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Abstract. The objective of this paper is to study the feasibility and consistency of complex-

survey estimation methods for population models incorporating shared cluster-level random-effect

parameters, in contexts where sampling may be informative and where joint inclusion-probabilities

are unavailable. There are several well-known papers in this area (Binder 1983, Pfeffermann et

al. 1998, Korn and Graubard 2003, Rabe-Hesketh and Skrondal 2006) and several recent papers

(Rao et al. 2013, Yi et al. 2016, Kim et al. 2017, Savitsky and Williams 2018, and Williams and

Savitsky 2019), but the problem of model- and design-consistent estimation of variance-component

parameters in surveys has not yet been solved in a practically effective way.

One contribution of this paper is to propose an EM algorithm applied to the pseudo-loglikelihood

estimating an augmented census-loglikelihood incorporating cluster random effects. This algorithm

consistently estimates superpopulation variance components under assumed mixed-effect models for

survey data under probability sampling designs in which sampling of clusters may be informative

but within-cluster sampling is not. A second contribution is to assess the performance of all of the

competing proposed methods that use only single-inclusion weights, in the presence of informative

sampling under the two-level one-way random-effects Analysis of Variance model. This compar-

ison supports the conclusion that none of these methods is consistent under general informative

sampling.

Keywords: Consistency, Informative sampling, Single-inclusion weights, Two-level model.

Disclaimer: This paper is released to inform interested parties of ongoing research and to encour-

age discussion of it. The views expressed are the author’s and not the Census Bureau’s.
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1 Introduction: Random Effects Models in Complex Surveys

Consider a setting where it is desired to analyze data from a complex survey in which the interesting

outcome variables Yi and explanatory vectors Zi ∈ Rp are dependent within clusters of units i in

the underlying frame population U . We restrict attention in this paper to parametric models for

data D ≡ {(Yi, Zi) : i ∈ U} with scalar Yi.

A complex probability survey is a mechanism, partially under the control of the investigator,

for designating a random subset S ⊂ U as being observable, and part of this mechanism is

summarized through the single-inclusion probabilities πi and weights πi defined by

πi = P (i ∈ S |Yi, Zi) , wi = 1/πi for i ∈ U (1)

In standard sampling theory texts such as Särndal et al. (1992) or Lohr (2009), sampling designs

are usually specified with πi, wi constant. In real sampling designs, nonresponse usually intervenes,

so that the only units i that are truly observable are those within the respondent set in the sample

S, and the mechanism of response is often modeled with indicators Ri of individual response

conditionally independent given D ≡ {(Yl, Zl) : l ∈ U}, with probability or propensity of response

by the i’th unit of the form

P (Ri = 1 | D) = g(Yi, Zi) (2)

depending on the underlying population data D only through the i’th unit’s variables (Yi, Zi),

through a function g not depending on i. It is also standard in sampling theory and practice

to assume that the single-inclusion weights wi are observable for units i ∈ S. The function g is

generally assumed unknown, although sometimes it is modeled parametrically. The observable data

from the complex survey then consist of

{ (Yi, Zi, wi) : i ∈ S } (3)

That is why, in formula (1), the inclusion probabilities and weights are allowed to depend on

underlying features of the frame population units, summarized through the random data (Yi, Zi)

on those respective units. An even more general formulation of a random underlying population

and random sampling mechanism has been given by Rubin-Bleuer and Kratina (2006). The level of

generality of the special case (1) is common in the sampling and biostatistical literature. We next

specify a parametric form (a superpopulation model) for the underlying data { (Yi, Zi) : i ∈ U }.
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If the underlying vector variables (Yi, Zi) are modeled as independent identically distributed

(iid) across i ∈ U , with parametric joint density f(yi, zi, θ), then the census loglikelihood∑
i∈U log f(Yi, Zi, θ) is asymptotically approximated by the survey-weighted pseudo-loglikelihood

∑
i∈S

wi log f(Yi, Zi, θ) (4)

introduced by Binder (1983), and this asymptotic approximation can be used to justify consistent

and asymptotically normal inference based on the maximizer of (4) in θ. The same idea works

under more general conditions on random or nonrandom (Yi, Zi) for (4) or for the conditional

pseudo-loglikelihood
∑

i∈S wi log f(Yi |Zi, θ). The applicability and justification of this estimation

technique at population level when no model is actually assumed at unit level (and the target

estimand is the maximizer of the census-loglikelihood with respect to θ) has given rise to so-called

model-assisted inferential procedures (Särndal et al. 1992). Also in the setting with iid (Yi, Zi) for

i ∈ U , the same technique provides design- and model-consistent inferences for θ under general

conditions even when sampling is informative in the sense that the conditional distributions of

(Yi, Zi) given i ∈ S are different from the distribution of (Yi, Zi) for each i ∈ U .

However, in superpopulation models with dependence across units, such as those in which only

clusters are independent, this pseudo-loglikelihood approach to inference must be modified.

1.1 Superpopulation Models with Cluster Structure

We begin by establishing notation for cluster samples, allowing superpopulation data to be depen-

dent within clusters. Then we specialize to two-level models with a single random-effect variate

shared within each superpopulation cluster, iid across clusters. While it is not always true that

design inclusion-probabilities are given with separate known factors for sampling of clusters and

sampling within the clusters, this hierarchical sampling structure is assumed for single-inclusion

probabilities throughout the present paper.

The underlying frame population index set is U , with |U| = N elements, but its indices i

are viewed as standing in one-to-one correspondence with double indices i = (j, k) where U is

partitioned into clusters Uk, k = 1, . . . ,M, with respective numbers of elements Nk, and where k =

k(i) is the cluster such that i ∈ Uk, and j indexes units within cluster. In this way, Yj,k, Zj,k, wj,k can

be written interchangeably for Yi, Zi, wi. Assume further that the sampling design is a hierarchical
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cluster design, so that wj,k = ωk · wj|k for j = 1, . . . , Nk, k = 1, . . . ,M , where ωk is a single-

inclusion cluster weight and wj|k is a within-cluster single-inclusion (conditional) weight with

SC = {k = 1, . . . ,M : k(i) = k for some i ∈ S} , Sk = {j = 1, . . . , Nk : (j, k) ∈ S} (5)

1/ωk = P ( k ∈ Sk
∣∣ D ) , 1/wj|k = P ( (j, k) ∈ S

∣∣ k ∈ Sk , D ) (6)

and within-cluster sampling is assumed to be done independently across clusters. Denote

the numbers of sampled clusters, of sampled units within clusters, and of total sampled units by

m = |SC | , nk = |Sk| , n = |S| =
∑
k∈SC

nk (7)

Then a parametric, clustered superpopulation model could take the form that for iid random-

effect variables ak ∼ fC(a, η2), k = 1, . . . ,M , conditionally given Zk ≡ (Zj,k : j = 1, . . . , Nk),

Y k ≡ (Yj,k : j = 1, . . . , Nk) ∼ fk(y |Zk, ak, η1) independently across k = 1, . . . ,M (8)

with θ = (η1, η2) as unknown parameter. The rest of the paper restricts attention to a more specific,

two-level form of such a model and assumes the variables Yj,k are conditionally iid across j within

cluster k. That is, the model takes the simplified two-level form

ak
iid∼ fC(a, η2) and Yj,k

iid∼ f(y |Zj,k, ak, η1) (9)

where the functions fC , f are assumed known and the parameters θ = (η1, η2) unknown.

In this setting, the sampling is called informative if for at least some sets sC = {k1, . . . , kr}, sk =

{i1, . . . , iqk}, the joint densities of observed variables differ from the corresponding joint densities

in the frame population given that these are the selected sets SC , Sk, i.e.,

L
(
ak, (Yj,k : j ∈ sk), k ∈ sC)

∣∣∣ SC = sC , Sk = sk ∀k ∈ SC , (Zj,k : j ∈ sk, k ∈ sC)
)
6=

L
(
ak, (Yj,k : j ∈ sk), k ∈ sC)

∣∣∣ (Zj,k : j ∈ sk, k ∈ sC)
)

where L(· | ·) denotes (conditional) probability law. Here SC and Sk respectively denote random sets

of selected clusters and of selected units within cluster k, and sC , sk respectively denote particular

sets of clusters and units that might have been selected. Under our assumptions of independent

sampling and independent data across clusters, informativeness means that for some k, sk,

L
(
ak, (Yj,k : j ∈ sk)

∣∣∣ Sk = sk, (Zj,k : j ∈ sk), k ∈ SC
)
6= L

(
ak, (Yj,k : j ∈ sk)

∣∣∣ Zj,k : j ∈ sk
)
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In what follows, potential informativeness of sampling is considered at each of the two (cluster and

within-cluster) stages, where by definition clusters are sampled noninformatively if

L
(
ak, Y k

∣∣∣ Zk , k ∈ SC ) = L
(
ak, Y k

∣∣∣ Zk ) (10)

where recall that Y k denotes the vector of population attributes and Zk denotes the vector of ob-

served explanatory variables, if any, for units within cluster k. Similarly, within-cluster sampling

is noninformative if for all k = 1, . . . ,M and all within-cluster index sets sk ⊂ {1, . . . , Nk},

L
(

(Yj,k : j ∈ sk)
∣∣∣ ak, (Zj,k : j ∈ sk) , Sk = sk, k ∈ SC

)
= (11)

L
(

(Yj,k : j ∈ sk)
∣∣∣ ak, (Zj,k : j ∈ sk) , k ∈ SC

)

1.2 Model-assisted Estimation and Problem Statement

Model-assisted survey inference (Särndal et al. 1992) is a term ordinarily applied to methods of

inference from complex survey data about statistical parameters in a superpopulation model, based

on approximating the solution to a population-wide (census) estimating equation, such as the

maximizer of a population-wide log-likelihood. The parameters estimated are then descriptive

parameters of the population, without the superpopulation model necessarily being assumed to

hold for population units. Model-assisted estimators are required to be consistent in the sense of

large-superpopulation and large-sample convergence under the complex-survey probabilistic design,

whether or not that design is informative. Without very strong further assumptions, the parameters

estimated in this way do not describe model relationships at the level of population subdomains or

units. Thus, the estimated parameters can be used directly in summarizing population-level data

relationships but cannot be used in unit-level prediction or domain-level estimation of totals. On

the other hand, for many intended applications, such as small area estimation (see Molina and Rao

2015), unit-level prediction and domain estimation are precisely the point. In that case, a highly

desirable property for an inferential method based on complex survey data is to provide estimators

that converge in probability for large samples under the combined sample-design and a complete

joint probability model for all population units, whether or not the sampling is informative. This

property of an inferential method, which may be proved to hold under some restrictions on the type

of informative sampling allowed, is called (joint) design- and model-consistency, which we refer to

simply as consistency for the rest of this paper. Since this property does rely on the validity of
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the underlying model, it falls properly within the realm of model-based rather than model-assisted

methodology.

In classical sampling theory, the statistical investigator chooses the sampling design and can

use joint as well as single inclusion probabilities in analyzing the survey data. However, in the real

world of nonresponse, survey methodologists modify single-inclusion weights by methods such as

calibration and raking, and while methodological problems and solutions are sometimes described

as though the modified weights are reciprocals of inclusion-and-response probabilities, practitioners

do not pretend to produce modified joint inclusion probabilities. Therefore, this paper studies the

problem of design- and model-consistent estimation of statistical superpopulation parameters for

cluster-dependent data, only in terms of observable sampled data and single-inclusion weights.

1.3 First Estimation Methods

The earliest paper attacking the problem of mixed-model consistency under informative sampling

seems to be that of Pfeffermann et al. (1998), which considered informatively sampled data from a

superpopulation satisfying a normal linear model defined by

Yj,k = β′Zj,k + ak + εj,k , ak
iid∼ N (0, σ2a) , εj,k

iid∼ N (0, σ2e) (12)

They proposed a complicated iterative Weighted Least Squares procedure involving weight-rescaling.

Although they gave no proofs, their method appears from simulations (theirs and also Korn and

Graubard’s 2003) to provide (model- and design-) consistent estimates of θ = (β, σ21, σ
2
e) under

noninformative sampling and also under sample designs that are noninformative within clusters.

Here β ∈ Rp (with the first element of each vector Zj,k equal to 1, providing an intercept term in

the model), and η1 = (β, σ2e), η2 = σ2a, respectively play the roles here of the first and second-level

parameters in θ = (η1, η2).

Korn and Graubard (2003) studied the intercept-only case of (12) where Zj,k ≡ 1 (reducing the

coefficient p-vector β to the scalar mean parameter µ), under several sorts of highly informative

sampling designs. We refer to that model from now on as the two-level Analysis of Variance

(ANOVA) model. Their simulations showed under that model that the methods of Pfeffermann

et al. were not consistent under general informative sampling. Korn and Graubard (2003) did also

provide consistent weighted method-of-moments estimators expressed in terms of joint inclusion

probabilities, estimators that were later generalized by Rao et al. (2013) and Yi et al. (2016).
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1.4 Competing Pseudolikelihoods

As mentioned above, cluster-level dependence invalidates simple survey-weighted loglikelihood (4)

(or its conditional variant) as a basis for consistent parametric inference under general informative

sampling designs, even under designs that sample independently across clusters. The distinction

between general sampling designs and those that are noninformative within clusters (but may be

informative at cluster level) is important here.

To estimate θ = (η1, η2), Rabe-Hesketh and Skrondal (2006) maximize

logLik1 =
∑
k∈SC

ωk log

∫
exp

( ∑
j∈Sk

wj|k log f(Yjk |Zjk, ak, η1)
)
fC(ak, η2) dak (13)

an approximate log-likelihood that Asparouhov (2006) also used iteratively together with weight-

rescaling. But the integral expression within (13) is not a likelihood, and consistency of estimation

can be justified generally only when the within-cluster sample-sizes go to ∞.

Williams and Savitsky (2018) and Savitsky and Williams (2019, 2020) have developed a Bayesian

‘pseudo-posterior’ methodology applicable when clusters of bounded size are sampled approximately

independently. With a few further technical restrictions, they provide Bayesian large-sample theory

and supporting simulations, claiming that their method exhibits large-sample posterior concentra-

tion (a Bayesian analogue of consistency) under general informative sampling. Although they

have not specifically related their results to a frequentist method, they seem to be suggesting that

likelihood methods with the approximate loglikelihood

logLik2 =
∑
k∈SC

log

∫
exp

( ∑
j∈Sk

wj,k log f(Yjk |Zjk, ak, η1) + ωk log fC(ak, η2)
)
dak (14)

should have favorable asymptotic properties under informative sampling.

The pseudo-loglikelihood (4) of Binder (1983) is a special case of a more general concept of

composite log-likelihood (Lindsay 1988), which is essentially a weighted linear combination of terms

individually – but not necessarily jointly – justified as log-likelihoods for subsets of the observed

data. Expressions (13) and (14) are not composite loglikehoods in this sense, although the ver-

sions of these expressions without the integration over ak are composite augmented loglikelihoods

(augmented because the ak’s are not observed), which is exploited in defining an EM method in

Section 2 below. The authors proposing (13) and (14) had in mind the approximation of the within-

cluster log-likelihood by the survey-weighted pseudo-loglikelihood, but the integral over ak of the
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exponentiated pseudo-loglikelihood is no longer a loglikelihood. Using a different approach, Rao

et al. (2013) and Yi et al. (2016) revived the composite loglikelihood in the mixed-effects survey

estimation context, following preliminary suggestions of Korn and Graubard (2003) and Graubard

and Korn (2011), by weighting the log-likelihoods of pairs of observed unit-level data (Yi, Yi′) by

the inverse of the joint probability P (i, i′ ∈ S). Under mild conditions, this approach provides a

consistent estimator for θ under general informative sampling at the cost of requiring knowledge of

correct within-cluster joint inclusion probabilities.

1.5 Scope of This Paper

The objective of this paper is to study the feasibility and consistency of complex-survey estimation

methods for population models incorporating shared cluster-level random-effect parameters, in con-

texts where sampling may be informative and where joint inclusion-probabilities are unavailable.

The paper has three parts. In the first, an EM algorithm is proposed in the spirit of model-assisted

estimation, to estimate the population-level maximum likelihood parameter values within the cen-

sus loglikelihood for observable parameters. This algorithm is feasible and is shown to provide

consistent estimates when sampling of clusters may be informative but sampling within clusters is

noninformative. Second, the major methods of parameter estimation that use only single-inclusion

weights are compared theoretically with respect to consistency within the two-way random-effects

Analysis of Variance model with normally distributed errors and random effects, where estimators

and their limits under noninformative within-cluster sampling are relatively explicit. Third, these

methods are compared more broadly within the two-level one-way ANOVA model, under sampling

designs ranging from fully noninformative to informative both at cluster-level and within clusters.

In these theoretical and simulation-based comparisons, since the goal is to understand consistency

of estimation, we ignore methods (primarily, those of Pfeffermann et al. 1998 and Asparouhov 2006)

essentially involving iterative weight-rescaling, since such rescaling is directed primarily at variance

and interval estimation. Broadly speaking, the thrust of the paper’s results is that the new EM

method is highly effective and consistent in settings where within-cluster sampling is noninforma-

tive, and that no method based on single-inclusion probabilities is consistent when within-cluster

sampling is informative.
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2 The Pseudo-EM Method

The rationale behind (4) was to approximate the census (full-population) loglikelihood, and simi-

larly in the mixed-model setting, the census augmented loglikelihood

laug.cens(θ) =
M∑
k=1

log fC(ak, η2) +
∑

(j,k)∈U

log f(Yj,k |Zj,k, ak, η1)

which is the correct loglikelihood for the full-population data {Yj,k, Zj,k}(j,k)∈U along with the in-

trinsically unobservable random effects {ak}Mk=1. This augmented loglikelihood is estimated design-

consistently (for all parameters θ = (η1, η2), after normalizing by 1/N) by:

lw(θ) =
∑
k∈SC

ωk

{
log fC(ak, η2) +

∑
j∈Sk

wj|k log f(Yj,k |Zj,k, ak, η1)
}
≡
∑
k∈SC

ωk l
w
k (θ)

Recall the notation D for the full-population observable dataset {Yj,k, Zj,k : (j, k) ∈ U}, and note

by independence of both the sampling mechanism and superpopulation data across clusters that

Eθ0

(
lwk | D

)
= Eθ0(lwk (θ) | {Yj,k, Zj,k, j = 1, . . . , Nk})

For reference express the usual marginal census observed-data loglikelihood by

lobs.cens(θ,D) = log
(∫

exp(laug.cens(θ)) da1 da2 · · · daM
)

The EM algorithm is formulated by taking conditional expectations as though ωk depends only on

Dk ≡ {Yj,k, Zj,k, j = 1, . . . , Nk}, not on ak. The two steps are as follows:

E-step: Qk(θ, θ0) ≡
∫ (

log fC(x, η2) +
∑
j∈Sk

wj|k log f(Yj,k |Zj,k, x, η1)
)
fak|Dk

(x | Dk) dx (15)

M-step: θ1 ≡ arg maxθ
∑
k∈SC

Qk(θ, θ0) (16)

Then, assuming sampling to be noninformative within-cluster, the usual justification of the EM

algorithm via the conditional Jensen inequality shows that, starting from an initial guess θ0 for the

true model-parameter θ∗, the EM-step (15)–(16) yields a value such that

Eθ0

(
laug.cens(θ1) − lobs.cens(θ1,D)

∣∣∣D) ≤ Eθ0

(
laug.cens(θ0) − lobs.cens(θ0,D)

∣∣∣D) (17)

Moreover, an elementary use of bracketing as in the development of empirical-process uniform laws

of large numbers, under mild restrictions of continuity of laug.cens(θ) with respect to θ, shows for
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compact neighborhoods B(θ∗) of the true parameter value θ∗

sup
θ∈B(θ∗)

1

N

∣∣∣laug.cens(θ) − lw(θ)
∣∣∣ → 0 in design- and Pθ∗ probability

and as m→∞,

sup
θ∈B(θ∗)

1

N

∣∣∣Eθ0(lw(θ) − laug.cens(θ)
∣∣∣D,S)

)∣∣∣ → 0 (18)

(See Boistard et al. 2017 on empirical process theory arising in design-based sampling, and van der

Vaart 1998, Ch. 19, as a reference on Glivenko-Cantelli-type limit theorems based on bracketing.)

As a consequence of (17)–(18), for θ0 ∈ B(θ∗) and under conditions ensuring also θ1 ∈ B(θ∗),

min
( 1

N

[
lobs.cens(θ1,D) − lobs.cens(θ0,D)

]
, 0
)
→ 0 in design- and Pθ∗ probability.

Under regularity conditions, this kind of argument justifies the fixed-point of the pseudo-EM it-

eration step (15)–(16) as an approximate stationary point of lobs.cens(θ,D). Further asymptotic

theory could be developed by regarding

Q(θ, θ0) ≡
∑
k∈SC

ωkQk(θ, θ0)

as a bivariate random process indexed by (θ, θ0). Under assumptions like those made below

in the two-level one-way random-effects ANOVA model, with both the sampling and the su-

perpopulation data independent across the large set of primary clusters, the process becomes

Q(θ, θ0) = Eθ0
{
lw(θ)

∣∣D}. At least in the case of bounded-size clusters, this process (assumed

jointly continuously differentiable in θ, θ0) can be studied by empirical process methods along the

lines of Boistard et al. 2017. Under regularity conditions, when sampling is noninformative within

clusters (but the sampling of clusters themselves might depend on ak), this EM approach can be

proved consistent. Results along these lines are supplied below in the two-level ANOVA model.

An EM algorithm iterating a step analogous to (15)–(16), but with lw(θ) replaced by a differently

weighted augmented loglikelihood closer in spirit to (13), was earlier proposed by Kim et al. (2017).

Both the pseudo-EM step (15)–(16) proposed here, and that proposed by Kim et al. (2017), integrate

conditional expectations for the log-likelihood terms from cluster k using the true conditional law

of ak given (Yj,k, Zj,k, j ∈ Sk) and k ∈ SC . Since the EM proposal of Kim et al. (2017) works

with a cluster pseudo-loglikelihood under an approximate framework making use of within-cluster

joint inclusion probabilities, we do not discuss it further here. However, the pseudo-EM method

proposed here is different from the other pseudo-loglikelihood maximizers compared below.
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If the E-step expectation Eθ0( lw(θ) | D, S) can be implemented, then this EM method which

approximates the census augmented-data loglikelihood should provide model- and design-consistent

estimates of θ, even under informative sampling. Suppose that both the superpopulation and the

sampling are independent across clusters, and that sampling is informative with respect to clusters

only, and not informative within clusters, in the sense that the conditional density of the k’th-cluster

random effect ak given k ∈ SC and {Yj,k, Zj,k}j∈Sk is proportional to fC(ak, η2) f(yj,k | zj,k, ak, η1).

Then the conditional expectation in (15)–(16) can be implemented or approximated analytically.

The pseudo-EM method described here is justified to the extent that the survey data allow accu-

rate approximation to the observable-data census loglikelihood. However, the sketched theoretical

argument above does not justify convergence of the successive EM-steps, or say anything about

the algorithm when within-cluster sampling is informative. Nevertheless, the pseudo-EM method

(15)–(16) is included as one of the competing methods to be applied to survey data satisfying a

two-level (intercept-only) analysis-of-variance model.

3 Superpopulation Two-level Analysis of Variance Model

The two-level ANOVA model mentioned in Section 1.3 was defined by

Yj,k = µ + ak + εj,k , ak
iid∼ N (0, σ2a) , εj,k

iid∼ N (0, σ2e) (19)

Under this model, the various integrals and conditional expectations defined in the competing

pseudo-loglikelihoods and EM expressions above can be rendered explicitly, and the performance

of the corresponding estimation methods compared in greater detail under different large-sample

assumptions and sampling designs.

For uniformity of notation in what follows, note that the standard Horvitz-Thompson estimators

in terms of the weights ωk, wj|k, wjk respectively of the numbers M of clusters, Nk of units within

the k’th cluster, and N of units within the finite population, are given by

M̂ =
∑
k∈SC

ωk , N̂k =
∑
j∈Sk

wj|k , N̂ =
∑

(j,k)∈S

wj,k =
∑
k∈SC

ωk N̂k (20)

Under this model, the approximate pseudo-loglikelihood and conditional expectations needed
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for the various estimation methods can be expressed explicitly. Note that under model (19),

fC(ak, η1) =
1√

2π σ2a
e−a

2
k/(2σ

2
a) , f(y |Zj,k, ak, η2) =

1√
2π σ2e

e−(y−ak−µ)
2/(2σ2

e) (21)

Substitute (21) respectively into (13) and (14) to obtain (after removing additive constants that

do not depend on parameters)

pslogLik1 =
∑
k∈SC

ωk log
{

(σe)
−N̂k σ−1a

∫
exp

(
−
∑
j∈Sk

wj|k
(Yj,k − µ− ak)2

2σ2e
−

a2k
2σ2a

)
dak

}
(22)

pslogLik2 =
∑
k∈SC

log
{

(σe)
−ωkN̂k σ−ωk

a

∫
exp

(
−
∑
j∈Sk

wj,k
(Yj,k − µ− ak)2

2σ2e
−
ωk a

2
k

2σ2a

)
dak

}
(23)

In simulations below, we also consider estimators based on a variant pslogLik0 of pslogLik1 in

which the within-cluster weights wj|k in equation (22) are replaced by 1.

Both expressions (22) and (23) can be unified within a single formula. Let γk for k ∈ SC denote

positive constants equal to 1 for the case of expression (22) and ωk for the case of expression

(23). Then both expressions have the exact form∑
k∈SC

{
− ωk N̂k

2
log σ2e −

ωk
2

log σ2a +
ωk
γk

log

∫
exp

(
− γk

2

[ ∑
j∈Sk

wj|k
(Yj,k − µ− ak)2

σ2e
+
a2k
σ2a

])
dak

}
which is written more compactly, using (5) and Lemma 3 in Appendix A, as

logL = − N̂
2

log σ2e −
M̂

2
log σ2a +

1

2

∑
k∈SC

ωk

[ 1

γk
log
( σ2a σ2e / γk
σ2e + N̂k σ2a

)
− SSWk

σ2e
−
N̂k (Ȳ w

· k − µ)2

σ2e + N̂k σ2a

]
(24)

where

SSWk ≡
∑
j∈Sk

wj|k (Yj,k − Ȳ w
· k)2 =

∑
j∈Sk

wj|k (εj,k − ε̄w·k)2 , ε̄w·k = N̂−1k

∑
j∈Sk

wj,k εj,k (25)

Note that there is only one term (the first in the square-bracketed summand) in the log-pseudolikelihood

expression (24) above where γk appears, and this is the only term differing under the two-level

ANOVA model (19) between the two log-pseudolikelihood expressions (22) and (23).

The other use made of the densities (21) is in the formula for conditional expectation of cluster

log-augmented-density with respect to ak given (Yj,k : j ∈ Sk) under the assumption of noninfor-

mative sampling within cluster. In this setting, for sk = {j1, . . . , jnk
} a nonrandom set of units

within cluster k, (3) implies

given Sk = sk and {Yj,k}j∈sk , ak ∼ N
( nk σ

2
a

σ2e + nk σ2a
(Ȳ·k − µ) ,

σ2a σ
2
e

σ2e + nk σ2a

)
(26)
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where Ȳ·k = (nk)
−1∑

j∈Sk Yj,k is the unweighted sample average in cluster k and ε̄·k

= Ȳ·k − µ − ak the corresponding average of variables εj,k sampled in cluster k, and recall that

nk = |Sk|. This standard conditional-density result follows also from Lemma 2 in Appendix A with

γ = 1, τj ≡ 1, Vj = (Yj,k − µ), and q = nk. Therefore

mrk ≡ Eθ0

(
(ak)

r
∣∣∣Sk = sk, {Yj,k}j∈sk

)
for r = 1, 2

is given by

qk,0 ≡
nk σ

2
a,0

σ2e,0 + nk σ
2
a,0

, σ2k ≡ (1− qk,0)σ2a,0 , m1k = qk,0 (Ȳ·k − µ0) , m2k = m2
1k + σ2k (27)

where 0 subscripts on parameters reflect the calculation of conditional expectations with respect

to θ0 = (µ0, σ
2
a,0, σ

2
e,0). Then, starting from (21), a line or two of algebra using (26) leads to

E
{

log
(
fC(ak, η1)

ωk
∏
j∈Sk

f(Yj,k | ak, η2)wj,k

) ∣∣∣Sk, {Yj,k}j∈Sk} = − ωk
2

log((2π)1+N̂k σ2a σ
2N̂k
e )

− ωk
2

[m2
1k + σ2k
σ2a

+ σ−2e SSWk +
N̂k

σ2e

(
(Ȳ w
·k − µ−m1k)

2 + σ2k
)]

(28)

3.1 Estimation Methods for ANOVA Model

We now proceed to develop estimating formulas under the ANOVA model for each of the (pseudo-)

likelihood and EM ideas that have been proposed, with a view to comparing the behavior of the

resulting estimators under a variety of assumptions about informative sampling. To begin, ANOVA

estimates from a sample-weighted method of moments (replacing wj|k by 1, and assuming all nk > 1

for all sampled clusters within the estimation formulas for variance components) leads to the first

set of benchmark estimation formulas, expressed in terms of residuals ej,k ≡ Yj,k − Ȳ·k :

µ̃(M) =
∑

(j,k)∈S

wj,k

N̂
Yj,k , (σ̃(M)

e )2 =
1

M̂

∑
(j,k)∈S

ωk e
2
j,k

nk − 1
, (σ̃(M)

a )2 =
∑

(j,k)∈S

wj,k
(Yj,k − µ̃)2

N̂
−(σ̃(M)

e )2

(29)

Next come estimates expressed as roots of score equations (setting gradients with respect to

parameters equal to 0) based on the logL expression (24), respectively with γk = 1 for the Rabe-

Hesketh and Skrondal pseudo-loglikelihood (13) and with γk = ωk for the pseudo-loglikelihood

(14). The two sets of estimates θ̂(L) = (µ̂, σ̂2a, σ̂
2
e) = (µ̂(L), (σ̂

(L)
a )2, (σ̂

(L)
e )2) derived from these

equations are written with superscripts θ̂(L1), θ̂(L2), and the equations simplified in terms of

ρ̂k = N̂k (σ̂(L)a )2/((σ̂(L)e )2 + N̂k (σ̂(L)a )2)
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The score equations obtained by direct differentiation of (24) are:∑
k∈SC

ωk N̂k (Ȳ w
· k − µ̂)

σ2e + N̂k σ̂2a
= 0 ,

M̂

σ̂2a
=
∑
k∈SC

[ ωk σ̂
2
e

γk σ̂2a (σ2e + N̂k σ̂2a)
+ ωk

N̂2
k (Ȳ w

· k − µ̂)2

(σ2e + N̂k σ̂2a)
2

]
N̂

σ̂2e
=
∑
k∈SC

[ ωk N̂k σ̂
2
a

γk σ̂2e (σ2e + N̂k σ̂2a)
+
ωk
σ̂4e

SSWk +
ωk N̂k (Ȳ w

· k − µ̂)2

(σ2e + N̂k σ̂2a)
2

]
After a further step of simplification with the aid of the notation ρ̂k, the two sets of score equations

for the estimates θ̂(L1) and θ̂(L2) are respectively given by substituting γk = 1 or γk = ωk into the

reduced score equations

µ̂(L) =
∑
k∈SC

ωk ρ̂k Ȳ
w
· k

/ ∑
k∈SC

ωk ρ̂k (30)

(σ̂(L)a )2 = M̂−1
∑
k∈SC

ωk

[ 1

γk
(σ̂(L)a )2 (1− ρ̂k) + ρ̂2k (Ȳ w

· k − µ̂(L))2)
]

(31)

(σ̂(L)e )2 = N̂−1
∑
k∈SC

ωk

[
SSWk +

(σ̂
(L)
e )2

γk
ρ̂k + N̂k (1− ρ̂k)2 (Ȳ w

· k − µ̂(L))2
]

(32)

The remaining estimation method is the pseudo-EM, obtained by implementing the EM-step

equation (15) and then finding its fixed point θ0 = θ1 = θ̂(EM). The sum of the expression found

in (28) is maximized as in (16) over θ = (µ, σ2a, σ
2
e) for fixed θ0, yielding the EM-equation for

θ1 = (µ1, σ
2
a,1, σ

2
e,1) as follows:

µ1 =
1

N̂

∑
(j,k)∈S

wj,k(Yj,k −m1k) , σ2a,1 =
1

M̂

∑
k∈SC

ωk(m
2
1k + σ2k) (33)

σ2e,1 =
1

N̂

∑
k∈SC

ωk

[
SSWk + N̂k

(
(Ȳ w
· k − µ1 −m1k)

2 + σ2k
)]

Now equation (33) gives only the EM-step for the pseudo-EM algorithm in the ANOVA model.

But the fixed-point θ̂(EM) = θ1 = θ0 of this iterative step is the estimator that we compare with the

θ̂(L1) and θ̂(L2) estimators defined (implicitly) above. This fixed point is defined, after substituting

θ̂(EM) for both θ0 and θ1 and a little algebra, by:

µ̂(EM) =

∑
k∈SC ωk N̂k (Ȳ w

·k − q̂kȲ·k)∑
k∈Sc ωk N̂k (1− q̂k)

, (σ̂(EM)
a )2 =

∑
k∈SC ωk q̂

2
k (Ȳ·k − µ̂(EM))2∑

k∈SC ωk q̂k
(34)

(σ̂(EM)
e )2 =

1

N̂

∑
k∈SC

ωk

[
SSWk + N̂k

(
Ȳ w
· k − q̂k Ȳ·k − (1− q̂k) µ̂(EM)

)2
+ (σ̂(EM)

e )2
N̂k q̂k
nk

]
(35)

where

q̂k ≡ nk (σ̂(EM)
a )2

/(
(σ̂(EM)
e )2 + nk (σ̂(EM)

a )2
)
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3.2 Uniqueness of Estimating Equation Solutions

The estimators described above are the weighted Method of Moments estimator θ̃(M), the maximum

weighted-pseudo-loglikelihood estimators θ̂(L1), θ̂(L2), and the pseudo-EM estimator θ̂(EM). Among

these, θ̃(M) is defined in closed form by (29), but the others must be calculated iteratively.

The maximum weighted-pseudo-loglikelihood estimators θ̂(L) are found in practice by numerical

maximization software, and the global maxima will generally be unique, but the equations (30)–

(32) used to reason about them theoretically are only necessary conditions for a stationary point

(i.e., a parameter value at which the gradient of pslogLik is 0) and will not in general be known

to be unique. Indeed, since the weighted-pseudo-loglikelihoods are not legitimate log-likelihoods

and the maximizers not generally consistent, it will not be true as in standard maximum-likelihood

theory that with high probability a unique local maximum exists in the neighborhood of the correct

parameter value. Consistency and inconsistency for these estimators is discussed in detail below.

The EM iteration defined in (33) is well defined, but is not generally guaranteed to converge. The

conjectured large-sample theory alluded to above would apply only in the setting of noninformative

within-cluster sampling, which was assumed in deriving the specific formula for the iterative step.

But in that setting, the theory leading up to Lemma 12 in Appendix A shows under regularity

conditions that with probability approaching 1 in large samples, µ̂(EM) is consistent (Lemma 10)

and the EM iteration with µ̂(EM) replaced by µ is actually a contraction (Lemma 12) converging

uniquely to (σ2a, σ
2
e). However, in general informative-sampling settings, the EM iterative equations

are somewhat sensitive to initial conditions and may not converge at all.

3.3 Consistency of Methods under the ANOVA Model

In broad outline, the results in the technical appendix imply that the Method-of-Moments and

pseudo-EM estimator are consistent under noninformative sampling within clusters and the weighted

pseudo-loglikelihood estimators are not. We study differences and similarities among the methods

for several different ways in which clusters and cluster weights might be handled. First, we consider

the case where the weights within clusters are essentially ignored, which is more or less equivalent

to ignoring all units that might have been sampled in a cluster and treating Nk = nk and wj|k = 1

for all j. This is what we should do in the interests of efficiency if we are sure that within-cluster
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sampling is non-informative and observations within cluster k are conditionally i.i.d. given ak. Sec-

ond, we consider the case where within-cluster sampling is always simple random sampling, so that

nk < Nk are non-random and wj|k ≡ Nk/nk for all j. Third, we consider the case where all Nk are

large or all nk are large.

A series of technical lemmas is proved in the Appendix, within the setting of the two-level one-

way random effects ANOVA model. All but the first two Lemmas cited below rely on regularity

conditions (C1)–(C2) given in the Appendix, the most restrictive aspect of which is that the number

of clusters sampled is assumed to be large, that the individual cluster sizes are uniformly bounded,

and that the maximum ratio of weights within clusters is also uniformly bounded.

(I) (Lemma 4:) When all nk ≡ ν > 1 have equal size , and all Nk = N/M are of equal size,

and all wj|k = Nk/nK = N/(Mν), the estimators θ̃(M) and θ̂(EM) are algebraically identical.

(II) (Lemma 6:) The estimators µ̃(M) for µ and σ̃
(M) 2
a + σ̃

(M) 2
e for σ2a + σ2e are consistent.

(III) (Lemma 10:) Under regularity conditions, and the further restriction (C3) that within-

cluster sampling is noninformative, θ̃(M) is consistent.

(IV) (Lemma 11:) Under regularity conditions and noninformative-within-cluster sampling, when

wj|k ≡ 1, θ̂(L1) is inconsistent when the relative frequency that Nk − nk > 0 is bounded

below, and θ̂(L2) is inconsistent either when the fraction of sampled clusters tends to 0 or

under conditions like constancy over k of Nk, Nk/nk that allow certain large-sample formulas

to simplify. The pseudo-loglikelihood methods are generally inconsistent even when sampling

within clusters is noninformative.

(V) (Lemma 12:) Under regularity conditions and noninformative-within-cluster sampling,

θ̂(EM) is consistent; and when also nk ≡ Nk for all k, θ̂(L1) is consistent.

4 Simulation Study

The remaining explorations in this paper consist of a simulation study with two objectives. The

first is to illustrate empirically the theoretical findings summarized in the previous section for the

setting where within-cluster sampling is assumed noninformative. The second goal is to confirm,

through a systematic simulation design allowing sample-inclusion of unit (j, k) to depend explicitly
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on ak or εj,k or both, that no available method depending on single-inclusion weights alone is

consistent under general informative sampling. The general theoretical justification that this is so

will be the subject of another paper.

4.1 Simulation Design

Our simulation design expands slightly on that of Korn and Graubard (2003). Sampling is done

hierarchically in two stages: first, clusters k are sampled either SRS or by Poisson sampling, and

in informative cases clusters with ak or |ak| above a fixed threshold are sub-sampled independently

with a fixed probability; second, units within sampled clusters are sampled either SRS or by Poisson

sampling and in informative cases, units j with εj,k or |εj,k| exceeding a threshold are subsampled

with fixed probability. In this way, the possible effects on estimator performance can be examined

of unequal sampling weights, of large versus small clusters and cluster-sampling or within-cluster

sampling fractions, and of informative sampling either at the whole-cluster or within-cluster level.

The formal simulation steps are as follows. First, the finite frame population is defined: a

number M of population clusters is specified, with population clusters of size Nk that may be fixed

or randomly selected within some bounded range; then within these clusters, the cluster random-

effects ak and unit ‘observable’ values Yj,k are specified (1 ≤ k ≤ M, 1 ≤ j ≤ Nk)) according to

the model (19). In all of the simulations reported here, M = 20, 000 and θ = (µ, σ2a, σ
2
e) = (1, 2, 3).

Next, two-stage noninformative cluster sampling is done, with fixed sampling fractions first at

whole-cluster and then at within-cluster level. At both levels, single-inclusion weights are either

fixed, in which case sampling is SRS, or are made to fall in an arithmetic progression of possible

values, in which case sampling is Poisson. Beyond this point, following the approach of Korn and

Graubard (2003), sampling of clusters is made informative in some cases by randomly subsampling

with selection probability 1/2 those sampled clusters k for which ak respectively falls outside the

range ± 0.675 · σa (symmetric subsampling criterion) or above 0.675 · σa (asymmetric cluster

subsampling criterion). (Here 0.675 is approximately the upper quartile of the standard normal

distribution.) Similarly, in those cases where informative within-cluster sampling is chosen, sampled

units within each sampled cluster are subsampled independently with probability 1/2 respectively

if their unit-level errors εj,k fall outside the range ± 0.675 · σe (symmetric subsampling criterion)

or above 0.675 · σe (asymmetric unit-within-cluster subsampling criterion). Recall that m and nk
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respectively denote the final numbers, after sampling and possible subsampling, of sampled clusters

and of sampled units within cluster k.

While the simulation specification described in the previous paragraph allows a large number of

cross-classified factorial parameter-combinations, we describe results for only 20 of them, grouped

according to magnitude and uniformity of sizes of clusters, and of noninformative or informative

sampling at the two (cluster and within-cluster) levels, by symmetric or asymmetric subsampling

criteria. These choices are guided by the theoretical results of Section 3, with the objective of

distinguishing the behavior of the different estimation methods studied. Within each parameter

setting, a single superpopulation is newly generated along with R = 5000 samples drawn. The

large number of replications within each generated superpopulation is intended to ensure that

large-sample survey-estimators work reliably. Generation of 2 or more superpopulations for each

parameter and design combination, not all shown, then confirmed that the large-sample limits are

nearly constant across superpopulations. Some of the similar superpopulations displayed among

Runs 1-20 in Table 1 differ only in allowing slightly varying random weights in place of constant

(SRS) weights [the base-weights in the basic design, before possible informative subsampling]. This

is how noninformative-sampling Runs 2, 4 respectively differ from Runs 1, 3, and how informative-

sampling Runs 18-20 respectively differ from their constant base-weight counterparts 15-17.

The simulation results consist of means and standard deviations across Monte-Carlo replicated

samples of estimates of parameter θ for each of the methods of estimation studied in this paper:

Method of Moments (29), maximum-psLik1 for within-cluster weights replaced by wj|k = 1 (a

method we denote psLik0), maximum-psLik1 and maximum-psLik2 as given in (30)–(32) for two

different choices of γk, and pseudo-EM as defined in (34)–(35).

The various authors who have written on this topic have chosen a number of different, and

sometimes idiosyncratic, approaches to simulating superpopulations and informative samples. Some

of those informative designs are complicated enough that it is difficult to formulate intuitions about

what can go wrong in survey-weighted procedures. We follow the fairly simple idea of Korn and

Graubard (2003) for simulation of aggressively informative sampling, modifying that idea to make

the designs factorial with respect to choices of numbers, sizes and uniformity of weights of population

clusters; sizes and uniformity of weights for sampling within clusters; and a fairly restricted set of

types of informative sampling either at cluster or within-cluster levels or both. The particular
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Table 1: Characteristics of 20 simulation runs, all based on M = 20, 000 superpopulation clusters.

CInf=T denotes subsampling (at rate 0.5) for informative cluster sampling, CIsym=T if informative

subsampling was symmetrically based on ak. Within clusters, WInf=T indicates informative sub-

sampling (rate 0.5), and WIsym=T if symmetrically based on εj,k. Final 3 columns are population

method of moments estimators, the targets for parameter estimates for each run.

Run med(m) med(Nk) med(nk) CInf WInf CIsym WIsym µ σ2a σ2e

1 200 100 50 F F * * 0.9787 2.0268 3.0015

2 200 100 50 F F * * 1.0030 2.0118 3.0050

3 200 40 20 F F * * 1.0056 1.9446 3.0018

4 200 40 20 F F * * 1.0086 1.9666 2.9941

5 200 21 4.2 F F * * 1.0022 1.9988 3.0091

6 200 24 4.8 F F * * 0.9947 2.0004 2.9947

7 150 90 36 T F T * 1.0034 1.9706 2.9931

8 150 90 36 T F F * 0.9907 1.9947 3.0030

9 150 12 5 T F T * 0.9987 1.9996 2.9924

10 150 12 5 T F F * 1.0169 1.9869 3.0086

11 200 90 27 F T * T 1.0028 1.9867 2.9989

12 200 90 27 F T * F 0.9901 2.0107 2.9991

13 200 30 11.25 F T * T 1.0035 1.9930 2.9979

14 200 36 13.5 F T * F 1.0063 1.9965 2.9940

15 150 160 60 T T T T 0.9934 1.9983 2.9999

16 150 80 24 T T T T 0.9985 1.9908 2.9989

17 150 40 12 T T T T 1.0107 2.0291 2.9935

18 150 160 60 T T T T 1.0043 2.0075 3.0023

19 150 80 24 T T T T 0.9816 2.0054 2.9954

20 150 46 13.8 T T T T 0.9839 1.9808 3.0041
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objectives here are to corroborate the theoretical results of Section 3.3 in the various cases where

sampling is noninformative within clusters, and to assess whether any of these methods based only

on single-inclusion weights performs adequately when sampling within clusters is informative.

4.2 Simulation Results

Twenty different simulation scenarios were investigated, each based on a newly generated super-

population of M = 20, 000 clusters, with θ = (µ, σ2a, σ
2
e) = (1, 2, 3) in model (19), within each of

which R = 5000 Monte Carlo samples were drawn according to the designs described in Section 4.1.

Parameters characterizing the simulations, especially with respect to informative subsampling at

or within cluster level, are displayed in Table 1. In addition, since the target parameters for each

run reflect the super-population θ estimates for that run rather than the ‘true’ parameter values,

the superpopulation method-of-moments estimates for (µ, σ2a, σ
2
e) are given in the final columns of

Table 1. (The super-populations are large enough that the distinction between moment and ML

estimates of θ can be ignored.) Precise description of the runs with non-constant sampling weights

at or within cluster level (of which there are a few: Runs 2, 4, and 18-20, corresponding to other-

wise identical Runs 1,3, and 15-17 with constant base-weights) is mostly omitted, since the design

feature of varying weights turned out to be unimportant for consistency behavior of the estimators

studied. (This is confirmed in the Run 1-2 columns of Table 2 and the Run 15-20 rows of Table 4.

Table 2: Monte Carlo averages of estimates over 5000 replicated samples within Simulation Runs

1, 2, 7 and 8 – those with large superpopulation and sampled clusters and noninformative sampling

within clusters. Superpopulation target parameters are given in final row, labeled Popn. Entries

with standardized discrepancies larger than 6 are in boldface.

Run 1 Run 2 Run 7 Run 8

Ests µ σ2
a σ2

e µ σ2
a σ2

e µ σ2
a σ2

e µ σ2
a σ2

e

MMom 0.977 2.015 3.001 1.003 1.994 3.005 1.004 1.942 2.992 0.987 1.978 3.004

psL0 0.977 2.015 3.001 1.004 1.997 3.006 1.003 1.951 2.992 0.988 1.981 3.003

psL1 0.977 2.045 2.971 1.004 2.035 2.967 1.003 2.004 2.942 0.988 2.034 2.952

psL2 0.977 2.016 2.942 1.004 2.005 2.938 1.003 1.971 2.910 0.988 2.000 2.920

psEM 0.977 2.015 3.001 0.985 2.065 3.005 1.004 1.951 2.992 0.988 1.981 3.003

Popn 0.978 2.027 3.001 1.003 2.012 3.005 1.003 1.971 2.993 0.991 1.995 3.003
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Since finite-sample biases in MLEs do exist, especially for variance estimates, runs with as

many as 5000 simulation iterations may appear to signal inconsistent estimates. In our present

evaluations of Tables 2 to 4, we apply the rule of thumb that standardized discrepancies, defined

equal to differences between estimates and population targets of less than 6 measured in units of

Monte Carlo standard deviations divided by
√

5000, are acceptable. Thus, entries in the Tables

with standardized discrepancies of more than 6 are bolded. Note also that the biases in σ2a and σ2e

always have opposite signs.

When clusters are large and sampling is noninformative at all levels, all of the estimation

methods are reasonably accurate. This behavior persists when sampling of clusters is informative

but sampling within clusters is noninformative. The simulation results can be seen in Table 2, where

Monte Carlo averages of estimates are shown for Runs 1, 2, 7 and 8. In this Table, and in all others

with noninformative sampling within clusters, Method of Moments MMom, the pseudolikelihood

estimator psL0 replacing wj|k by 1, and pseudo-EM (psEM) are generally accurate within Monte

Carlo sampling error, as theory suggests. The pseudolikelihood estimators psL1 and psL2 are also

not far off in absolute terms, although their estimates of σ2e are too low by more than 6 standard

errors. This behavior becomes much more dramatic when the clusters are much smaller, as can be

seen in Table 3. In other simulations related to that Table, numerical experience shows that the

smallness of cluster sample sizes matters much more than the within-cluster sampling fractions.

Table 3: Monte Carlo averaged estimates over 5000 samples in Simulation Runs 3, 9, 10, with small

clusters in superpopulation and sample, and noninformative within-cluster sampling. Superpopu-

lation targets in Popn row. Entries with standardized discrepancies larger than 6 are bolded.

Run 3 Run 9 Run 10

Ests µ σ2a σ2e µ σ2a σ2e µ σ2a σ2e

MMom 0.996 1.987 2.995 0.997 1.976 2.992 1.015 1.969 3.010

psL0 0.995 1.986 2.994 0.997 1.976 2.992 1.015 1.969 3.010

psL1 0.994 2.531 2.471 0.997 2.356 2.611 1.015 2.352 2.627

psL2 0.994 2.428 2.373 0.997 2.154 2.415 1.015 2.148 2.429

psEM 0.995 1.986 2.994 0.997 1.976 2.992 1.015 1.969 3.010

Popn 1.006 1.945 3.002 0.999 2.000 2.992 1.017 1.987 3.009
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Table 4: Averaged estimates of σ2a and Standardized Discrepancies (Z) over 5000 samples in Simu-

lation Runs 11–20 informative within-cluster. Superpopulation targets given in Popn column.

Run MMom Z psL0 Z psL1 Z psL2 Z psEM Z Popn

11 2.834 21.14 1.975 -0.41 2.103 3.91 2.070 2.84 1.976 -0.38 1.987

12 2.211 6.40 1.998 -0.43 2.098 2.96 2.065 1.85 ∞ * 2.011

13 2.837 21.03 1.982 -0.41 2.261 8.38 2.170 5.78 1.923 -2.57 1.993

14 2.190 6.25 1.979 -0.62 2.156 5.24 2.078 2.76 ∞ * 1.997

15 2.829 20.76 1.974 -0.88 2.028 1.05 2.010 0.39 2.101 3.46 1.998

16 2.822 20.83 1.968 -0.81 2.113 4.09 2.076 2.91 1.979 -0.42 1.991

17 2.869 20.70 2.014 -0.52 2.301 8.35 2.231 6.40 1.969 -2.15 2.029

18 2.844 20.80 1.987 -0.74 2.042 1.19 2.023 0.55 2.105 3.28 2.008

19 2.836 20.71 1.981 -0.86 2.126 4.00 2.089 2.84 1.991 -0.50 2.005

20 2.815 20.96 1.965 -0.56 2.214 7.44 2.152 5.63 1.928 -1.93 1.981

These results are generally in line with the theoretical predictions of Section 3.3 for designs

that are noninformative within clusters. When the simulation parameters allow informative sam-

pling within clusters, the theory did not give a clear guide. Table 4 displays the estimates and

standardized discrepancies for the estimates of σ2a in simulation runs 11–20 (parameters of which

were given above, in Table 1), together with their standardized discrepancies. Runs 11 and 13

respectively were cases of superpopulations with larger and smaller clusters where sampling within

clusters was informative (subsampled according to the symmetric criterion |εj,k| > 0.675σe) while

sampling of clusters was noninformative. In these runs, psL0 was surprisingly accurate with psEM

only slightly less so, and MMom was heavily biased; while psL1 and psL2 were only slightly upwardly

biased in run 11 and more markedly so in run 13. In runs 12 and 14, which were like 11 and 13

except that informative within-cluster subsampling was based on the asymmetric criterion εj,k > 0,

method psL0 was quite good, psL1 and psL2 only slightly worse, and MMom awful. Here the psEM

method broke down in the sense that its µ and σ2a estimates converged to large (essentially infinite)

values. The failure of the EM iterations in runs 12 and 14 was not an artifact based on the choice

of starting values, but rather reflects the fact that the EM equations (34)–(35) do in some settings

have fixed points with infinite parameter values to which the iterative EMsteps (33) converge. It is
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not clear what other informative designs might cause similar unpleasant behavior in pseudo-EM.

In the remaining runs covered in Table 4, sampling was informative (by a symmetric sub-

sampling criterion) at both the cluster and within-cluster levels. In these superpopulations and

sampling designs, psL0 holds up as a surprisingly effective method, while MMom is again completely

inappropriate. For unclear reasons, psEM fares clearly worse than psL1 and psL2 in the runs (15

and 18) with larger clusters, but better than psL1 and psL2 with medium and small clusters.

All of the unequal-weight simulations in Table 1 made use of very symmetric patterns of weights

and either SRS or Poisson sampling before iid subsampling. This allows psL0 to shine to undeserved

advantage. However, since psL0 ignores the within-cluster survey weights, completely noninforma-

tive sampling designs with strongly unequal within-cluster weights could be used to show why psL0

is not generally actually an accurate estimation method. Since many classic survey methodol-

ogy references have discussed the inadmissibility of estimates that ignore strongly unequal survey

weights, we do not pursue that issue in the simulations reported here.

5 Conclusions

There are many different and general forms of informative sampling that go well beyond those

studied in this paper, but those covered here are already enough to show that no existing method

based only on single-inclusion weighting performs adequately in general informative settings. The

method psL0 ignoring within-cluster weights is the single best performer in all of the simulations

provided here, since it like psEM provides consistent estimators whenever sampling is noninfor-

mative within clusters, but for obscure reasons psL0 continued with near-consistent results in all

of the within-cluster-informative simulation runs (11–20) of Table 1. Perhaps realistic informa-

tive sampling is in some ways less drastic than the artificial designs simulated here, but it seems

unwise to rely on methods like psL0 guaranteed to work well only when there is noninformative

sampling within clusters. The pseudo-EM method advanced in this paper is also not adequate,

although it seems to outperform the other methods under the symmetric informative designs stud-

ied. On the other hand, when the conditional expectations in the EM are calculated subject to

noninformative-within-cluster assumptions, the pseudo-EM iterates can converge to fixed-points

with infinite parameter values in the two-level ANOVA model. It seems advisable to develop meth-
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ods in which the informative-within-cluster selection mechanism is modeled. Even a simplistic and

misspecified model may avoid the bad behavior seen here, and may be adequate in many realistic

settings with informative sampling. Kim et al. (2017) and Savitsky and Williams (2018) in differ-

ent ways already considered ways in which informative-missing models might be incorporated into

their estimation procedures, and doing the pseudo-EM conditional expectations subject to simple

parametric models for selection bias is also a topic for further research.

Unpublished research by the author rules out the possibility that a method of estimation de-

pending only on single-inclusion weights could be model- and design- consistent in general super-

population two-level models in which the superpopulation data as well as the sampling mechanism

are independent across clusters. The evidence from the two-level ANOVA in this paper is that none

of the methods simulated can achieve this consistency, since the best-performing method psL0 can

easily be made to fail with unequal-weight within-cluster sample designs.

The variances and efficiency of survey estimates for superpopulation models with mixed-effect

cluster-level random effects have not been studied at all in this paper. Other researchers have

considered variance behavior of survey estimates in that setting, but the theme of this paper has

been that all estimators based on single-inclusion weights are generally biased under informative

sampling, so that large-sample variances can be understood usefully only under somewhat restrictive

assumptions on the informative-sampling mechanism.
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A Technical Lemmas

A.1 Conditional Distributions and Normal Integral Formulas

Derivations related to the normal two-level ANOVA model (19), and to algebraic manipulations of

the pseudo-loglikelihoods and associated estimators, are collected in this Appendix.

Lemma 1 Let γ > 0 and q be a positive integer, let τ = (τ1, . . . , τq) ∈ Rq have all positive entries,

and define the entries of a q × q matrix G for j, l = 1, . . . , q by

Gj,l =
σ2e
γ τj

I[j=l] +
σ2a
γ

Then G is positive-definite with inverse G−1 defined by the entries

(G−1)j,l =
γ τj
σ2e

I[j=l] −
γ σ2a τj τl

σ2e (σ2e + ‖τ‖1 σ2a)
(36)

where ‖τ‖1 ≡
∑q

j=1 τj.
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Proof. The matrix G is the sum of a positive-definite diagonal matrix and a nonnegative-definite

rank-1 matrix, both symmetric. So G is invertible, and an easy calculation shows that G right-

multiplied by the matrix defined on the right-hand side of (36) is the q × q identity matrix. 2

Lemma 2 Let γ > 0, q be a positive integer, A ∼ N (0, σ2a/γ) be a random variable, τ =

(τ1, . . . , τq) ∈ Rq be a vector with all positive entries, and Vj for j = 1, . . . , q be random variables

such that Vj − A ∼ N (0, σ2e/(γ τj)) are jointly independent of one another and of A. Then

V ≡ (Vj : j = 1, . . . , q) ∼ N (0, G), where G is the same as in Lemma 1. Moreover,

conditional density of A given V is N
( q∑
j=1

τj σ
2
a Vj

σ2e + ‖τ‖1 σ2a
,

σ2a σ
2
e

γ (σ2e + ‖τ‖1 σ2a)

)
(37)

Proof. First, V is evidently a multivariate-normal random-vector, the sum of independent multivari-

ate-normal vectors (V1−A, . . . , Vq−A) and A1, and V therefore has mean 0 and covariance-matrix

G, where 1 ∈ Rq is the vector with all entries 1. Next, V and A are jointly multivariate-normal,

so that A is conditionally normal given V and that A∗ = A −
∑q

l=1 τl σ
2
a Vl/(σ

2
e + ‖τ‖1 σ2a) is

independent of V once it is verified that cov(A∗, Vj) = 0 for each j = 1, . . . , q. But this is an easy

calculation:

cov(A, Vj)−
q∑
l=1

cov(
τl σ

2
a Vl

σ2e + ‖τ‖1 σ2a
, Vj) = var(A)−

q∑
l=1

τl σ
2
a Gj.l

σ2e + ‖τ‖1 σ2a
=

σ2a
γ
− (σ2a (σ2e + ‖τ‖1σ2a)

γ (σ2e + ‖τ‖1 σ2a)
= 0

Since A∗ is independent of V , we find E(A |V ) as given in (37), and the conditional variance is

calculated as var(A |V ) = var(A∗ |V ) = var(A∗), with

var(A∗) = var(A)− var
( q∑
j=1

τj σ
2
a Vj

σ2e + ‖τ‖1 σ2a

)
=

σ2a
γ
− σ4a

(σ2e + ‖τ‖1 σ2a)2
τ ′G τ

=
σ2a
γ

[
1 − σ2a

(σ2e + ‖τ‖1 σ2a)2
(
σ2e ‖τ‖1 + σ2a ‖τ‖21

) ]
=

σ2a σ
2
e

γ (σ2e + ‖τ‖1 σ2a)
2

The next Lemma applies the previous calculations with fixed k ∈ {1, . . . ,M}, q ≡ nk,

τ (k) ≡ τ = (wj|k, j = 1, . . . , nk), where without loss of generality the elements of Uk are re-ordered

so that the first nk = |Sk| elements are those of Sk. With those choices, note that ‖τ (k)‖1 = N̂k.

Next, γ is replaced by γk chosen equal either to 1 or ωk respectively in considering pslogLik1 and
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pslogLik2 from Section 1.4. The matrix G and its inverse in Lemma 1 become

G(k) =
σ2e
γk

Diag(1/τ (k)) +
σ2a
γk

, G(k)−1 =
γk
σ2e

{
Diag(τ (k)) − σ2a

σ2e + N̂k σ2a
(τ (k)) (τ (k))′

}
(38)

where Diag(v) denotes the diagonal matrix with vector v along the diagonal, and 1/v denotes the

vector of reciprocals of the components of vector v. Note also that in the notations of Lemma 2,

A = ak and Vj = Yj,k − µ.

Lemma 3 Let γk > 0 for all k = 1, . . . ,M , and let nk and wj|k be as in Section 1.1. Then for

each k, ∫ ∞
−∞

exp
(
− γk

2σ2e

∑
j∈Sk

wj|k (Yj,k − µ− ak)2 −
γk a

2
k

2σ2a

)
dak = (39)

√
2π
( σ2a σ2e / γk
σ2e + N̂k σ2a

)1/2
exp

(
− γk

2

[ 1

σ2e

∑
j∈Sk

wj|k (Yj,k − Ȳ w
· k)2 +

N̂k

σ2e + N̂k σ2a
(Ȳ w
· k − µ)2

])
where Ȳ w

· k ≡ (N̂k)
−1∑

j∈Sk wj|kYj,k and N̂k =
∑

j∈Sk wj|k is as defined in (5).

Proof. First, by Lemma 2, the logarithm of the exponent of the joint density of V and A

(evaluated at V ,A) is equal to

− γ A
2

2σ2a
−

q∑
j=1

γ τj
2σ2e

(Vj −A)2 = − 1

2
V ′ (G(k))−1 V − γ (σ2e + ‖τ‖1 σ2a)

2σ2a σ
2
e

(
A−

q∑
j=1

τj σ
2
a Vj

σ2e + ‖τ‖1 σ2a

)2
Now substituting Vj = Yj,k − µ and ak = A, in addition to the other substitutions above (38),

we find immediately that the integral in the first line of (39) is equal to

√
2π
( σ2a σ2e / γk
σ2e + N̂k σ2a

)1/2
exp

(
− 1

2
V ′ (G(k))−1 V

)
(40)

Moreover, the exponent in the last expression, after substitution of (38), becomes

− 1

2

∑
j,l∈Sk

(Yj,k − µ) (Yl,k − µ)
γk
σ2e

{
wj|k I[j=l] −

σ2a

σ2e + N̂k σ2a
wj|k wl,k

}

= − γk
2σ2e

[ ∑
j∈Sk

wj|k(Yj,k − µ)2 − σ2a

σ2e + N̂k σ2a

( ∑
j∈Sk

wj|k (Ȳ w
· k − µ)

)2]
After expanding the square in the first square-bracketed summation and subtracting and adding

Ȳ w
· k inside (Yj,k − µ)2, the last displayed formula becomes equal to

− γk
2σ2e

[ ∑
j∈Sk

wj|k(Yj,k − Ȳ w
· k)2 + N̂k (Ȳ w

· k − µ)2 −
σ2a N̂

2
k

σ2e + N̂k σ2a
(Ȳ w
· k − µ)2

]
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Thus in (40), it has been shown that

− 1

2
V ′ (G(k))−1 V = − γk

2

[ 1

σ2e

∑
j∈Sk

wj|k(Yj,k − Ȳ w
· k)2 +

N̂k

σ2e + N̂k σ2a
(Ȳ w
· k − µ)2

]
and the integral expression in the first line of (39) has been proved equal to the second line. 2

Lemma 3 will be applied twice, to simplify expressions in the pseudo-loglikelihoods pslogLik1 and

pslogLik2 that will be used to derive corresponding estimators in the ANOVA model. To help

reduce the length of expressions, define (as in (25) in the main text),

SSWk =
∑
j∈Sk

wj|k (Yj,k − Ȳ w
· k)2

A.2 Equivalence of Moment and EM Estimators

In order to connect the pseudo-EM and Method of Moments estimators, begin with general nota-

tions. Recalling the definition of SSWk from the last line of Section A.1 or (25) in Section 3, now

define within and between weighted variance expressions, as follows:

V̂W =
1

N̂

∑
(j,k)∈S

wj,k (Yj,k − Ȳ w
·k )2 =

∑
k∈SC

ωk

N̂
SSWk , V̂B =

1

N̂

∑
k∈SC

ωk N̂k (Ȳ w
·k − µ̃(M))2 (41)

The equivalence result developed in this section holds exactly only in the case of identical-

sized clusters and constant within-cluster weights. In this result, no restriction is placed on the

informativeness of the sampling design.

Lemma 4 In the two-level ANOVA model setting of Section 3.1, assume in addition that

for all k = 1, . . . ,M : nk ≡ ν , Nk ≡
N

M
, and for all j = 1, . . . , Nk, wj|k ≡

Nk

nk

with ν > 1. Then the estimators θ̃(M) defined in (29) and the pseudo-EM estimators θ̂(EM) defined

by (34)–(35) are algebraically identical.

Proof. First, note under the assumed constancy of cluster-size and within-cluster weights, respec-

tively that q̂k ≡ ν (σ̂
(EM)
a )2/

[
(σ

(EM)
a )2 +ν (σ̂

(EM)
a )2

]
≡ q̂ does not vary with k, and that Ȳ·k ≡ Ȳ w

· k

for all k. Then (34) immediately yields

µ̂(EM) =

∑
k∈SC ωk N̂k (Ȳ w

· k − q̂Ȳ·k)∑
k∈SC ωk N̂k (1− q̂)

=

∑
k∈SC ωk N̂k (1− q̂) Ȳ w

· k∑
k∈SC ωk N̂k (1− q̂)

=

∑
(j,k)∈S wj,k Yj,k

N̂
= µ̃(M)
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Next, note that N̂k = Nk does not vary with k, and therefore N̂ =
∑

k∈SC ωkNk = NM̂/M , and

check directly from (29) that

V̂W =
ν − 1

ν M̂

∑
k∈SC

ωk var({Yj,k : j ∈ Sk}) =
ν − 1

ν
(σ̃(M)
e )2

where var(·) denotes sample variance. Formula (34) then shows that

(σ̂(EM)
a )2 =

q̂

M̂

∑
k∈SC

ωk (Ȳ·k − µ̂(M))2 = q̂ V̂B (42)

while formula (35), followed by substitution of (42), gives

(σ̂(EM)
e )2 = V̂W + (1− q̂)2 V̂B + (σ̂(EM)

a )2 (1− q̂) = V̂W + (1− q̂) V̂B (43)

Now using (42) again,

q̂ =
(σ̂

(EM)
a )2

(σ̂
(EM)
a )2 + (σ̂

(EM)
e )2/ν

=⇒ (1− q̂) V̂B = (1− q̂)
(

(σ̂(EM)
a )2 + (σ̂(EM)

e )2/ν
)

=
(σ̂

(EM)
e )2

ν

and substituting this last expression into (43) shows

(σ̂(EM)
e )2 = V̂W + (σ̂(EM)

e )2/ν =⇒ (σ̂(EM)
e )2 =

ν

ν − 1
V̂W = (σ̃(M)

e )2

Finally, the equality (σ̂
(EM)
a )2 = (σ̃

(M)
a )2 follows from the observation that

(σ̃(M)
a )2 + (σ̃(M)

e )2 =
1

N̂

∑
(j,k)∈S

wj,k (Yj,k − µ̃(M))2 = V̂W + V̂B

together with formulas (42)–(43) showing (σ̂
(EM)
a )2 = q̂ V̂B = V̂W + V̂B − (σ̂

(EM)
e )2. 2

A.3 Limits of Estimators in Large ANOVA-model Samples

The results in this section provide large-sample limits for large N of estimators within the very

special setting of Sections 1.1 and 3.1. That is, the two-level ANOVA superpopulation model (19)

with unknown parameter θ = (µ, σ2a, σ
2
e) is assumed, where the iid sequence {ak : k = 1, . . . ,M}

is independent of the iid array {εj,k : (j, k) ∈ U}, and conditionally given these superpopulation

variables, the sampling design may be informative, but for each k, (ωk, I[k∈SC ], wj|k, I[j∈Sk])

may depend on ak and {Yj,k}Nk
j=1. The case where within-cluster sampling is informative will be

considered separately from the noninformative case (11).
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Throughout the Section, a few more technical assumptions on the sample designs and the range

of allowed sampling weights are needed, to simplify the proofs of laws of large numbers. Let m,n, nk

be (possibly random) numbers of sampled clusters and units within cluster (assumed to be defined

for all clusters, whether sampled or not) as defined in (7). All limits are taken as population size

N →∞, and the conditions imposed on (possibly random) weights will be seen to ensure that the

overall numbers of sampled clusters and units tend to infinity (in design probability).

(C1). The sample design is such that

(i) (ωk, I[k∈SC ],Sk = sk) are independent across k ∈ {1, . . . ,M}, and may depend on ak,

(ii) For each k = 1, . . . ,M , given (ak, ωk, I[k∈SC ],Sk = sk), Yj,k ∼ N (µ+ ak, σ
2
e) for j ∈ sk.

(C2). There are positive constants m(0), n
(0)
k , K0, K1, K2 such that as N →∞,

(o) E(m) → ∞,

(i) maxk=1,...,M Nk ≤ K3,

(ii) for all k = 1, . . . ,M, 1/K2 ≤ ωkm
(0)/M ≤ K2, with probability 1, and

(iii) for all (j, k) ∈ U , 1/K1 ≤ wj|k n
(0)
k /Nk ≤ K1, with probability 1.

With these assumptions in place, the distinction between designs informative versus nonin-

formative within cluster is simply that wj|k is allowed to depend on Yj,k (as well as ak) in the

informative case, while (wj|k, j = 1, . . . , Nk) is assumed independent of {Yl,k : l = 1, . . . , Nk} in

the noninformative case.

The next two Lemmas provide basic laws of large numbers under which these Poisson-sampled

cluster designs lead to growing samples with design-consistent Horvitz-Thompson estimators.

Lemma 5 Assume the two-level ANOVA superpopulation model (19) and conditions (C1)–(C2)

on the sampling design. Then as N →∞,

(a) m(0) →∞ and n(0) =
∑M

k=1 n
(0)
k →∞, and m,n→∞ in design probability,

(b) M̂/M → 1 and N̂/N → 1 in design probability, and

(c) for r = 1, 2, N̂−1
∑

(j,k)∈S wj,k a
r
k → σ2a I[r=2] and N̂−1

∑
(j,k)∈S wj,k ε

r
j,k → σ2e I[r=2]

in design and model probability.
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Proof. First, in (a),

m(0) =
m(0)

M

M∑
k=1

E(ωk I[k∈SC ]) = E(
∑
k∈SC

ωkm
(0)

M
)

and then (C2)(ii) immediately implies that E(m)/m(0) differs from 1 by at most a factor K2,

implying that n(0) ≥ m(0) →∞ by (C1)(o). Similarly, by (C2)(iii),

n(0) =

M∑
k=1

n
(0)
k

Nk

Nk∑
j=1

E(wj|kI[k∈Sk]) =

M∑
k=1

E(
∑
j∈Sk

wj|k n
(0)
k

Nk
)

differs from E(n) =
∑M

k=1E(nk) by a factor at most K1, as does n
(0)
k fron E(nk). Thus

E(m), E(n) → ∞, and both n, m converge to ∞ in design probability.

Assertions (b) concern Horvitz-Thompson estimators. The average M̂/M = M−1
∑M

k=1 ωk I[k∈SC ]

of independent variables has mean 1, since P (k ∈ SC |ωk) = 1/ωk. Also, the variance of M̂/M is

M−2
M∑
k=1

Var(ωk I[k∈SC ]) ≤ M−2
M∑
k=1

E
(
ω2
k E(I[k∈SC ] |ωk)

)
= M−2

M∑
k=1

M

m(0)
E(
ωkm

(0)

M
) ≤ K1

m(0)

which converges to 0 by part (a). Thus the weak law of large numbers M̂/M → 1 holds by

Chebychev’s inequality. The proof that N̂/N → 1 is completely analogous and is omitted.

By (b), it suffices to prove (c) with denominator N replacing N̂ . By assumption, the variables

Bk =

Nk∑
j=1

I[(j,k)∈S]wj,k a
r
k = I[k∈SC ] ωk

Nk∑
j=1

wj|k a
r
k = I[k∈SC ] ωk N̂k a

r
k

are independent across k = 1, . . . ,M . Since P ((j, k) ∈ S |ωk, ak Y k) = 1/wj,k, for r = 1, 2,

E(Bk) = Nk E(ark) = Nk σ
2
a I[r=2] , Var(N−1

M∑
k=1

Bk) ≤ N−2
M∑
k=1

E(I[k∈SC ] ω
2
kN̂

2
k a

2r
k )

Therefore, E(N−1
∑M

k=1Bk) = σ2a I[r=2], and by (C.2)

Var(N−1
M∑
k=1

Bk) ≤ N−2K2
3

M∑
k=1

E(ωk a
2r
k ) ≤ N−2K2

3 K1, (M/m(0)
M∑
k=1

E(a2rk )

is upper-bounded by a constant divided by m(0), where m(0) →∞ by part (a). The first convergence

in design probability in (c) follows by Chebychev’s inequality. The second convergence assertion

concerns the sum of the independent variables

B∗k =

Nk∑
j=1

I[(j,k)∈S]wj,k ε
r
j,k = ωk I[k∈SC ]

Nk∑
j=1

I[j∈Sk]wj|k ε
r
j,k
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which for r = 1, 2 have expectations Nk I[r=2] σ
2
e . By similar reasoning to the first part of (c),

E(N−1
∑M

k=1B
∗
k) = I[r=2] σ

2
e , and

Var(N−1
M∑
k=1

B∗k) ≤ N−2
M∑
k=1

Nk∑
j=1

E
(
ωk max

j
w2
j|k ε

2r
)

≤ M2

N2m(0)
K2

1 K2E
( 1

M

M∑
k=1

N3
k

(n
(0)
k )2

ε2rj,k

)
≤ C/m(0)

for a constant C, and the Chebychev inequality again implies the result. 2

Other Horvitz-Thompson estimators based on the weights wj,k will also be design-consistent

under the same assumptions, whether or not sampling is informative. An immediate corollary can

be drawn concerning partial consistency of θ̃.

Lemma 6 Under the same assumptions as Lemma 5, the estimators µ̃(M) and (σ̃
(M)
a )2 + (σ̃

(M)
e )2

are respectively design and model consistent for µ and σ2a + σ2e .

Proof. By definition of the estimators θ̃(M) in (29), under model (19),

µ̃(M) − µ = N̂−1
∑

(j,k)∈S

wj,k (ak + εj,k) → 0

according to Lemma 5(c). An analogous argument based on Chebychev’s inequality shows that

(σ̃(M)
a )2 + (σ̃(M)

e )2 ≡ N̂−1
∑

(j,k)∈S

wj,k (ak + εj,k)
2 → σ2a + σ2e

since the right-hand side is the expectation of the left-hand side, and the variance is upper-bounded

by a constant divided by m(0). 2

A.3.1 Noninformative Within-Cluster Sample Designs

The requirement (11) that within-cluster sampling be noninformative implies conditional indepen-

dence of {Yj,k : j ∈ Sk} and Sk given ak, [k ∈ SC ]. The sampling design variables (ωk, I[k∈SC ],

Sk = sk) are independent across clusters k ∈ {1, . . . ,M} (although they may depend on ak), and

given these variables, {Yj,k : j ∈ sk} is an iid N (µ + ak, σ
2
e) distributed sequence of random

variables. Thus the assumptions will be as before, with the addition of

(C3). (i) (ωk, Sk) are independent across k ∈ {1, . . . ,M}, but may depend on ak,
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(ii) (wj|k, j = 1, . . . , Nk) do not depend on variables (ak, Y k), and

(iii) given ak and the variables in (i) above, with Sk = sk, {Yj,k : j ∈ sk} is an iid N (µ+ak, σ
2
e)

distributed sequence of random variables.

Analogous to Lemma 5, the next Lemmas establish law-of-large-numbers limits under assump-

tion (C3) of noninformative sampling within clusters. All convergences
P−→ are in model and

design probability.

Lemma 7 Assume the two-level ANOVA superpopulation model (19) and conditions (C1)–(C3)

on the sampling design. Let g : R4 → R be a continuous function such that the family of random

variables g(N̂k, nk, Ȳ
w
· k , Ȳ·k) have second moments uniformly bounded with respect to k = 1, . . . ,M .

By the assumptions, these variables are also independent. Then as N →∞,

N−1
∑

k∈SC ωk
(
g(N̂k, nk, Ȳ

w
· k , Ȳ·k) − Eg(N̂k, nk, Ȳ

w
· k , Ȳ·k)

) P−→ 0

Proof. Let Tk = g(N̂k, nk, Ȳ
w
· k , Ȳ·k) − Eg(N̂k, nk, Ȳ

w
· k , Ȳ·k) and Xk = I[k∈SC ] ωk Tk. The

summand variables Xk are independent, have expectation 0, and by (C2)(ii)

Var(N−1
M∑
k=1

Xk) ≤
1

N2

M∑
k=1

E
[
I[k∈SC ] ω

2
k T

2
k

]
=

1

N2

M∑
k=1

E
[
ωk T

2
k

]
≤ K2M

2

m(0)N2
max

k=1,...,M
E(T 2

k )

which is bounded by a constant overm(0), and therefore→ 0 asN →∞. By Chebychev’s inequality,

the Lemma is proved. 2

Lemma 8 For k = 1, . . . ,M , define rk ≡
∑

j∈Sk w
2
j|k/N̂k, and assume (C2). Then for all k,

N̂k/nk ≤ rk ≤ K2
1 N̂k nk/(n

(0)
k )2, where K1, n

(0)
k are as in (C2)(iii).

Proof. The first inequality is Cauchy-Schwarz applied to (
∑

j∈Sk wj|k)
2, and the second is imme-

diate from (C2)(iii). 2

Lemma 9 Assume the two-level ANOVA superpopulation model (19) and conditions (C1)–(C3)

on the sampling design. Then uniformly on D ≡ {(ξ, ζ) ∈ (R+)2 : min(|ξ|, |ξ|−1, |ζ|, |ζ|−1) ≥ δ}

for a fixed number δ ∈ (0, 1), as N →∞,

(1◦) N−1
∑

k∈SC ωk N̂k/(ξ + N̂k ζ) is bounded above and below,

(2◦) N−1
∑

k∈SC ωk (SSWk + σ2e rk)− σ2e
P→ 0,
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(3◦) N−1
∑

k∈SC ωk N̂k (Ȳ w
· k − µ)/(ξ + N̂k ζ)

P→ 0,

(4◦) N−1
∑

k∈SC ωk N̂k

( ξ

ξ+N̂k ζ

)2 [
(Ȳ w
·k − µ)2 − (σ2a + σ2e rk/N̂k)

] P→ 0,

(5◦) N−1
∑

k∈SC ωk
( N̂k ξ

ξ+N̂k ζ

)2 [
(Ȳ w
·k − µ)2 − (σ2a + σ2e rk/N̂k)

] P→ 0,

(6◦) N−1
∑

k∈SC ωk N̂k

( nk ζ
ξ+nk ζ

)
(Ȳ·k − µ)

P→ 0,

(7◦) N−1
∑

k∈SC ωk N̂k

( ξ

ξ+N̂k ζ

)2 [
(Ȳ·k − µ)2 − (σ2a + σ2e/nk)

] P→ 0,

(8◦) N−1
∑

k∈SC ωk
( nk ζ
ξ+nk ζ

)2 [
(Ȳ·k − µ)2 − (σ2a + σ2e/nk)

] P→ 0,

(9◦) N−1
∑

k∈SC ωk N̂k

( nk ζ
ξ+nk ζ

) [
(Ȳ w
· k − µ)(Ȳ· k − µ) − (σ2a + σ2e/nk)

] P→ 0.

Proof. By (7), (C2)(i), Lemma 5 and because Nk ≥ 1, assertion (1◦) is obvious. For (2◦), we

calculate using (19)

1

N

∑
k∈SC

ωk SSWk =
1

N

∑
(j,k)∈S

wj,k (εj,k − ε̄w·k)2 =
1

N

∑
(j,k)∈S

wj,k ε
2
j,k −

1

N

∑
k∈SC

ωk N̂k (ε̄w·k)
2

Of the last two summation terms, the first converges in probability to σ2e by Lemma 5 part (c),

and because N̂k E((ε̄w·k)
2 | {wj|k}) = rk σ

2
e , a similar proof shows that

N−1
∑
k∈SC

ωk
[
N̂k (ε̄w·k)

2 − rk σ
2
e

] P→ 0

Putting these facts together, we find N−1
∑

k∈SC ωk (SSWk − σ2e (N̂k−rk))
P→ 0, and Lemma 5(b)

completes the proof of (2◦).

The convergence statements (3◦)–(9◦) hold by Lemma 7 for each fixed (ξ, ζ) in the compact set

D ⊂ (0,∞)2. The uniform Lipschitz continuity on D of the left-hand side expressions with respect

to (ξ, ζ), together with a standard bracketing argument as in van der Vaart (1998, Sec. 19.2) shows

that the convergences in probability are uniform on D. 2

The next Lemma applies Lemma 9 to derive equations approximately satisfied in the large-N

limit in design and model probability under noninformative within-cluster sampling of the weighted

survey estimators θ̃(M), θ̂(L1), θ̂(L2), and θ̂(EM). These results are expressed through repeated use

of the notation ≈ to signify that left- and right-hand expressions differ by a random quantity

that converges in probability to 0 as N →∞. For the estimators θ̂(L1), θ̂(L2), and θ̂(EM), rigorous

use of the results of Lemma 9 requires that a separate argument be presented for each to supply a

compact subset D of (0,∞)2 within which the estimated pair (σ2a, σ
2
e) must lie. These arguments,

and the additional formal hypotheses they entail, are omitted in this paper.
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Lemma 10 Assume the 2-level ANOVA superpopulation model (19) and conditions (C1)–(C3) on

the noninformative-within-cluster sampling design. Then as N →∞, θ̂(L) and θ̂(EM) respectively

satisfy equations (44)–(45) and (46)–(47) below. If also nk ≥ 2 for all k, then θ̃(M) → θ.

Proof. The weighted moment-based estimators θ̃(M) are addressed first. Lemma 6 provides

consistency of µ̃(M) and (σ̃
(M)
a )2 + (σ̃

(M)
e )2, even without assuming (C3). When all nk ≥ 2 and

(C3) is assumed, the variables Rk =
∑

j∈Sk(Yj,k − Ȳ·k)2/(nk − 1)−σ2e are independent with mean

0 and uniformly bounded variances, so as in Lemma 7, (σ̃
(M)
e )2 − σ2e = M̂−1

∑
k∈SC ωk Rk → 0.

Next examine the estimators θ̂(L) obtained from (30)–(32). First,

µ̂(L) − µ =
1

N

∑
k∈SC

ωk ρ̂k (Ȳ w
· k − µ)

/[ 1

N

∑
k∈SC

ωk ρ̂k
]

By applying parts (1◦) and (3◦) of Lemma 9 to the denominator and numerator of this ratio, with

ξ = (σ̂
(L)
e )2, ζ = (σ̂

(L)
a )2, the convergence µ̂(L) → µ is proved. (The same argument applies in

both the cases where γk = 1 or ωk.) Since µ̂(L) is consistent for µ the large-N in-probability limits

of (σ̂
(L)
a )2, (σ̂

(L)
e )2 are respectively the same as when µ̂(L) in their expressions is replaced by µ.

We continue with equation (31), using parts (5◦) and (3◦) of Lemma 9 and dividing through by a

factor (σ̂
(L)
a )2, to find

1

M

∑
k∈SC

[
ωk −

ωk
γk

(1− ρ̂k)− ωk ρ̂k
rk σ

2
e + N̂k σ

2
a

(σ̂
(L)
e )2 + N̂k (σ̂

(L)
a )2

]
≈ 0 (44)

Similarly, applying parts (2◦) and (4◦) of Lemma 9 to (32) yields

(σ̂(L)e )2 ≈ 1

N

{
(N −

∑
k∈SC

ωk rk)σ
2
e + (σ̂(L)e )2

∑
k∈SC

[ωk
γk

ρ̂k + ωk (1− ρ̂k)
rk σ

2
e + N̂k σ

2
a

(σ̂
(L)
e )2 + N̂k (σ̂

(L)
a )2

]}
which implies using (44) that

(σ̂(L)e )2 ≈ 1

N

{
(N −

∑
k∈SC

ωk rk)σ
2
e + (σ̂(L)e )2

∑
k∈SC

[ωk
γk
− ωk + ωk

rk σ
2
e + N̂k σ

2
a

(σ̂
(L)
e )2 + N̂k (σ̂

(L)
a )2

]}
(45)

Finally, we consider the estimators θ̂(EM). According to (34),

µ̂(EM) − µ = N−1
∑
k∈SC

ω N̂k (Ȳ w
· k − µ− q̂k (Ȳ·k − µ))

/[
N−1

∑
k∈SC

ωk N̂k (1− q̂k)
]

In this ratio, Lemma 9.(1◦) shows the denominator to be bounded above and below, while Lemma 9

parts (3◦) and (6◦) with ξ = (σ̂
(EM)
e )2, ζ = (σ̂

(EM)
a )2 show that the numerator converges in prob-

ability to 0. Thus, since µ̂(EM) is consistent for µ the expressions for (σ̂
(EM)
a )2, (σ̂

(EM)
e )2 are
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consistent if and only if they respectively converge in probability to σ2a, σ
2
e when µ̂(EM) in those

expression are replaced by µ. The expressions to study in (34) and (35) become respectively

(σ̂(EM)
a )2 ≈ M−1

∑
k∈SC

ωk q̂
2
k (Ȳ·k − µ)2

/[
M−1

∑
k∈SC

ωk q̂k
]

(σ̂(EM)
e )2 ≈ N̂−1

∑
k∈SC

ωk

[
SSWk + N̂k

(
Ȳ w
· k − q̂k Ȳ·k − (1− q̂k)µ

)2
+ N̂k (σ̂(EM)

e )2
q̂k
nk

)
]

where q̂k was defined immediately following (35). Since for each k,

SSWk + N̂k

(
Ȳ w
· k − q̂k Ȳ· k − (1− q̂k)µ

)2
=
∑
j∈Sk

wj|k (Yjk − µ− q̂k (Ȳ· k − µ)
)2

=
∑
j∈Sk

wj|k (Yjk − µ)2 + N̂k q̂
2
k (Ȳ· k − µ)2 − 2N̂k q̂k (Ȳ w

· k − µ)(Ȳ· k − µ)

parts (3◦), (6◦) and (9◦) of Lemma 9 imply in the displayed equations for (σ̂
(EM)
a )2 and (σ̂

(EM)
e )2

that asymptotically

1

M

∑
k∈SC

ωk q̂k

[ nk σ
2
a + σ2e

nk (σ̂
(EM)
a )2 + (σ̂

(EM)
e )2

− 1
]
≈ 0 (46)

and

(σ̂(EM)
e )2 ≈ 1

N

∑
k∈SC

ωk N̂k

[
σ2a(1− q̂k)2 + (σ̂(EM)

e )2
q̂k
nk

+ σ2e
(
1 − 2q̂k

nk
+

q̂2k
nk

)]
(47)

2

While Lemma 10 does not directly establish consistency of the θ estimators under noninforma-

tive sampling, it does provide a direct way of establishing inconsistency in some cases. Indeed,

since the asymptotic equations provided in the Lemma are continuous functions of the estimators,

to show inconsistency it suffices to show that the asymptotic equations are not satisfied when re-

spectively σ2a, σ
2
e are respectively substituted for their estimators. This is enough to draw important

conclusions about inconsistency of θ̂(L1) and θ̂(L2).

Lemma 11 Assume the two-level ANOVA superpopulation model (19) and conditions (C1)–(C3)

on the sampling design which is noninformative within clusters. Assume also that within-cluster

sampling has the same weights as SRS sampling, i.e., wj|k ≡ Nk/nk for all k. Then as N → ∞,

when θ̂(L) is replaced by the true values θ = (µ, σ2a, σ
2
e), if either
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(a) γk ≡ 1 and lim infN→∞M
−1∑M

k=1 I[Nk>nk] > 0, or (b) γk ≡ ωk and m = o(M), or

(c) Nk ≡ ν, Nk/nk ≡ r do not vary with k, and m/M is bounded away from 1− (r − 1)ρ∗, where

ρ∗ = ν σ2a/ (νσ2a + σ2e)

then as N gets large, equations (44)–(45) do not hold approximately. Therefore the estimators

θ̂(L1) and θ̂(L2) are inconsistent under the respective conditions (a), (b), and θ̂(L2) is inconsistent

under (c) except for the specific limiting first-stage sample fraction m/M = 1− (r − 1)ρ∗.

Proof. The formulas simplify somewhat because the SRS within-cluster samples, with wj|k =

Nk/nk, imply that rk = Nk/nk and N̂k = Nk. In that setting, replacing (σ̂
(L)
a , σ̂

(L)
e ) by (σa, σe)

has the effect of replacing ρ̂k by ρk. In the (L1) case (a), the left-hand side of (44) becomes

1

M

∑
k∈SC

ωk ρk
[ rkσ2e +Nkσ

2
a

σ2e +Nkσ2a
− 1
]

=
σ2e
M

∑
k∈SC

ωk ρk
Nk/nk − 1

σ2e +Nkσ2a

]
which is bounded below away from 0 under the limit condition in (a). In the (L2) case (b), the

left-hand side minus the right-hand side of (45) becomes

σ2e
N

∑
k∈SC

[
ωk

Nk

nk
− 1 + ωk − ωkNk

σ2a + σ2e/nk
σ2e +Nkσ2a

]
=

σ2e
N

∑
k∈SC

[ ωkNk σ
2
e

σ2e +Nkσ2a
− 1
]

which is again bounded below away from 0 under the limit condition in (b). Finally, in case (c), the

ratios rk = Nk/nk are all equal to r, and when (σ̂
(L2)
a , σ̂

(L2)
e ) is replaced by (σa, σe), ρ̂k becomes

Nkσ
2
a/(Nkσ

2
a + σ2e) = ρ∗. Then (with ωk = γk) the left-hand side of (44) becomes

1

M

∑
k∈SC

{
(ωk − 1)(1− ρ∗)− ωkρ∗

[rσ2e + νσ2a
σ2e + νσ2a

− 1
]}

=
1− ρ∗
M

∑
k∈SC

{
ωk − 1− ωkρ∗(r − 1)

}
Since

∑
k∈SC ωk/M ≈ 1 for large M , the last expression ≈ (1− ρ∗) {1− ρ∗(r − 1)−m/M}.

In all three cases (a)-(c), the fact that (44) or (45) fails to hold when θ̂(L) is replaced by the

true θ implies that (44)–(45) is incompatible with the convergence θ̂ ≈ θ as N →∞. 2

It is easy to see that when γk ≡ 1 and nk ≡ Nk, equations (44)–(45) do hold as N → ∞.

Similarly, as we verify below, (46)–(47) hold approximately without any further conditions when

θ̂(EM) is replaced by θ. It is also true that when nk →∞ for all k and θ̂(L) is replaced by θ, both

equations (44) and (45) hold approximately. Although the hypothesis in the third of these cases is

excluded by our assumptions (C1) and (C2), the first two cases are shown in the next Lemma to
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imply a consistency result. Some additional arguments are needed to establish this: the asymptotic

validity of equations (44)–(45) or (46)–(47) are only necessary conditions for consistency of the

estimators solving them, not sufficient conditions. The arguments given in the next Lemma are

specific to the two-level Analysis of Variance model.

Lemma 12 Assume the two-level ANOVA superpopulation model (19) and conditions (C1)–(C3)

on the sampling design which is noninformative within clusters. Then

(a) with the true parameter values θ substituted for θ̂(EM), equations (46)–(47) hold asymp-

totically as Nk →∞, so that θ̂(EM) is consistent, and

(b) if nk ≡ Nk for all k, then θ̂(L1) ≈ θ as N →∞.

Proof. For (a), begin by checking that (46)–(47) hold when θ̂(EM) is replaced by θ. This is obvious

for (46), and (47) becomes

1

N

∑
k∈SC

ωk N̂k

[
− σ2e + σ2a(1− qk)2 + σ2e

qk
nk

+ σ2e
(
1 − 2qk

nk
+

q2k
nk

)]
= 0

The last equation holds because σ2a (1− qk) = σ2e qk/nk by definition of qk.

Next, using the same limiting results from Lemma 9, we re-write the EM iterative-step equations

(33), after replacing µ1 by the true value µ, as

σ2a,1 ≈ 1

M

∑
k∈SC

ωk
[
q2k,0(σ

2
a +

σ2e
nk

) + (1− qk,0)σ2a,0
]

σ2e,1 ≈ 1

N

∑
k∈SC

ωkN̂k

[
σ2a + σ2e + (q2k,0 − 2qk,0)(σ

2
a +

σ2e
nk

) + (1− qk,0)σ2a,0
]

Recognizing that the right-hand sides of these last two displayed equations respectively become

≈ σ2a,0 and ≈ σ2e,0 when (σ2a, σ
2
e), we further simplify these last two displayed equations algebraically

to the form σ2a,1 − σ2a
σ2e,1 − σ2e

 ≈ 1

N

∑
k∈SC

ωk

 N
M (1− q2k,0) −N

M q
2
k,0/nk

−N̂k (1− qk,0)2 N̂k
nk

(1− (1− qk,0)2)

 σ2a,0 − σ2a
σ2e,0 − σ2e

 (48)

This last equation shows clearly that the true parameter(σ2a, σ
2
e) is asymptotically approximately

fixed by the EM iterative step (33), but also that the EM step is asymptotically contractive with

uniformly high probability. To prove the contraction property, it must be shown that the 2 × 2
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matrix on the right-hand side of (48) has real eigenvalues with absolute values less than 1. Denote

the diagonal entries of that matrix by α1, α4 and the off-diagonal by −α2, −α3. Then by inspecttion

all αj ∈ (0, 1), and α1 + α2 < 1, α3 + α4 < 1. Then the roots of the quadratic characteristic

polynomial of the matrix are

α1 + α4

2
± 1

2

√
(α1 − α4)2 + 4α2 α3

which are in absolute value less than

α1 + α4 + |α1 − α4|
2

+
√
α2 α3 < max(α1, α4) + (1− α1)(1− α4) < 1−min(α1, α4) + α1α4

and the final term is less than 1. Since the asymptotic iteration-step (48) is a contraction, it follows

that the unique limiting value for (σ̂
(EM) 2
a , (σ̂

(EM) 2
e is (σ2a, σ

2
e), and θ̂(EM) is consistent.

When nk = Nk, it is easy to see that rk = 1, wj|k ≡ 1, N̂k, and ρ̂k = q̂k. Equations (44)–(45)

take the form

1

M

∑
k∈SC

ωk q̂k

[σ2e + nkσ
2
a

σ̂2e + nkσ̂2a
− 1
]
≈ 0 ,

σ̂2e
σ2e

[
1 − 1

N

∑
k∈SC

ωk
σ2e + nkσ

2
a

σ̂2e + nkσ̂2a

]
≈ 1− M

N

which we re-write in terms of

x =
σ̂2a
σ2a

, z =
σ̂2e
σ2e

, t =
M̂

N
, g =

1

M̂

∑
k

q̂k ωk , h =
1

M̂

∑
k

q̂2k ωk

The rewritten equations (44)–(45) now have the expression

g = (h/x) + (g − h)/z , z
(
1− t

[g
x

+
1− g
z

])
= t g (

z

x
− 1) (49)

or equivalently

h (z − x) = gx (z − 1) , tg (z − x) = x (z − 1)

Solution of this last pair of equations would be possible for z 6= 1 or z 6= x only if h/t = g2. Yet the

Cauchy-Schwarz inequality implies, after recalling M̂ =
∑

k∈SC ωk, that g2 ≤ h. Since t < 1, this

implies g2 < h/t, from which it follows that the only (approximate asymptotic) solution to (49)

occurs at z = x = 1, i.e. at σ̂2a = σ2a and σ̂2e = σ2e . 2
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