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Abstract

We use the design-based simulation of Maples et al. (2014), which repeatedly samples

from an artificial population comprised of 2008-2012 American Community Survey (ACS)

unit-level data, to compare different small-area estimation models for county-level rates of

school-aged children in poverty in the United States. We compare a Binomial Logit Normal

(BLN) model, a Fay-Herriot model on rates, and a Fay-Herriot model on log-transformed

counts inspired by the model used in the production of the official estimates by the Census

Bureau’s Small Area Income and Poverty Estimates (SAIPE) Program. We also explore the

effect of estimating the sampling variance on the relative performance of the models, using

design-based variance estimates as well as estimates from a Generalized Variance Function

(GVF). The GVF of Franco and Bell (2013, 2015) yields a considerable reduction in the

Mean Squared Errors (MSEs) of the estimates of the sampling variances of the direct
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estimators relative to the design-based estimates, but a smaller reduction in the MSEs of the

corresponding estimates of effective sample sizes. This seems to lead to an overall reduction

of MSEs of the model predictors when using the GVF estimates rather than their

design-based counterparts to fit the Fay Herriot model on the rates, but not so for the BLN

model. Overall, the BLN model has a very modest advantage over the other two alternatives

in the sense of having lower MSEs for the majority of pseudo-counties in the artificial

population both when the sampling variances are known or when they are estimated.

KEYWORDS: SAIPE, BLN Model, Fay-Herriot Model, Artificial Population

1 Introduction

The U.S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program

produces estimates of poverty for different age groups and levels of geography in the U.S.

Here, we focus on comparing models for the estimation of county poverty rates of

school-aged (5-17 years old) children.

The SAIPE program’s county-level production model is a Fay-Herriot (1979) model,

where the response variables are logged poverty count estimates from the American

Community Survey (ACS), based on one year of data collection (called “1-year estimates”).

Covariates are available from tabulations of tax records from the Internal Revenue Service

(IRS) and from the Supplemental Nutritional Assistance Program (SNAP). One covariate is

derived from the 2000 Census. For more information about SAIPE, see

https://www.census.gov/programs-surveys/saipe.html.

The Fay-Herriot model is a classic area-level small area estimation model. Small area

estimation models typically assume common relationships between the quantities of interest

and auxiliary variables across the domains using mixed models to obtain improved

predictions relative to the direct survey-weighted estimates. For a review of small area

estimation, see Rao and Molina (2015). We test three different small area estimation models

for estimating poverty rates for school-aged children in poverty by fitting them to repeated

samples from an artificial population comprised of unit-level survey data drawn from the
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2008-2012 American Community Survey (ACS).

The ACS 5-year unit-level data is treated as the true population or universe for the

purposes of this simulation. The data are grouped into pseudo census tracts and pseudo

counties. There are 487 pseudo-counties in this artificial population, which is less than the

total number of counties in the US (3143 in 2012). This is a limitation of this simulation, but

it still serves as a starting point for model evaluation and comparison. For ease of exposition

we usually refer to the pseudo-counties as counties hereafter, except where the distinction is

necessary.

The artificial population described above is sampled 1000 times with a simplified design

resembling that of the ACS, featuring stratification, systematic sampling, and a simple

non-response mechanism. More details on the simulation design can be found in Maples et al.

(2014).

The sample sizes vary slightly among simulations because the ACS non-response is

mimicked through a simplified random mechanism. The average sample sizes over the

simulations for the pseudo-counties range from 239− 21, 890 households, with a median of

881. In contrast, the 2012 1-year ACS sample for counties ranged from less than 15 to about

56, 000 households with a median of 239. Note that the minimum and median sample sizes

are much smaller on average for the simulated samples. This is partly because the simulation

was designed with Census tract estimation in mind. This is a drawback of this simulation for

the purpose of this evaluation

The models that will be compared include a univariate version of the Binomial Logit

Normal (BLN) Model described in Franco and Bell (2013, 2015), a Fay-Herriot model on

poverty rates (FHR), and a Fay-Herriot model on log-transformed counts (FHL). As

mentioned above, SAIPE uses a FHL model in the production of official estimates of

school-aged children in poverty. The motivation for using a BLN model is that it naturally

handles skewness and estimates of zero poverty for a county. Note that although the FHL

model can also handle skewness, estimates of zero poverty are problematic when attempting

to take a log transformation. These estimates are dropped in the model fitting in the SAIPE

production model, though (synthetic) model predictions are still formed for those counties.
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Slud and Maiti (2011) study the effect of this left-censoring, though using data from the

Current Population Survey (CPS), which were used in the production of official SAIPE

estimates through 2004.

We also implement the FHR model for comparison due to its simplicity. Though there is

no need to drop zeros for fitting the FHR, assuming a symmetric distribution for the estimates

of poverty rates may be deemed unrealistic. Moreover, estimates of zero poverty can also be

problematic when implementing the FHR model since design-based estimates of the

variances of observations of zero are defined as zero, an unrealistic estimate. This problem

also arises when computing the design-based effective sample size estimate that is required

for the BLN model, which is inversely proportional to sampling variance estimate, and hence

undefined for observations of zero poverty. In the simulation, there are very few estimates of

zero poverty, namely 29 total in the entire 487, 000 county samples. For the ACS 1-year

estimates of county school-aged children in poverty, the incidence of zeros is typically higher,

for instance for 2012 about 3.5% of counties had estimates of zero. How we deal with

estimates of zero poverty will not have a major impact on the results here, because of the

small number of such estimates in the simulation, but could have more of an impact in

modeling the real county poverty data, and a larger impact on the related problem of

modeling school-aged children in poverty at the Census tract or school-district level, where

the incidence of zeros is higher. Nonetheless, we give the details on how we dealt with zeroes

when implementing the models in the simulations in Appendix A.

Models similar to the BLN model studied here were explored in the context of SAIPE in

Slud (2004), and at the unit level in Slud (2000), and Maiti and Slud (2002) but the analysis in

those papers was tailored to CPS data.

The auxiliary variables available for the artificial population include the number of child

tax exemptions in poverty and the total number of child tax exemptions for each county.

These are derived from tabulations of tax records obtained for statistical purposes under an

agreement with the Internal Revenue Service (IRS). The covariate used for the BLN model is

the county logit-transformed pseudo IRS poverty rate, which is defined as the number of child

exemptions in poverty divided by the total number of tax child exemptions. For the FHR
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model the covariate used is the untransformed county IRS pseudo poverty rate, and for the

FHL model both the log of the county total number of child exemptions and the log of the

county number of child exemptions in poverty are used as covariates. Though the FHL model

has one more parameter that needs to be estimated, we conjecture that parameter estimation

plays a minor role here because there is a large number of small areas which should provide

fairly accurate parameter estimates. Note than in the SAIPE production model, additional

covariates are available, including the logged number of county SNAP benefits recipients, the

log of the estimated county population age 0-17, and the log of the Census 2000 county

estimate of the number of related children in poverty. For more information, see

https://www.census.gov/programs-surveys/saipe.html.

The analysis is done using the software R (R core team, 2017). For the BLN model we

use the function glmer in the package lme4 (Bates et al., 2015), and for the Fay-Herriot model

we use the function mseFH in the sae package (Molina and Marhuenda, 2015). These

functions are used to implement an empirical Bayes modeling approach using maximum

likelihood for parameter estimation.

In our analysis, we first use the true sampling variances in the model fitting to separate the

effect of estimating the sampling variances and effective sample sizes from the problem of

selecting the best model form, though clearly the two problems are intertwined. The true

sampling variances would not be known in practice, but they can be determined with accuracy

from the simulation by averaging over the simulation replications, and using the true

population proportions computed from the artificial population. We also compare the models

fitted using estimates of the sampling variances and effective sample sizes, including a

design-based estimate, and an estimate from the Generalized Variance Function (GVF, see

Wolters, 1985) explored in Franco and Bell (2013, 2015).

Section 2 describes the three models. Section 3 discusses simulation results comparing

these models using the true sampling variances and effective sample sizes in the fitting.

Section 4 discusses the results using design-based estimates of sampling variances and

effective sample sizes. Section 5 discusses implementing the GVF in Franco and Bell (2013)

in the artificial population, and explores the reductions in MSEs in the estimates of sampling
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variance and effective sample size that result from using the GVF vs. the design-based

estimates. Section 6 gives results comparing the alternative models using these GVF variance

estimates. Section 7 provides some concluding remarks.

2 Models

2.1 Fay-Herriot Models

Suppose Yi is the population characteristic of interest for area i, and yi is the direct survey

estimate of Yi. Let ei be the sampling error in yi, assumed to be N(0, vi), independent with vi

known. Let ui be the area i random effect, assumed to be i.i.d. N(0, σ2u) and independent of

the ei. For m small areas, the Fay-Herriot model is

yi = Yi + ei i = 1, . . . ,m (1)

Yi = x′iβ + ui (2)

For the FHR model in our simulation, yi is the estimate of the rate of school-aged children

in poverty for county i, and Yi is the true poverty rate in the artificial population. Then vi is

the sampling variance in the direct estimates of poverty rate. In this study we compare the

effect on the model predictor’s MSEs of using the true sampling variances, the direct

estimates of sampling variances, or the GVF estimates of sampling variances in alternative

implementations.

For the FHL model, yi is the estimate of log-transformed counts of school-aged children

in poverty, vi is its sampling variance, and Yi is the true log-transformed counts of poverty

rates in the artificial population. The results are transformed back to the original scale using

the properties of the log-normal distribution. See Bell et al. (2016) for more details.

The covariates xi used in each of the models were already discussed in Section 1. The

models are fit to each of the 1000 samples drawn from the artificial population, predictions

are formed, and their MSEs are computed taking averages over the simulation replications to

compute expectations over the design, and using the true population values of the parameters

6



of interest from the artificial population.

2.2 BLN model

Before defining the BLN model, we discuss briefly how to modify the sample count and

sample size in order to account for the complex sampling design. The idea is that these

quantities are adjusted using the design-effect (Kish, 1965), which approximately captures the

effect of the complex sampling on the direct estimates. See also Franco and Bell (2013) for

discussion of this implementation of the BLN model.

Suppose p̂i are the direct ACS estimates of poverty rates; p̃i are preliminary estimates of

pi based on p̂i defined such that they cannot be zero. These preliminary estimates are

obtained from the direct estimates and the available covariates through a non-linear regression

as in Franco and Bell (2013).

Suppose that V̂ar(p̂i) is the estimate of sampling variance of p̂i, in this simulation either

design-based or GVF-based. We define the (estimated) effective sample sizes ñi and

(estimated) effective sample counts ỹi as:

ñi = p̃i(1− p̃i)
/

V̂ar(p̂i), (3)

ỹi = ñi × p̂i (4)

Note that the non-zero preliminary estimates of pi are used in order to avoid effective

sample sizes of zero, which do not make sense here. The effective sample size is an estimate

of the sample size one would need under Simple Random Sampling to obtain the same

variance as in the complex sampling scheme.

The true effective sample size n∗i , which can be computed from the simulations but would

not be known in practice, replaces p̃i and V̂ar(p̂i) with their true quantities in the right side of

(3).

The BLN model using the estimated effective sample sizes is defined as follows:
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ỹi|pi, ñi ∼ Bin(ñi, pi) i = 1, . . . ,m (5)

logit(pi) = x′iβ + ui; (6)

where ui
i.i.d.∼ N(0, σ2u), and logit(pi) = log[pi/(1− pi)]. The covariate xi is the logit

transformed pseudo poverty rate for county i.

Of course, one could fit the model with the true effective sample size n∗i if it were known,

replacing also ỹi with y∗i = n∗i × p̂i. We discuss this case in the next section.

3 Model comparison using true sampling variances

and effective sample sizes

In this section, when fitting the models we use the true sampling variances and effective

sample sizes for each of the counties. Many small-area models, including the ones studied

here, have an underlying assumption that either the sampling variance or the effective sample

size is known. In practice these are not known and need to be estimated. We can compute the

“true” quantities here since we have access to the universe and true population quantities and

we can find accurate expected values by averaging over the 1000 simulation replications.

The empirical Prediction Mean Squared Errors of the predictors of the small area means

Yi are calculated for each county over the 1000 simulation replications. We refer to those

simply as the MSE’s.

The BLN model predictors have lower MSE’s than those of the FHL model for about 68%

of the counties, and lower MSE’s than those of the FHR model for about 54% of the counties.

The FHR model predictor has lower MSE’s than those of the FHL model for about 53% of

the counties. Table 1 summarizes the distributions of the county ratios of MSEs among the

different models.

There is some redundancy in including the summary statistics for both a ratio and its

inverse, as we do in many of the tables in this report, since many of these can be inferred from
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Table 1: Summary of distribution of county ratios of MSEs of FHL, FHR, and BLN models com-
puted over the simulation replications, where the models are fitted using the true sampling vari-
ances and effective sample sizes

MSE Ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
FHL/BLN 0.19 0.94 1.12 1.21 1.34 4.94
BLN/FHL 0.20 0.75 0.89 1.02 1.07 5.39
FHR/BLN 0.24 0.82 1.04 1.36 1.36 8.92
BLN/FHR 0.11 0.73 0.96 1.02 1.22 4.13
FHR/FHL 0.07 0.65 0.95 1.44 1.41 19.85
FHL/FHR 0.05 0.70 1.05 1.29 1.53 13.82

each other (for instance, one can obtain the first quartile of the inverse by inverting the third

quartile of the original, the maximum as the inverse of the minimum, etc.). However, we

allow this redundancy because it permits easy and quick comparison of the models by looking

at both ratios simultaneously.

Note that the median of the FHL/BLN ratio is 1.12 and that the first and third quartiles are

larger for this ratio than its reciprocal, while the maximum and minimum are somewhat

comparable between the two ratios. These results suggests that the BLN model tends to

perform better than the FHL in the sense of having lower MSEs for most counties. The

median percentage decrease in MSEs of using the BLN model vs. the FHL is 11% . The

median precentage decrease fom using the BLN vs the FHR model is lesser, only 4%. It is

unclear which model to select among the FHR and FHL based on Table 1.

We also compare the model MSEs for all three models with the variances of the direct

estimators, where these are again calculated over the simulation replications. Although for all

three models the majority of counties have MSEs that are lower than the variances of the

direct estimators, there are some counties for which this does not hold. There are 48 such

counties for the FHL model, 33 for the FHR, and 28 for the BLN model. Table 2 summarizes

the distributions of ratios of model MSE’s and variances of the direct estimator for the

counties. The table suggests a moderate advantage for the BLN model in terms of tending to

have lower MSEs. For the majority of counties there is a significant decrease in MSEs from

modeling. Note, for instance, that the median decrease in MSE for the BLN model relative to

9



the variance of the direct estimator is about 76%.

Table 2: Summary of county ratios of MSEs of model predictions (FHL, FHR, and BLN) and the
variance of the direct estimator computed over the simulation replications, where the models are
fitted using the true sampling variances and effective sample sizes

MSE Ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
FHR/DIR 0.01 0.12 0.29 0.42 0.53 3.94
FHL/DIR 0.01 0.11 0.29 0.44 0.65 3.58
BLN/DIR 0.01 0.11 0.24 0.38 0.54 2.95

4 Model comparison using design-based estimates of

sampling variances

In this section we perform a similar analysis as in Section 3, but instead of using the true

sampling variances and effective sample sizes, which would not be known in practice, we use

the corresponding design-based estimates when fitting the models. These variance estimates

were computed for each sample from the artificial population using the Successive

Differences Replication method (SDR, see Fay and Train, 1995), which is the method used by

the ACS (see U.S. Census Bureau, 2014).

The BLN model still has lower MSEs than the FHL model for most counties using the

design-based estimates of sampling variances and effective sample sizes, but only for 54% of

the counties. The BLN model has lower MSEs than the FHR model for 66% of the counties.

And the FHL model has lower MSE’s than the FHR model for 58% of the counties.

Using the design-based estimates of sampling variance, the FHL model’s performance

relative to the other two models seems to improve, compared to the case of known sampling

variances. This suggests that in some sense the direct estimates of sampling variances of log

count estimates are “better” than the direct estimates of sampling variances of rate estimates.

Table 3 provides a comparison of the CVs of these estimates of sampling variances, by

providing summaries of the distribution of county ratios of CVs. The table shows a tendency
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for the CVs to be lower when computing the sampling variance estimates of the log count

estimates than when computing the sampling variance estimates of the rate estimates.

Table 3: Summary of distribution of county ratios of CV’s of design-based (SDR) estimates of
sampling variances for rates and log-transformed counts

CV Ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
SDR rates/SDR log count 0.47 1.08 1.20 1.20 1.34 1.68
SDR log count/SDR rate 0.60 0.75 0.83 0.85 0.93 2.15

We return to comparing the MSEs of the FHR, FHL, and BLN model predictors. Table 4

shows summary statistics of the distribution of county ratios of MSEs among the different

models. This table suggests that the BLN model still has a slight edge over the FHL model in

terms of tending to yield lower MSEs, since the median of the FHL/BLN ratio is greater than

one and the other quartiles are slightly bigger than those of the reciprocal, although the max is

considerably larger for the BLN/FHL than its reciprocal. The advantages of using the BLN

model over the FHL model appear more tame here than in the case where sampling variances

and effective sample sizes are known.

Table 4: Ratios of MSEs of FHL, FHR, and BLN models computed over the simulation replica-
tions, where the models are fitted using design-based (SDR) estimates of the sampling variances
and effective sample size

MSE Ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
FHL/BLN 0.10 0.77 1.04 1.20 1.42 6.20
BLN/FHL 0.16 0.70 0.96 1.07 1.29 10.43
FHR/BLN 0.33 0.93 1.13 1.66 1.66 18.43
BLN/FHR 0.05 0.60 0.88 0.87 1.07 3.03
FHR/FHL 0.12 0.75 1.13 2.03 1.91 37.39
FHL/FHR 0.03 0.52 0.88 1.10 1.34 8.46

We also compare the model estimates to the direct estimates, by again looking at the

distribution of ratios of model MSEs to direct sampling variance estimates, shown in Table 5.

The table above suggests that the performance of the BLN and FHL are somewhat comparable

when using the design-based estimates of sampling variances, with a slight edge for the BLN
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model, as suggested by comparing the mean, 3rd quartile, and maximum of these ratios. Note

that the minimum, 1st quartile, and median are similar for the FHL and BLN models. We

again see significant benefits from using models as opposed to the direct estimators. The

number of cases in which the direct estimator has a variance that is lower than MSEs of the

model predictors are 51, 34, and 35 for the FHL, FHR, and BLN models respectively.

Table 5: Ratios of MSEs of FHL, FHR, and BLN models and the variance of the direct estimator
computed over the simulation replications, where the models are fitted using design-based esti-
mates of sampling variances and effective sample sizes

MSE Ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
FHL/DIR 0.01 0.11 0.27 0.46 0.64 4.28
FHR/DIR 0.04 0.18 0.34 0.45 0.56 3.93
BLN/DIR 0.02 0.12 0.26 0.38 0.53 2.92

5 Estimating the sampling variances via a GVF

In this section, we consider using a Generalized Variance Function (GVF) to improve the

estimates of the sampling variances of the direct estimates of poverty rates. Specifically, we

use the GVF in Franco and Bell (2013). Franco and Bell give steps for implementation of the

GVF. This involves first finding preliminary estimates of the poverty rates that are strictly

positive. We use the same least squares regression as Franco and Bell to compute these

preliminary estimates, and also try a weighted version, with the weights being proportional to

the sample size. As the estimates are very similar under both approaches, we use the

unweighted version in subsequent work. Franco and Bell (2013) recommend dropping all

counties that have less than 25 households in the sample before fitting the GVF, based on

results from Maples (2012). Because the artificial population has larger sample sizes than the

actual ACS 1-year estimates, there are no such counties so nothing is dropped.

Table 6 compares the MSE’s of the design-based and GVF estimates of the sampling

variance by looking at the distribution of their ratios over the counties. For most counties we

see a large reduction in the MSEs of the sampling variances estimates from using the GVF
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rather than the direct estimation approach. In fact, the median reduction is 85%. For all but 42

counties, the MSE of the GVF estimates is less than the MSE of the direct estimates of

sampling variances. This suggest that using the GVF estimates when fitting the small area

models, where applicable, could lead to improved predictions.

Table 6: Summary measures of counties’ ratios of MSE’s of design-based and GVF estimates of
the sampling variances, where the MSE’s are computed over the simulations

MSE ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
Direct/GVF 0.24 2.66 6.77 13.92 17.65 112.50
GVF/Direct 0.01 0.06 0.15 0.33 0.38 4.24

There is also a reduction in MSEs of the estimates of the effective sample size when using

the GVF estimates of sampling variances to compute them, though the gains do not seem

quite as striking. Table 7 summarizes the distribution of the county ratios of MSEs. Note, for

instance, that the median decrease in MSE of the effective sample size estimates is 32%,

compared to the 85% decrease in the MSEs of the sampling variance estimates in Table 6.

There are 135 (about 28%) counties for which the GVF estimates have higher MSEs than the

direct estimates of effective sample size.

Table 7: Summary measures of counties’ ratios of MSEs of design-based and GVF estimates of
the effective sample size, where the MSEs are computed over the simulation replications

MSE ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
Direct/GVF 0.19 0.93 1.48 1.84 2.16 20.78
GVF/Direct 0.05 0.46 0.68 0.89 1.08 5.15

6 Model comparisons using GVF estimates of

variances

While using the GVF estimates instead of the direct estimates of sampling variances tend to

considerably decrease the MSEs of the FHR model predictors, the results are mixed for the
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BLN model predictors. While use of the GVF decreases the MSEs of the FHR model

predictors for about 67% of the counties, with the median decrease being 18%, for the BLN

model only about half the counties show improved MSEs from using the GVF estimates. This

could potentially be because the decrease in MSEs of the estimated sampling variances from

using the GVF vs the direct estimates tends to be much larger than the decrease in the MSEs

of the estimated effective sample sizes, as shown in Section 5. The former is a direct input to

the FHR model while the latter is a direct input to the BLN model. Table 8 further compares

the MSEs of the model predictors based on GVF estimates to those based on the direct

estimates of sampling variances by showing their ratios for the BLN and FHR models

separately. From Table 8 one might conclude that the MSE results are actually worse for the

BLN model when using the GVF estimates.

Table 8: Summary measures of counties’ ratios of MSEs of models based on design-based and
based on GVF estimates of the effective sample size, where the MSEs are computed over the
simulation replications

MSE ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
BLN Direct/GVF 0.14 0.57 1.00 1.09 1.37 6.48
BLN GVF/Direct 0.15 0.73 1.00 1.35 1.75 7.41
FHR Direct/GVF 0.50 0.88 1.22 1.32 1.62 4.76
FHR GVF/Direct 0.21 0.62 0.82 0.91 1.14 2.00

When directly comparing the MSEs of the model predictors of the BLN and FHR models

using the GVF estimates for the fitting, we find that the MSEs of the BLN model are less than

those of the FHL model for 53% of the counties, and that the MSEs of the FHR model are

less than the MSEs of the BLN model for 60% of the counties. The MSEs of the FHR model

predictors are less than the MSEs of the FHL model predictors for 54% of the counties.

We see that using the GVFs for fitting the BLN and FHR models has given an edge to the

FHR model, but not to the BLN model, in terms of reducing the MSEs of the model

predictors overall. One may then want to compare how the BLN model predictions obtained

using the direct sampling variance estimates compare to the FHR model predictions that used

the GVF sampling variance estimates. In this case the MSEs of the FHR model predictors are

14



larger than those of the BLN model predictors for 54% of the counties, again suggesting a

mild advantage for the BLN model. Table 9 further compares the two models. There, we also

compare the FHR MSEs fitted with the GVF estimates to the FHL MSEs fitted using the

direct estimates of sampling variances. Again, we see a moderate advantage from using the

BLN model, but the winner in terms of reducing MSEs overall between the FHR fitted with

GVF estimate of sampling variance and the FHL model using the direct estimates of sampling

variance is less clear.

Table 9: Ratios of MSEs of FHL, FHR, and BLN models computed over the simulation replica-
tions, where the models are fitted using design-based (SDR) estimates of the sampling variances
and effective sample size

MSE Ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
FHR-GVF/BLN-Direct 0.21 0.69 1.07 1.33 1.62 10.08
BLN-Direct/FHR-GVF 0.10 0.62 0.94 1.08 1.46 4.66
FHR-GVF/FHL-direct 0.05 0.71 0.95 1.44 1.48 18.37
FHL-direct/FHR-GVF 0.05 0.68 1.05 1.25 1.40 22.06

In Table 9 we examine the ratios of model MSEs and the variances of the direct estimates,

using the GVF estimates of sampling variances in fitting of the FHR model and the direct

estimates of sampling variances in fitting the other two models (note some of the entries of

this table were already presented in Table 5). This table suggests an advantage of the BLN

model over the FHR model, even when the former is fitted with GVF estimates of sampling

variances, based on the summary statistics being either lower for the BLN/Direct ratio or very

similar. We had already discussed a slight advantage of the BLN model over the FHL model

when using the direct sampling variance estimates in Section 4.

7 Conclusions

The simulation shows an advantage from using the BLN model with the design-based

estimates of sampling variances compared to the other models that use estimated sampling

variances, but the advantage is moderate.
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Table 10: Ratios of MSEs of FHL, FHR, and BLN models and the variance of the direct estimator
computed over the simulation replications, where the FHL and BLN models are fitted using design-
based estimates of sampling variances and effective sample sizes, while the FHR is fitted using the
GVF estimates of sampling variances

MSE Ratio Min. 1st Qu. Median Mean 3rd Qu. Max.
FHL-Direct/DIR 0.01 0.11 0.27 0.46 0.64 4.28
FHR-GVF/DIR 0.01 0.13 0.29 0.43 0.53 4.04
BLN-Direct/DIR 0.02 0.12 0.26 0.38 0.53 2.92

The GVF of Franco and Bell (2013, 2015) yields a considerable reduction in the MSEs of

the estimates of the sampling variances of the direct estimators, but a smaller reduction in the

MSEs of the corresponding estimates of effective sample sizes. This in turn seems to lead to

an overall reduction of MSEs of the model predictors when using the GVF estimate to fit the

FHR model, but not so for the BLN model. Hence the design-based estimates appear be a

better choice to use with the BLN model, whereas the GVF estimates appear to work best for

the FHR model. For the FHL model, the GVF estimates are not appropriate since they are

designed for proportions, not log-counts.

Overall, the BLN model fit using the direct estimates of effective sample sizes tended to

perform slightly better than the FHR model fit using the GVF estimates of sampling variances

in the sense of having smaller MSEs for the majority of counties. And it also performed

moderately better than the FHL model using the design-based estimates of sampling variance,

in the same respect. The results also suggest that sampling variance estimation can have an

important impact on model selection, so that the two problems should be considered jointly.

Future research should include testing these models in a simulation design featuring

several counties with smaller sample sizes, to more closely mimic the problem of producing

official estimates using the true ACS one year estimates of children in poverty. The latter

estimates also feature a higher incidence of estimates of zero poverty than our simulation

design. The BLN model is better suited to handle estimates of zero than the FHL model,

which requires dropping them from the model fitting. However, when using the BLN model

with the design-based estimates of sampling variances, alternative estimates of sampling
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variances should be used for counties with estimates of zero poverty rate, perhaps from a

GVF.

Note that a comprehensive model comparison would also look at several model

diagnostics tools and external validity checks, but this is not pursued here. Moreover, a

bivariate BLN may be more suitable for SAIPE production than its univariate counterpart, so

that the previous, non-overlapping ACS 5-year estimates can be jointly modeled with the one

year estimates of interest, in order to improve precision. The simulation currently does not

support this type of bivariate modeling. A limited study of model diagnostics of the bivariate

BLN model for SAIPE data, as well as a comparison between the bivariate BLN and the

SAIPE production model is included in Franco and Bell (2015), but more evaluations are

needed. This paper is one part of these further evaluations.

More research also needs to be devoted to finding GVFs for estimating sampling

variances and design-effects, and in particular, the BLN model may benefit from a GVF that

yields lower MSEs for estimation of the effective sample size. Another line of future research

is to study how well the reported MSEs track the true MSEs for each of the models, as

estimation of MSEs is an important component of small area estimation programs. That is, to

compare the MSEs computed under the assumption each model is true to the actual MSEs,

which can be ascertained with accuracy from the simulations but usually not in practice.
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A Handling of zero estimates

To fit the BLN model, we need estimates of the effective sample counts of children in poverty

and of the effective sample sizes. The design-based estimates of effective sample sizes are not

well-defined for zero counts. When fitting the BLN model using the design-based estimates

of sampling variance, poverty rate estimates of zero are arbitrarily assigned an effective
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sample size estimate of 1, so that they have minimal impact on the model fitting. This is

sensible as observations of zero are associated with small sample sizes. The FHR and FHL

models require estimates of the sampling variances of the direct estimates of the poverty rates

and the log-transformed poverty counts, respectively. For fitting the FHR model using the

design-based estimates of sampling variance, we use an arbitrary high number as the estimate

of the sampling variance of an observation of a zero poverty rate, namely 0.25, so such

observations have a small impact on the model fitting. Using the design-based estimate of

zero would give undue influence and weight to such observations. For the FHL model, we

deal with observations of zero poverty rates by assigning them a very high sampling variance

estimate (108), effectively dropping them from the fitting and giving zero weight to the direct

estimates for the counties with estimates of zero poverty.

The “fix-ups” described above for dealing with observations of zero poverty rates are not

needed when using the GVF estimates of sampling variances and effective sample sizes for

the BLN and FHR models.
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