130

2020 0.0023 0.0023 0.0014 0.0016 0.0020 0.0022 0.0024
0.0022 0.0022 0.0014 0.0015 0.0019 0.0022 0.0023
0.0025 0.0026 0.0014 0.0018 0.0023 0.0024 0.0027
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passport, or self-reports being in very good health, or many others) with the national pro-
portions of categorical responses seen on those same questions in reliable national high-
response-rate surveys (Yeager et al. 2011, MacInnes et al. 2018). That research has also
tended to conclude that the agreement on such benchmarks after adjustment with national
targets is worse with nonproprobability surveys than with well-designed probability surveys.
Despite that research, there is no general methodological basis for assurance that unrep-
resentative respondent populations can be adjusted, by post-stratification or other means,
to give useful information about survey responses that depend in complicated ways on the
interaction between demographic and geographic categories and unmeasured variables.

One possible reason why low-response surveys, including political polls and other widely
cited surveys of public attitudes, may fail to achieve representative results is that the self-
selection of respondents depends importantly on high-order (at least 3-way) interactions
among demographic categories. These interactions may remain important even in the pres-
ence of information about group affiliations (party, church, single-issue advocacy groups)
and past voting. Yet many academic survey practitioners cite recent literature (e.g., Kreuter
et al. 2010) to argue that low-response surveys may nevertheless have low bias, because of
that paper’s persuasive argument that it is difficult to find single survey variables that are
simultaneously predictive of response and survey outcome variables. We ignore at our peril
the predictive value of multiway interactions of demographic/geographic variables (often
used in stratification), even though single cells of multiway contingency tables defined from
these variables contain small population proportions. Benchmark variable categories should
therefore be selected to cut across standard demographic categories, and possibly to combine
pockets of the population exhibiting complex demographic interactions.

In Section 6 on data results from the Tracking Survey, we have considered several ways
of assessing of survey weight-adjustment when the magnitude of adjustments is large, using
survey outcome variables (benchmark variables) or variable combinations (cross-classified
demographic/geographic variables) not used in poststratification. Theoretical results devel-
oped in the Appendix and interpreted in Section 5 establish under some assumptions the
large-sample approximate normal distribution of survey-weighted estimates using poststrat-
ified weights, results which were not previously available when the base-weights are far from
the adjusted weights. The theory was used to develop valid large-sample variance estimators
in the setting of the Tracking Surveys, where (cf. Remark 5) survey subjects were arguably
sampled independently. The theory applies to the Telephone survey because it was con-
ducted under a probability design. With less plausible reliance on the independent-sampling
and model assumptions, the theory applies also to the Web survey. The survey-outcome
estimates and their estimated standard errors were computed and compared in Section 6 on
the Tracking Survey data. Figures and tables were used to compare the survey estimates
between the RDD and Web surveys and across survey months. Standardized discrepancies
between estimated proportions of benchmark and demographic categories from national tar-
gets were assessed (using the t-tests implicit in Table 6) and compared between RDD and
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Web surveys. In addition, we introduced for both surveys a novel method of assessment
of summed absolute deviations (between adjusted-weight estimates and targets) over cross-
classified multiway tables of higher orders (3, 4 and 5). In the Tracking Survey application,
the estimates and standard errors were fairly stable across months and did not show conclu-
sive superiority of the RDD or Web surveys. However, the Web survey turned out to have
considerably less missing survey-item data than the RDD survey. The companion reports of
Ellis et al. (2022 a,b) study more deeply whether the unexpectedly similar performance of
the RDD and Web estimates in the Tracking Surveys may have been due to ascertainable
lapses in RDD data-quality.

A related issue treated in (Section 4 of) the report is the handling of partially missing
data in survey weight-adjustment. The contractor had developed base and final weights using
randomized hot-deck imputation methods (Team Y&R 2019), while our estimates injected no
new randomness and amounted to mass imputation of the missing-data proportions during
calibration by the national target proportions. In benchmark-variable comparisons, our
estimates based on adjusted weights showed slightly better agreement across RDD and Web
and between these and the national targets than did the estimates based on Team Y&R
adjusted weights. However, the difference in performance was small and did not show up
at all when assessed by the new metric of summed absolute discrepancies over the cells of
multiway cross-classified contingency tables.

This report has emphasized the inherently model-based nature of survey weight-adjustment
in the setting where survey response-rates are low and the magnitude of adjustments is large.
The weights being adjusted are equal in number to the respondents in the survey, more than
1400 in all self-contained time-blocks of the RDD or Web Tracking surveys. Each calibra-
tion method, raking or linear calibration or any of the other generalized raking methods
contemplated by Deville and Särndal, implicitly assumes (as in (A.4)) that the ratio of the
correct weights over the base-weights satisfies a parametric model of very modest dimension
(less than 40) equal to the number of calibration constraints imposed by national-target
constraints for all categorical levels of the poststratification variables. The construction of
weights to satisfy the constraints is mathematically a very under-determined problem solved
in practice by what amounts to a parametric model assumption on weights. This is a chink
in the design-based armor of survey methodologists who advertize their results as not being
model-based.
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Appendix on Design-Based Asymptotic Theory

A Setting and Notation

The general setting for the survey inference problems we consider is a frame population list
U of N units, n units of which are respondents in a designed probability sample drawn from
U . Unit nonrespondents from the larger designed sample are ignored, or else no information
about them is available, and we allow the possibility that the respondent-set R is much
smaller than the set S originally sampled. For purposes of survey inference, we maintain the
fiction that R = S, a fiction that forces us to modify the design base-weights, the original
single-inclusion probabilities πoi = P (i ∈ S), to reflect the response mechanism as part of
the sampling design. It is assumed that the design (base-) weights woi = 1/πoi are available
for all i ∈ R, along with the survey outcomes Yi and covariates Xi for the respondent units.
The covariates Xi are vectors of demographic and other observations on survey respondents,
which may be categorical or numeric, and some of which may be missing for some survey
respondents.

In this setting, the first task is to modify the initial or base weights woi (generally taken
to be identical across i for nonprobability surveys) to reflect known overall proportions for a
set of demographic and geographic variables. The process of modifying these inital weights
to a set wi of final weights is called weight-adjustment , with the goal of enabling estimates
of population averages Ȳ of survey attributes Yi to be calculated from survey-respondents in

the survey-weighted form ˆ̄Y = N−1
∑

i∈R wi Yi. The modifications woi 7→ wi are generally
done with the aid of auxiliary variables (covariates) X i = (Xi,k, k = 1, . . . , p) ∈ Rp+1 to
satisfy exact or approximate calibration constraints

N−1
∑
i∈R

wiXi,k = X̄k for k = 0, . . . , p (20)

where the target population means X̄k are known from external sources, and weights are
scaled in such a way that Xi,0 ≡ X̄0 ≡ 1. We consider various weight-adjustment schemes
of this sort. Although some respondent covariate items Xi,k may realistically be missing, in
this technical Appendix we assume that none of the covariate items Xi,k are missing.

As formulated in Deville and Särndal (1992) and Deville, Särndal and Sautory (1993),
linear calibration, raking and other generalized raking extensions follow the same pattern.
Each is expressed as an optimization problem constrained by (20) in terms of a summed
unit-level metric between wi/w

o
i and 1:

min
w

∑
i∈S

woi G(wi/w
o
i ) subject to

1

N

∑
i∈S

wiXi,k = X̄k ∀ k = 0, . . . , p (21)
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where G(x) is a known smooth function satisfying G(1) = G′(1) = 0, G′′(1) = 1. The most
common choices for G, apart from Glin(x) ≡ (x− 1)2/2 leading to linear calibration, are

Grak(x) = x log(x)−x+1, Glogis(x) =
(1− L)(U − 1)

U − L
{

(x−L) log(
x− L
1− L

)+(U−x) log(
U − x
U − 1

)
}

respectively associated with raking and with a “logistic” form of calibration guaranteed to
yield weight-ratios wi/w

o
i in a fixed interval (L,U) of positive numbers containing 1. Unlike

linear calibration, generalized-raking methods using Grak or Glogis are guaranteed to result
in positive weights. Although G is not always assumed strictly convex, we do assume it.

The constrained optimization problem (21) is equivalently written in terms of Lagrange
multipliers β = (β0, β1, . . . , βp) as the unconstrained minimization of

min
w

{( 1

N

∑
i∈S

woi G(wi/w
o
i ) −

p∑
k=0

βk
( 1

N

∑
i∈S

wiXi,k − X̄k

)}
(21)′

Minimization is equivalent (with unique solution because of convexity of G) to solution of

G′(wi/w
o
i ) =

(
Xβ
)
i
∀ i ,

(
X̄k

)p
k=0

=
1

N
Xtr

(
woi G

′−1
(
(Xβ)i

))
i∈S

(22)

where the n× (p+ 1) design-matrix X is defined by Xi,k = Xi,k for i ∈ S, k = 0, . . . , p, and
n = |S|. Where needed below, the rows of the design-matrix X are denoted by Xi ∈ Rp+1 as
(column) (p+1)-vectors. That is, with woi , Xi,k, and X̄k known in advance, one determines
the column vector β = (β0, . . . , βp) of Lagrange multipliers from the first equation in (17) to
define wi as a function of β and then solving for β in the second equation in (22).

A.1 Assumptions

There are far more sampled responding units (and therefore weights) than covariates, gen-
erally, so the property of weights performing adequately is generally ‘underdetermined’ in
the sense that many systems of N weights could in principle be used with equal success
in reproducing known population totals. In practice, the weights in generalized raking are
found through an essentially parametric system of equations, that is, the weight-ratios wi/w

o
i

are parameterized in terms of Lagrange multipliers β.

We collect in this section the mathematical large-sample assumptions needed to define
a design-based sense in which the set of weights {w∗i }i∈S can serve as ‘true’ weights. These
assumptions and properties will then be used in later sections to establish sufficient conditions
for large-sample limiting behavior of the estimates

∑
i∈S ŵi Yi, where ŵi are the generalized-

raking estimates obtained by solving (22) for β = β̂ and {wi}i∈S = {ŵi}i∈S .

We continue with the notations of Appendix A and repeat here the preliminary assump-
tions or restrictions made there, clarifying the asymptotic framework for large n,N .
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(A.1) G : (0,∞) → (∞) is twice continuously differentiable, with G(1) = G′(1) = 0,
G′′(1) = 1, and everywhere G′′(·) > 0.

Because G is twice continuously differentiable and strictly convex, G′ is increasing and in-
vertible, and (G′)−1 is strictly increasing and differentiable. Moreover, in what follows, the
domain and range of the function G will be restricted in such a way that (G′)−1 is uniformly
positive. Two functions related to G′ play an important role in the results of this Appendix:

κ(z) ≡ d

dz
(G′)−1(z) , γ(z) ≡ κ(z)/(G′)−1(z) (23)

(A.2) For n ≥ n0 > 0, and N = N(n) > n, there are a finite population U = UN =
{1, . . . , N(n)} of indices, a fixed vector (woi , i = 1, . . . , N) of base weights, and arrays
of (known or observed) scalar constants Xi,k, Yi for i = 1, . . . , N, k = 0, . . . , p, where
Xi,0 ≡ 1. The absolute values of Xi,k, Yi are all ≤ C, and the individual weights woi
are all ≤ C ′N/n, where C,C ′ are constants not depending on n, N .

The weights woi , wi studied in this Appendix are un-scaled first-order inclusion weights ap-
proximating the reciprocals of conditional first-order selection probabilities P (i ∈ S |Xi).
The survey of the finite population is used to supply estimates

∑
i∈S wi Yi of unknown total

outcomes Ȳ =
∑

i∈U Yi in a real population for which the corresponding N−1
∑

i∈S wiXi,k

is intended to represent the actual known average outcome X̄k = N−1
∑

i∈U Xi,k.

The next assumptions define what it means for a system {w∗i }i∈U to be an asymptotically
correct set of weights, relative to auxiliary predictor/poststratification variables Xi and
outcome variables Yi. Because assumption (A.3) requires sums weighted by w∗i to satisfy
a Central Limit Theorem, it restricts also the probability sampling design resulting in the
survey samples S.

(A.3) There exists for each N = N(n) a system of positive weights {w∗i }Ni=1 satisfying the
following properties, as n,N →∞:

√
n

N

∑
i∈S

w∗i

(( Yi
Xi

)
−
(
Ȳ
X̄

))
D−→ Np+2(0, B) (A.3.1)

where the (p + 2) × (p + 2) matrix B is specific to the attributes Y,X, and for all
bounded measurable h : Rp+1 → R,

N−1
∑
i∈S

w∗i h(Xi)
P−→
∫
h(z) ν(dz) , N−1

∑
i∈S

w∗i h(Xi)Yi
P−→
∫
h(z) η(dz)

(A.3.2)
where ν is a nondegenerate probability measure and η a signed measure supported on
[−C,C]p+1 ⊂ Rp+1, and
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A ≡
∫

z⊗2 ν(dz) is positive-definite (A.3.3)

where x⊗2 ≡ x x′ = x xtr.

By combination of (A.3.1) and (A.3.2) respectively using h(z) = z or h(z) = 1,

X̄−
∫

z ν(dz) → 0 , Ȳ −
∫
η(dx) → 0 as n,N →∞

Because weight-adjustment will be performed via generalized-raking optimization (21),
our next assumption expresses a parametric relationship between some asymptotically correct
system of weights w∗i and a linear combination of covariates,

∑p
k=0 Xi,k β

o
k. Although

one may view (A.3)-(A.4) as a parametric form for w∗i = 1/P (i ∈ S |X), the notion of
‘asymptotically correct weights’ given in (A.3) is actually more general.

(A.4) There exists a coefficient vector βo = β ∈ Rp+1 such that a system of weights w∗i
(defined for each N) satisfying (A.3) has the form w∗i = woi · (G′)−1(X′i β

o), where
G is as in (A.1).

The weights w∗i are intended to be uniformly positive. For many possible choices of G,
including Grak and Glogis, the values (G′)−1 are automatically positive. To cover other G’s
such as Glin, we make an assumption.

(A.5) There exist c1, r1 > 0 such that, for all ‖β − βo‖ ≤ r1 and x = (x0, . . . , xp) ∈ Rp+1

satisfying |xk| ≤ C, also (G′)−1(x′ β) ≥ c1.

Throughout the proof arguments in the next Section, β ∈ Rp+1 will be restricted to
lie in the ball B(r1, β

o) of radius r1 around the point βo defined in (A.4). Together with
assumption (A.5) and the bound |Xi,k| ≤ C given in (A.2), this leads to the uniform bounds

‖β − βo‖ ≤ r1 , |β′Xi| ≤ C0 <∞ , 0 < c1 ≤ (G′)−1(β′Xi) ≤ C1 <∞ (24)

B Technical Results and Proofs

The first required technical results say that for large n, with probability close to 1, the
random vector-valued function

K(β) ≡ N−1
∑
i∈S

woi Xi (G′)−1(X′i β) − X̄ (25)

has a unique root in B(r1, β
o). The interpretation is that the Lagrange multipliers β and

generalized-raking weights wi defined by (22) as solutions to (21) are uniquely defined.
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Lemma 1 Assume (A.1)-(A.5). Then there exists c > 0 such that with probability con-
verging to 1 as n → ∞, the symmetric p × p Jacobian matrix ∇tr

β K(β) with (j, k) entry
∂Kj(β)/∂βk (for 0 ≤ j, k ≤ p) has smallest eigenvalue ≥ c. Moreover, with probability

approaching 1 as n → ∞, the function K(β) has a unique root β̂ ∈ B(r1, β
o) and

β̂ − βo = OP (n−1/2) in the sense that

lim sup
n→∞

P (‖β − βo‖ ≥ b/
√
n) → 0 as b→∞

Proof. First, (A.4) implies that

K(βo) = N−1
∑
i∈S

w∗i Xi − X̄ (26)

By the properties of G collected in (A.1) and the restriction of |X′i β| as in (24),

κ(z) ≡ d

dz
(G′)−1(z) , 0 < c2 ≤ κ(z) ≤ C2 <∞ for |z| ≤ C0 (27)

Then for each β ∈ B(r1, β0), by (A.4) and the definitions (23),

∇tr
β K(β) = N−1

∑
i∈S

woi X⊗2
i κ(X′i β) = N−1

∑
i∈S

w∗i
[
κ(X′iβ)

/
(G′)−1(X′iβ

o)
]

X⊗2
i

The function of Xi in the last summation is uniformly bounded according to (24) and
(27), so by (A.3.2) applied to (matrix components of) h∗(x, β) = x⊗2 κ(x′β)/(G′)−1(x′βo),

∇tr
β K(β)

P−→
∫

x⊗2
[
κ(x′β)/(G′)−1(x′βo)

]
ν(dx) as n, N →∞ (28)

Convergence in (28) occurs for each β, but the integrands h∗(x, β) are uniformly continuous
in β on the bounded region B(r1, β0) and therefore can be ‘bracketed’ uniformly within ε by
a finite number of uniformly bounded functions to which (A.3.2) also applies. It follows by
the standard bracketing arguments explained in Pollard (1984, Sec. II.2) that convergence
in (28) is actually uniform in β over the ball B(r1, β

o): as n, N →∞,

sup
β∈B(r1,βo)

∣∣∇tr
β K(β) −

∫
x⊗2

[
κ(x′β)/(G′)−1(x′βo)

]
ν(dx)

∣∣ P−→ 0 (29)

By the Intermediate Value form of the Mean Value Theorem, with β̃ denoting a value on
the line segment between β0 and β, and with h∗(x, β) as defined just above (28),

K(β) = K(βo) +
[{
∇trK(β̃) −

∫
h∗(x, β̃) ν(dx)

}
+

∫
h∗(x, β̃) ν(dx)

)]
(β − β0)
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In the last displayed equation, K(β0) = OP (1/
√
n) by (26) and (A.3.1), and by (27)

the bracketed matrix multiplying β − βo has minimum eigenvalue uniformly bounded ≥
(1− δ)λ∗ c2/C1 for β ∈ B(r1, β

o), for arbitrary δ > 0, where λ∗ is the smallest eigenvalue
of A in (A.3.3). Therefore, the displayed equation implies for arbitrary ε > 0 there is a large
constant C∗ such that for large enough n with probability ≥ 1− ε, ‖K(βo)‖ ≤ C∗/

√
n and

inf
{
‖K(β)‖ : (2C1C

∗)/(c2 λ∗
√
n) ≤ ‖β − βo‖ ≤ r1

}
≥ 2C∗/

√
n

Therefore, with high probability ‖K(β)‖ has a minimum on B(r1, β
o) that actually lies

within a ball of radius 2C2C
∗/(c3 λ∗

√
n) around βo. By the Implicit Function Theorem,

this minimum is unique and is actually a root of K(β). The Lemma is proved. 2

The consequence of Lemma 1 is that the solutions β, wi of (22) are uniquely defined as
β̂ and ŵi = (G′)−1(X′i β̂). The asymptotic distribution of β̂ enables statements about the
asymptotic distribution and variance estimation for calibrated survey estimates

∑
i∈S ŵi Yi.

Theorem 1 Assume (A.1)-(A.5), recall the notation γ(z) defined in (23), and define

M =

∫
x⊗2 γ(x′βo) ν(dx) , m ≡

∫
x γ(x′βo) η(dx) − Ȳ

∫
x γ(x′βo) ν(dx)

and denote by B22 the lower-right (p + 1) × (p + 1) sub-matrix of B. (Thus, B22 is the
asymptotic variance matrix of

√
nK(βo) in (A.3.1).) Then as n,N →∞,

√
n
(
β̂ − βo

)
+ M−1

√
nK(βo)

P−→ 0 (30)

√
n
(
β̂ − βo

) D−→ N
(

0, M−1B22M
−1
)

(31)

√
n

N

(∑
i∈S

ŵi Yi − Ȳ
)
−
√
n

N

[∑
i∈S

w∗i
(
Yi − Ȳ − m′M−1 (Xi − X̄)

)] P−→ 0 (32)

√
n

N

(∑
i∈S

ŵi Yi − Ȳ
) D−→ N

(
0 ,
( 1
−M−1 m

)tr
B
( 1
−M−1 m

))
(33)

Proof. As in the displayed equation following (29), with β̂ replacing β so that K(β̂) = 0,

0 = K(βo) +
[ ∫

x⊗2
(
κ(x′ β̃)

/
(G′)−1(x′ βo)

)
ν(dx) + oP (1)

]
(β̂ − βo)

where β̃ is now on the line segment between βo and β̂. Multiplying through by
√
n, and

rearranging terms, we have

√
n
(
β̂ − βo

)
=
[
−
∫

x⊗2
(
κ(β̃′x)

/
(G′)−1(β̃′x)

)
ν(dx) + oP (1)

]−1√
n
(
K(βo)− X̄

)
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Because κ and (G′)−1 are continuous and uniformly bounded on the support of ν, which is
compact and falls in the region {x : |xk| ≤ C for k = 0, . . . , p}, the square-bracketed term
in the last equation (before) inverting converges in probability to −M . Thus we have proved
(30). Since K(βo) = N−1

∑
i∈S w

∗
i Xi by (A.4), the limiting distribution of

√
n (K(βo)− X̄)

is N (0, B22) by (A.3.1), and this fact together with (30) immediately implies (31).

Now first-order Taylor expansion of the summands of ˆ̄Y − Ȳ ≡ N−1
∑

i∈S ŵi Yi − Ȳ

using ŵi = woi · (G′)−1(β̂′Xi) and the constraint-relation
∑

i∈S ŵi = N yields

N−1
∑
i∈S

ŵiYi − Ȳ = N−1
∑
i∈S

w∗i
(
(G′)−1(X′iβ̂)

/
(G′)−1(X′iβ

o)
)

(Yi − Ȳ ) =

1

N

∑
i∈S

w∗i (Yi− Ȳ ) +
( 1

N

∑
i∈S

w∗i
[
κ(X′i β

o)/(G′)−1(X′i β
o)
]
Xi (Yi− Ȳ )

)tr
(β̂−βo) + oP

( 1√
n

)
Multiply through by

√
n and apply (A.3.2) to h(z) = z κ(z′β̃)

/
(G′)−1(z′βo), to find

√
n

N

(∑
i∈S

ŵiYi − Ȳ
)

=

√
n

N

∑
i∈S

(
w∗i Yi − Ȳ

)
+ mtr

√
n (β̂ − βo) + oP (1)

Next substitute for
√
n (β̂ − βo) using (30) and (26) to learn

√
n

N

(∑
i∈S

ŵiYi − Ȳ
)

=

√
n

N

∑
i∈S

w∗i

(
Yi − Ȳ − mtrM−1 (Xi − X̄)

)
+ oP (1)

=
( 1
−M−1m

)tr √n
N

∑
i∈S

w∗i
( Yi − Ȳ

Xi − X̄

)
+ oP (1)

D−→ N
(

0,
( 1
−M−1m

)tr
B
( 1
−M−1m

))
where the last convergence in distribution is an immediate consequence of (A.3.1). 2

The asymptotic variance expressions given in (31) and (33) in Theorem 1 immediately
enable estimators for asymptotic survey estimates based on calibrated weights. However, the
survey variance estimates look different based on the magnitude of survey weight-adjustments
(i.e., on whether βo is 0 or not) and on the choice of generalized-raking method through the
function G. There are four cases to consider within the framework of (A.1)-(A.5): that
addressed by Deville and Särndal (1992) where the base weights woi are essentially correct
(βo = 0), the case of general βo with linear calibration (G = Glin), the case of general βo

with raking (G = Grak), and the case of general βo with all other (convex) G.

We present formal theoretical results on consistent asymptotic variance estimation only
in the context of Poisson sampling. We must do that because the asymptotic variance B in
(A.3.1) is not parametrically restricted and is generally accessible only through a Horvitz-
Thompson style variance estimator. Under suitable conditions, including restrictions on joint
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inclusion probabilities, it is accessible through the design-based unbiased variance estimators
using joint inclusion probabilities or through replication-based variance formulas (Balanced
Repeated Replication as in Wolter 2007 including Successive Difference Replication as in Fay
and Train 1996), with theoretical justification – as far as it goes – along the lines of Krewski
and Rao (1981).

Theorem 2 Assume (A.1)-(A.5), and assume in addition that sampling is Poisson (and
nonresponse subsumed in base-weights is based on independent unit-level decisions) in the
sense that the random variables Ri = I[i∈S] are independent random variables for all i ∈ U ,
with correct weights and base-weights restricted by:

E(Ri) = π∗i = 1/w∗i , 0 < c3 ≤ woi ≤ C3 <∞ (34)

Assume also that

(A.6) As n,N →∞, the limit limn→∞ (n/N2)
∑

i∈U (w∗i − 1)
( Yi − Ȳ

Xi − X̄

)⊗2

exists.

Then the limiting variance matrix B in (A.3.1) is equal to the limit in (A.6), and a
consistent estimate of it based on survey data is

B̂ =
n

N2

∑
i∈S

ŵi (ŵi − 1)
( Yi − ˆ̄Y

Xi − ˆ̄X

)⊗2

where ˆ̄Y = N−1
∑

i∈S ŵi Yi , ˆ̄X = N−1
∑

i∈S ŵi Xi.

The estimator

V̂ =
n

N2

∑
i∈S

ŵi (ŵ
o
i − 1)

(
Yi − ˆ̄Y − b̂′ (Xi − ˆ̄X)

)2
(35)

is consistent for the asymptotic variance of (
√
n/N)

(∑
i∈S ŵi Yi − Ȳ

)
, but the estimator

b̂ in (35) for M−1m from Theorem 1 takes somewhat different forms in the following cases.

(i). βo = 0, then (G′)−1(X′iβ
o) = 1 = κ(X′iβ

o), and maxi |ŵi −woi | = oP (1), so ŵi can

be replaced by woi in V̂ and ˆ̄Y, ˆ̄X, and

b̂ =
(∑
i∈S

woi X⊗2
i

)−1
∑
i∈S

woi Xi (Yi − ˆ̄Y )

(ii). βo is general and G ≡ Glin, then (G′)−1(X′iβ
o) = (1 + X′iβ

o), κ(X′iβ
o) = 1, and

b̂ =
(∑
i∈S

woi X⊗2
i

)−1
∑
i∈S

woi Xi (Yi − ˆ̄Y )
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(iii). βo is general and G ≡ Grak, then (G′)−1(X′iβ
o) = κ(X′iβ

o), so γ(X′iβ
o
i ) ≡ 1, and

b̂ =
(∑
i∈S

ŵi X
⊗2
i

)−1
∑
i∈S

ŵi Xi (Yi − ˆ̄Y )

(iv). βo and G are general, and (recalling γ(z) from (23)),

b̂ =
(∑
i∈S

ŵi γ(X′iβ̂) X⊗2
i

)−1
∑
i∈S

ŵi γ(X′iβ̂) Xi (Yi − ˆ̄Y )

Proof. Consider the sum

B∗ =
n

N2

N∑
i=1

Riw
∗
i (w∗i − 1)

( Yi − Ȳ
Xi − X̄

)⊗2

Then E(B∗) is equal to the design variance of (
√
n/N) (Yi− Ȳ , ( ˆ̄X− X̄)′)′, and also to the

matrix whose limit is assumed to exist in (A.6), and (since π∗iw
∗
i = 1), for any a ∈ R and

v ∈ Rp+1,

Var
(( a

v

)′
B∗
( a

v

))
=

n2

N4

N∑
i=1

(w∗i − 1)3 (
(
a · (Yi − Ȳ + v′(Xi − X̄)

)4
= OP (1/n)

where the last order-of-magnitude estimate follows from the uniform boundedness of Yi,Xi

and the bound w∗i ≤ C ′C1N/n from (A.2), (A.4), and (24). Thus as n,N → ∞, by
Chebychev’s inequality

B∗ − n

N2

N∑
i=1

(w∗i − 1)
( Yi − Ȳ

Xi − X̄

)⊗2 P−→ 0

Moreover, by similar reasoning,

ˆ̄Y
P−→ Ȳ , ˆ̄X

P−→ X̄

and we knew from Theorem 1 that

sup
i∈U

∣∣ exp(X′iβ̂) − exp(Xi
′βo)

∣∣ P−→ 0

This implies that the n summands of B̂ and B∗ over i ∈ S differ termwise uniformly by
(N/n)2 multiplied by a term converging to 0, so that for each a,v,∣∣∣( av )′(B̂ −B∗)( av )∣∣∣ ≤ oP (n

n

N2
(N/n)2) = oP (1)

50



It follows that B in (A.3.1) is equal to the limiting matrix in (A.6), and B̂ is a consistent
estimator for B.

The rest of the proof is done only for case (iv): cases (i)-(iii) are special instances of case
(iv). By (32) in Theorem 1), we are estimating the asymptotic variance of( 1

−M−1 m

)′ √n
N

∑
i∈S

w∗i
( Yi − Ȳ

Xi − X̄

)
By (33) in Theorem 1, the asymptotic variance is( 1

−M−1m

)′
B
( 1
−M−1m

)
so the Theorem is proved if we establish b̂ in (iv) as as consistent estimator of M−1 m.
However, by the limiting relations (A.3.2) and the boundedness of the function γ(x′βo) on
the supports of ν(·) and γ(·),

m = P-limn→∞N
−1
∑
i∈S

w∗i (Yi−Ȳ ) γ(X′iβ) Xi , M = P-limn→∞N
−1
∑
i∈S

w∗i γ(X′iβ) X⊗2
i

Again recognizing that maxi |ŵi − woi | = oP (N/n) and maxi γ(X′iβ̂) − γ(X′iβ
o)| = oP (1),

we conclude that b̂ = M̂−1 m̂ where the consistent estimators M̂ for M and m̂ for m are
given by

M̂ = N−1
∑
i∈S

ŵi γ(X′iβ̂) X⊗2
i , m̂ = N−1

∑
i∈S

ŵi (Yi − Ȳ ) γ(X′iβ̂) Xi

and the Theorem is proved. 2

Theorems 1 and 2 under case (i) are the main results of Deville and Särndal (1992),
re-proved here with slightly more attention than those authors gave to arguments based on
the uniform law of large numbers derived from (A.3.2).

It is particularly noteworthy in Theorem 2 that the variance estimator V̂ can be obtained
as a GREG variance by using ŵi in place of the base weights. Although results on variances
are presented here only in the context of Poisson sampling, they will generalize to other
contexts – such as hierarchical stratified and clustered sampling designs with many inde-
pendently or SRS sampled final clusters – whenever design-based estimates replacing B̂ for
variance matrices B are provably consistent. In such settings, applying the variance formula
with weights ŵi to GREG residuals from ŵi weighted regresssion of Yi on Zi will also work.

Up to this point, our theoretical results concern only surveys in which an asymptoti-
cally correct system {w∗i }Ni=1 of weights (as defined in (A.3)) has ratios w∗i /w

o
i satisfying

a finite-dimensional parametric condition (A.4). Such a parametric-model condition essen-
tially requires that design weights be calibrated to be correct using finitely many calibration
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constraints with a termwise metric for weight changes based on a function G. However, such
a condition is a lot to ask. Can anything be said about calibrated weights, or of survey
estimators based on them, when the condition holds only inexactly or not at all ? That is
the subject of the next Theorems.

For simplicity, we restrict attention in what follows to G(z) ≡ Grak(x) ≡ x log(x)−x+1,
so that (G′)−1(z) = κ(z) = ez, γ(z) ≡ 1. Assumptions (A.1) and (A.5) are no longer needed,
but Assumption (A.3) again defines an assumed ‘asymptotically correct’ set of weights w∗i ,
but it is assumed that the design weights satisfy a limiting property.

(A.4’) There exist a nondegenerate finite probability measure ν̃ and signed measure η̃
(both necessarily supported on {1} × [−C,C]p ⊂ Rp+1) such that as n, N →∞,

N−1
∑
i∈S

woi h(Xi)
P−→
∫
h(z) ν̃(dz) , N−1

∑
i∈S

woi h(Xi)Yi
P−→
∫
h(z) η̃(dz)

(A.4.1)
and

Ã ≡
∫

z⊗2 ν̃(dz) is positive-definite (A.4.2)

and

there exists β∗ ∈ Rp+1 :

∫
z ez

′ β∗ ν̃(dz) = X̄ (A.4.3)

√
n
[
N−1

∑
i∈S

woi e
X′i β∗

( Yi
Xi

)
−
∫

z ez
′β∗
( η̃(dz)
ν̃(dz)

)]
D−→ N (0, B̃) (A.4.4)

These conditions are only slightly more restrictive than (A.3), although (A.4.1)–(A.4.2)
follow immediately from (A.3) if log(w∗i /w

o
i ) is a bounded function g†(Xi, Ui) of the variables

Xi along with some independent iid sequence Ui. We continue to work with the function
K(·) defined by (25).

Lemma 2 Assume (A.2)-(A.3) and (A.4′), and let G ≡ Grak. Then (A.5) holds with β∗ in
place of βo, and there exists c > 0 such that with probability converging to 1 as n→∞, the
symmetric p × p Jacobian matrix ∇tr

β K(β) with (j, k) entry ∂Kj(β)/∂βk (for 0 ≤ j, k ≤
p) has smallest eigenvalue ≥ c. Moreover, with probability approaching 1 as n → ∞, the
function K(β) defined in (25) has a unique root β̂∗ ∈ B(r1, β∗) and β̂∗− β∗ = OP (n−1/2).

Proof. The steps are very much like those of Lemma 1, but with Taylor expansions taken
around the base-point β∗ in place of βo. (A.5) and (24) are immediate by choice of G with
(G′)−1(z) = ez, with β∗ replacing βo. Next, K(β∗) = OP (1/

√
n) by (A.4.4) within (A.4′),
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and the first-order Taylor expansion of K(β) around β∗ leads exactly as in Lemma 1 (now
with κ(z)/(G′)−1(z) ≡ 1 and ν̃ replacing ν) to

sup
β∈B(r1,β∗)

∣∣∇tr
β K(β) −

∫
x⊗2 ν̃(dx)

∣∣ P−→ 0 (36)

By the Mean Value Theorem, with β ∈ B(r1, β∗) and β̃ on the line from β∗ to β,

K(β) = K(β∗) +
[{
∇trK(β̃) −

∫
z⊗2 ν̃(dz)

}
+

∫
z⊗2 ν̃(dz)

)]
(β − β∗) (37)

In the last displayed equation, the bracketed matrix multiplying β− β∗ has minimum eigen-
value uniformly bounded ≥ (1 − δ)λ∗ c2/C1 for β ∈ B(r1, β∗), for arbitrary δ > 0, where
λ∗ is the smallest eigenvalue of Ã in (A.4.2). Therefore, the displayed equation implies for
arbitrary ε > 0 there is a large constant C∗ such that for large enough n with probability
≥ 1− ε, ‖K(β∗)‖ ≤ C∗/

√
n and

inf
{
‖K(β)‖ : (2C1C

∗)/(c2 λ∗
√
n) ≤ ‖β − β∗‖ ≤ r1

}
≥ 2C∗/

√
n

Therefore, with high probability ‖K(β)‖ has a minimum on B(r1, β∗) that lies within a ball
of radius 2C2C

∗/(c3 λ∗
√
n) around β∗. By the Implicit Function Theorem, this minimum

is unique and is actually a root of K(β). The Lemma is proved. 2

We next prove analogues of Theorems 1 and 2 in the present setting, again by essentially
the same proofs with small modifications.

Theorem 3 Assume (A.2)-(A.3), (A.4′) and G ≡ Grak, and define

M̃ = Ã =

∫
z⊗2 ν̃(dz) , m ≡

∫
z η̃(dz)

and denote by B̃22 the lower-right (p+ 1)× (p+ 1) sub-matrix of B̃. Then as n,N →∞,

√
n
(
β̂ − β∗

)
+ M̃−1

√
nK(β∗)

P−→ 0 (38)

√
n
(
β̂ − β∗

) D−→ N
(

0, M̃−1B22 M̃
−1
)

(39)

and with ŵi ≡ exp(β̂′Xi),

√
n
[ 1

N

∑
i∈S

(
ŵi − woi e

β′∗Xi

)
Yi − m̃′ M̃−1K(β∗)

]
P−→ 0 (40)

√
n
( 1

N

∑
i∈S

ŵi Yi −
∫

ez
′β∗ η̃(dz)

) D−→ N
(

0 ,
( 1
−M̃−1 m̃

)tr
B̃
( 1
−M̃−1 m̃

))
(41)
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Proof. As in the proof of Theorem 1, equation (37) with β̂ replacing β implies (38) by
using (36), and (39) follows immediately because

√
nK(β∗) is the subvector of coordinates

2 thropugh p+ 2 on the left-hand side of (A.4.4).

First-order Taylor expansion of the summands of N−1
∑

i∈S ŵi Yi −
∫
ez
′β∗ η̃(dz) using

ŵi = woi · (G′)−1(β̂′Xi) yields

1

N

∑
i∈S

ŵi Yi−
∫

ez
′β∗ η̃(dz) =

1

N

∑
i∈S

woi e
β′∗Xi Yi−

∫
ez
′β∗ η̃(dz) +

1

N

∑
i∈S

woi
(
eβ̂
′Xi−eβ̂′Xi

)
Yi

=
1√
n

{
Tn +

1

N

∑
i∈S

woi e
β′∗Xi Yi X

′
i

√
n(β̂ − β∗) + oP (1)

}
where Tn is the first coordinate of the left-hand side of (A.4.4). Therefore, by (38),
√
n

N

∑
i∈S

ŵiYi−
∫

ez
′β∗ η̃(dz) = Tn −

( 1

N

∑
i∈S

woi e
β′∗Xi Yi Xi

)′
M̃−1

√
nK(β∗) +oP (1) (42)

Now by (A.4.4), together with (A.4′) and the definition of m̃,
√
n

N

∑
i∈S

ŵi Yi −
√
n

N

∑
i∈S

woi e
β′∗Xi Yi + m̃′ M̃−1

√
nK(β∗) = oP (1)

which is the same statement as (40). Finally, the right-hand side of (42) is( 1

−M̃ m̃

)′ ( Tn
√
n K(β∗)

)
+ oP (1)

D−→ N
(

0 ,
( 1
−M̃−1 m̃

)tr
B̃
( 1
−M̃−1 m̃

))
where the convergence in distribution follows immediately from (A.4.4). 2

Because the parametric model for weight-ratios w∗i /w
o
i assumsd in (A.4) is misspecified

but is still the working model in the setting of Theorem 3, the large-sample limit of the raked
survey estimator N−1

∑
i∈S ŵi Yi has no generally predictable relation to the target Ȳ of

estimation. Nevertheless, as is true also in the misspecified-model theory of M-estimators,
there is a robustified form of estimator for the variance of the raking-calibrated survey
estimator that can under some circumstances be consistent.

Theorem 4 Assume (A.2)-(A.3), (A.4 ′), and G ≡ Grak, and assume in addition that sam-
pling is Poisson and the ‘quasirandomization’ model for nonresponse holds, i.e., the random
variables Ri = I[i∈S] are independent random variables for all i ∈ U , with correct weights
and base-weights restricted by:

E(Ri) = π∗i = 1/w∗i , 0 < c3 ≤ woi ≤ C3 <∞ (43)

Assume also that
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(A.6′) B◦ ≡ limn→∞ (n/N2)
∑

i∈U
(
eβ
′
∗Xi woi /w

∗
i

)2
(w∗i −1)

( Yi −
∫
eβ
′
∗z η̃(dz)

Xi −
∫
eβ
′
∗z z ν̃(dz)

)⊗2

exists.

Then the limiting variance matrix B̃ in (A.4.4) is equal to the limit in (A.6 ′), and the
asymptotic variance (multiplied by n) of the survey estimator N−1

∑
i∈S ŵi Yi is( 1

−M̃−1 m̃

)′
B◦
( 1

−M̃−1 m̃

)
(44)

where∫
eβ
′
∗z η̃(dz) = P-limn→∞N

−1
∑
i∈S

ŵi Yi ,

∫
eβ
′
∗z z ν̃(dz) = P-limn→∞N

−1
∑
i∈S

ŵi Xi

M̃ = P-limn→∞N
−1
∑
i∈S

ŵi X
⊗2
i , m̃ = P-limn→∞N

−1
∑
i∈S

ŵi Xi Yi

This Theorem is proved with steps very similar to those used in Theorem 2. Consistency
of estimation variance (44) will generally not be possible in Theorem 4 unless there is some
auxiliary source enabling consistent estimation of the true weights w∗i . There would not
need to be any established rate for that consistency, which leaves open the possiblility that
in some settings a very highly parameterized ‘machine-learning’ type model might be used.
Such consistent estimation of weights would generally be sufficient to establish consistency
of estimation of survey-weighted averages but not asymptotic normality of those estimates,
but in the context of Theorem 4 consistently estimated weights would enable consistent
estimation of the variances of the survey-weighted estimates.

C Discussion

The usual caveats about Missing at Random (MAR) or other assumptions enabling valid
inference in the presence of nonresponse have been avoided here through (A.3)-(A.4), in
which the design-based ‘asymptotic correctness’ of weights applied to survey estimation
of (functions of Xi and) Yi is assumed. MAR or a similar assumption about conditional
independence of Yi and response-indicator Ri given Xi would be the usual way to assume
the correctness of weighting to compensate for nonresponse, when not only Ri but also
Xi, Yi are random. But we are not aware of any published design-based presentation of
assumptions guaranteeing design-consistent survey inferences after calibration in the presence
of nonresponse. In that sense, the assumption-set presented here contributes toward a design-
based understanding of missing data due to nonresponse.
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