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Abstract
Statistical agencies depend on responses to inquiries made to the public, and occasionally

conduct experiments to improve contact procedures. Agencies may explicitly seek improved
response rates, or may wish to assess whether or not there is significant change in response rates
due to an operational improvement. The present work considers statistical experiments to assess
household response rates when up to L attempts are made to contact each household. The
process can be viewed as a sequence of L binary trials carried out until either the first success
is observed, or failures occur in all L trials. Sequential regression models are used to associate
the probabilities in such a sequence to covariates of interest. In particular, the continuation-
ratio logit (CRL) model facilitates inference on the probability of success at each step of the
sequence, given that failures occurred at previous steps. The CRL model is investigated as a
basis for sample size determination—one of the major decisions faced by an experimenter. An
adequate sample size is sought to attain a desired power for a Wald test of a general linear
hypothesis. A motivating application is provided by an actual experiment being considered for
nonresponse followup in the United States 2020 Decennial Census. The experiment involves
assessment of a training module which provides guidance to enumerators interviewing Spanish-
speaking households. Data analysis and sample size determination based on the CRL model
are both addressed in detail. Taking the enumerator training experiment as an illustration,
some typical features of an experiment by a statistical agency are also encountered, such as
access to a portion of covariate data in advance of the experiment and constraints on the design
due to the operation.
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1 Introduction
Sample surveys and censuses are heavily relied upon to measure characteristics of a population.
These methods of data collection involving direct contact with members of the population provide
the basis for most official statistics. A major and growing problem is nonresponse, which can occur
for a variety of reasons, including inability to contact respondents or refusal to participate (e.g.
Singer, 2006). Missing responses can bias inference from the data, especially when the underlying
cause of nonresponse is associated with characteristics to be measured. Lohr (2010, Chapter 8)
summarizes a variety of techniques developed to reduce and adjust for missing responses; these
include followup operations to make further contact attempts (“callbacks”), imputing missing re-
sponses, and adjusting estimates by weights based on response probabilities. The present paper
focuses on callbacks, which have been an effective strategy for improving response rates; see Hansen
and Hurwitz (1946), Politz and Simmons (1949), Deming (1953), Rao (1983), and Särndal et al.
(1992, Section 15.4.2). Consideration has been given to the use of administrative records and other
available sources of data to augment or replace field work in official statistics (e.g. Scheuren, 1999;
Morris et al., 2016; Daas et al., 2015; Brown et al., 2018). However, such use of administrative
data presents its own challenges including lack of public availability and data structures that are
not intended for this particular application (Davern et al., 2009; Molfino et al., 2017; Groves and
Schoeffel, 2018). With field work currently the primary method of data collection, measuring and
improving response rates continues to be of major interest to statistical agencies.

One of the major data collection activities of the U.S. Census Bureau is the decennial census,
which seeks to contact every household and group quarters in the United States and record basic
information, such as the number of residents along with ages and races. Census data are used
to produce statistical summaries which are disseminated to the public. Households are initially
invited to self-respond via mail or another convenient mode. Households which do not respond
within a certain time period become part of the Nonresponse Followup (NRFU) operation. Here,
enumerators attempt to personally contact the household and elicit a response. The specific contact
strategy designed in the years leading up to the census typically includes in-person visits to the
household. NRFU was the most expensive component of the 2010 decennial census, with a cost of
about 1.6 billion U.S. dollars (Walker et al., 2012).

A variety of experiments are typically conducted in the years leading up to the decennial census,
and also within the census itself, to test whether changes in the operation make significant changes
to response rates. The National Research Council (2010) describes experiments carried out by the
Census Bureau for decennial censuses between the years 1950 and 2010. For example, the 2010
Census Program of Experiments and Evaluations (CPEX) included one experiment on reducing
the number of callbacks in NRFU from the 2000 decennial census. Here, decreased response rates
were a concern to be weighed against the savings of decreased field work. Sample size determination
is necessary in preparing such experiments, and the sequential nature of repeated callbacks does
not appear to be taken into account in the planning.

This article explores use of a sequential regression model in measuring response rates where
multiple callback attempts can be made to the same household. The continuation ratio logit (CRL),
also referred to as the sequential logit model, is a particular parameterization of the multinomial
distribution which can be interpreted as a truncated sequence of dependent Bernoulli trials. This
makes it a suitable extension of logistic regression when modeling the number of attempts required
for a successful contact, rather than merely the occurrence of successful contact. We consider a
procedure for selecting a sample size in a study whose goal is to test a general linear hypothesis;
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in particular, to detect whether two or more treatments in an experiment lead to significantly
different response rates. When such effects vary over the sequence of attempts, CRL can express
the situation while a model capturing only response or nonresponse can not.

An experiment under consideration for the decennial census serves as a motivating application
of the CRL methodology. We emphasize that the experiment is presented to demonstrate the
application of our methodology and does not reflect any official plans or position of the Census
Bureau. Enumerators hired by the agency are given formal training before participating in field
operations. For the 2020 Decennial Census, the Census Bureau is testing the inclusion of training
for bilingual enumerators on administering the census questionnaire in their non-English ("target")
language(s). The agency did not provide such training prior to the 2020 Census. Initially, it will take
the form of a brief module to be added to the larger suite of training materials for bilingual, Spanish-
speaking enumerators. The objective of additional training is to improve consistency in messaging
and in the usage of official translations. Increased consistency may result in improved response
rates and improved data quality for affected households (Pan and Lubkemann, 2013). There is
thought to be little disadvantage to deploying the new training module; it does not constitute a
major cost when implemented as an experimental intervention, and a negative impact to response
rates is not expected. However, it is of interest whether the training significantly improves response
rates for affected households. Ellis et al. (2018) describe an experiment to be carried out within the
2020 Census NRFU operation to make this assessment.1 In the present article, we will consider the
use of CRL models in two important aspects of experiment planning: to formulate a design which
respects the logistics of field operations, and to select a sample size with adequate statistical power
to evaluate effectiveness of the training.

Sequential models such as CRL have been widely used in a variety of applications, including
survival analysis (Cox, 1972; Albert and Chib, 2001), social science (Fullerton, 2009), economics
(Boes and Winkelmann, 2006), and public health (Barboza and Dominguez, 2016). CRL is also
closely connected to stick-breaking processes used to fit Dirichlet process models in Bayesian anal-
ysis; e.g., see Ghosal and van der Vaart (2017, Chapter 3) and Rigon and Durante (2021). Use for
nonresponse in official statistics settings, however, appears to be relatively limited. Alho (1990)
formulates a model for nonresponse based on CRL for the purpose of adjusting survey estimates to
avoid bias. A similar approach was taken later by Wood et al. (2006). Fienberg (2007, Chapter 6)
provides an overview of CRL in the context of contingency tables, while Agresti (2013, Chapter 8)
provides an overview in the context of multinomial regression. Tutz (1991) explores connections
between models for sequential data (including CRL) and models for ordinal data. Tutz (1991) also
establishes sequential models as multivariate generalized linear models (GLMs).

Sample size calculation is the subject of a large literature; the following brief summary features
a few examples to help give context for the present work. Chow et al. (2017) provide a general
reference for sample size calculation in a number of non-regression settings. Self and Mauritsen
(1988) consider power calculations for a score test in the context of a GLM; there are several
important features in this work which appear in later references. These authors partition the
regression coefficients into a parameter of interest whose value is specified in the null hypothesis,
and a nuisance parameter which is estimated. Second, covariates are treated as random variables
whose distribution must be considered. In particular, Self and Mauritsen (1988) assume categorical
covariates. Self et al. (1992) explore a likelihood ratio test in the setting of GLMs and make
use of an asymptotic expansion to compute power. Shieh (2000) extends Self et al. (1992) and

1At the time of this writing, plans for NRFU and other 2020 Census operations are subject to change due to the
COVID-19 pandemic. See https://2020census.gov/en/news-events/operational-adjustments-covid-19.html.

https://2020census.gov/en/news-events/operational-adjustments-covid-19.html
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removes the restriction that covariates must be categorical. Shieh (2005) studies a Wald test
in GLMs; here an adjustment is made to the significance level to account for the large sample
approximation. Demidenko (2007) and Demidenko (2008) consider a Wald test, but focus on a more
specific case/control setting in logistic regression with binary covariates. Lyles et al. (2007) explore
Wald and likelihood ratio tests in GLMs, assuming a general linear hypothesis which subsumes
the partitioning of test and nuisance parameters. These authors propose a computational approach
which allows a specified distribution of the covariates to be studied without requiring derivations for
each new setting. Bush (2015) summarizes many of the previously referenced works and investigates
them by simulation.

The present work focuses on the CRL model. A general linear hypothesis is assumed to in-
corporate a range of hypotheses which may be of interest in an experimental setting. Use of the
Wald test provides an explicit formula for the asymptotic power. One major departure from the
referenced work is that we condition on covariates so that they are fixed throughout sample size
determination. Possessing covariate information on the population of interest may be more realistic
in an official statistics setting than in the clinical setting that pertains to most of the referenced
literature. Another major departure is how we handle the “nuisance” part of the parameter which
is not dictated by the test hypothesis; we take this to be fixed based on a priori information rather
than estimated. To compute the power for a given departure from the null hypothesis, we utilize
an optimization over the parameter space to ensure that the power calculations are conservative.

The article is organized as follows. Section 2 recalls the CRL model and basic inference using
maximum likelihood estimation. Section 3 presents a method of sample size determination under
the CRL model. Section 4 describes a detailed illustration motivated by the enumerator training
experiment; here, a study design is considered and a suitable CRL model is formulated. Section 5
presents simulation results comparing empirical power of the test to the approximation described
in Section 3. Section 6 presents a power study under the illustration in which a sample size can be
justified. A brief discussion in Section 7 concludes the article.

2 Continuation-Ratio Logit Model
To motivate the continuation-ratio logit (CRL) model, let {p`} denote a sequence of probabilities
for ` ∈ {1, 2, . . .} with p` ∈ (0, 1). Define a discrete random variable W ∗ whose support is the
set of positive integers {1, 2, . . .} with probabilities P(W ∗ = `) = p`

∏`−1
b=1(1 − pb). The random

variable W ∗ naturally represents a number of Bernoulli trials required to obtain the first success in
a sequence of heterogeneous trials. In the special case of a common p` = p, W ∗ follows a geometric
distribution. In practice, it may be reasonable to assume an upper bound L for the number of
trials. Here, it is natural to consider truncating W ∗ to W = W ∗ · I(W ∗ ≤ L) + (L+ 1) · I(W ∗ > L).
With this construction, W has support {1, . . . , L+ 1} where the event [W = L+ 1] indicates that
no response was observed in the first L attempts under consideration.

By this construction, W follows a CRL distribution which we will write as W ∼ CRLL(p) with
p = (p1, . . . , pL). Define [n] to be the set {1, . . . , n} for a given positive integer n. We may write

π`
def= P(W = `) = p`

`−1∏
b=1

(1− pb), for ` ∈ [L+ 1], (1)

with pL+1 ≡ 1. It can be shown that π1 + · · ·+ πL+1 = 1 when defined in this way. Using (1), we
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can obtain a transformation from (π1, . . . , πL+1) to (p1, . . . , pL, pL+1) using

p` = π`
π` + · · ·+ πL+1

, for ` ∈ [L+ 1]. (2)

From (2), it is clear that each p` = P(W = ` | W ≥ `) is the conditional probability of success on
the `th trial given that trials 1, . . . , `− 1 were unsuccessful. The quantity (2) is also referred to as
a discrete hazard rate in survival analysis (Ghosal and van der Vaart, 2017, Chapter 3).

Now, consider a random sampleWi ∼ CRLL(pi) for i ∈ [n] whereWi represents the outcome for
the ith subject, with a common truncation of L trials for all n subjects. We are typically interested
in the relationship between response probability and a covariate xi` ∈ Rd which is provided for
each i ∈ [n] and may vary with trial ` ∈ [L]. A logistic link can be used to explicitly make the
connection

logit(pi`) = x>i`β ⇐⇒ pi` = G(x>i`β),

where G(x) = 1/(1 + e−x) denotes the inverse logit function, β ∈ Rd is a vector of unknown
regression coefficients which are the objectives of our inference, and

logit(pi`) = log
(

pi`
1− pi`

)
≡ log

(
πi`

πi,`+1 + · · ·+ πi,L+1

)
.

The likelihood is

L(β) =
n∏
i=1

L+1∏
`=1

[
pi`

`−1∏
b=1

(1− pib)
]I(wi=`)

=
n∏
i=1

[
pi,wi

wi−1∏
`=1

(1− pi`)
]
. (3)

To facilitate the upcoming discussion, let I = ((1, 1), (1, 2), . . . , (n,L)) denote pairs of indices (i, `)
ordered first by trial and then by observation. Write X as the nL× d design matrix with rows x>i`
for (i, `) ∈ I. Denote g(x) = e−x/(1 + e−x)2 as the first derivative of G(x). The following result
gives the score vector and Fisher information matrix.

Result 2.1. Under likelihood (3),

a. The score vector is

S(β) = ∂

∂β
logL(β) =

n∑
i=1

L+1∑
`=1

[
I(wi = `)xi` − I(wi ≥ `)G(ηi`)xi`

]
.

b. The Fisher information matrix is

I(β) = X>DβX, with Dβ = Diag
{
g(x>i`β)

`−1∏
b=1

[1−G(x>ibβ)] : (i, `) ∈ I

}
.

Using Result 2.1, maximum likelihood estimates (MLEs) can be computed using scoring itera-
tions

β(r+1) = β(r) +
[
I(β(r))

]−1
S(β(r)), r = 1, 2, . . .
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until an acceptable convergence criteria has been reached. It is possible, however, to recode CRL
data as a logistic regression to facilitate computations. The observed wi can be recoded as L binary
variables (yi1, . . . , yiL), with

yi` =


1 if ` = wi,

0 if ` < wi,

NA if ` > wi,

(4)

so that (3) can be rewritten as

L(β) =
n∏
i=1

L∏
`=1

[
pyi`

i` (1− pi`)1−yi`

]I(yi` 6=NA)
, (5)

where NA values are treated as missing values and excluded from the likelihood. Standard software
packages, such as the glm function in R (R Core Team, 2020) or PROC GENMOD in SAS (SAS
Institute Inc., 2018), can then be used to fit (5) via the logistic regression

Yi` ∼ Ber(pi`), logit(pi`) = x>i`β, ` ∈ [L] and i ∈ [n],

and obtain the MLE β̂ for the CRL model. Such software packages also produce a Hessian H(β̂),
from which −H(β̂) and −H−1(β̂) can serve as an estimate of Var(β̂) and I(β̂), respectively,
evaluated at β̂. In a basic logistic regression setting, it can be shown that the Hessian is equivalent
to the information matrix and does not depend on the sample (e.g. Agresti, 2013, Chapter 5). The
logistic regression here, however, is carried out conditionally on {yi` : yi` 6= NA} so that, in general,
H(β̂) is not equal to I(β̂) computed by the CRL information matrix.

Remark 2.2. The CRL regression model assumes that covariates xi1, . . . ,xiL are fixed during
the entire process in which response Wi is generated. Covariates may vary with the attempt, as
will be seen in Section 4, but cannot depend on additional data collected during the sequence of
trials. This corresponds to studies which are planned in advance and not altered during the course
of data collection. In contrast, work on adaptive designs seeks to adjust contact strategies during
an operation for purposes such as reducing operational costs or reducing burden to respondents
(e.g. Ashmead et al., 2017). This can be aided by paradata collected while attempting to contact
respondents, such as the nature of previous failures (e.g., a refusal to participate or a failure to
make any contact). Here, binary regression models which evolve over time and allow time-varying
covariates, such as in Slud and Kedem (1994), might be considered over the CRL model. The
adaptive design setting will not be considered further in this paper, but is a topic of interest for
future work.

3 Method of Sample Size Calculation
To handle a variety of testing problems that may arise in experiments, we will assume a general
linear hypothesis setting (e.g. Myers, 2000, Chapter 3). Given a known matrix C ∈ Rq×d with rank
q ≤ d and vector c0 ∈ Rq, consider the hypotheses

H0 : Cβ = c0 vs. H1 : Cβ 6= c0. (6)
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A Wald test for (6) with significance level α is

Reject H0 if T > χ2
q(1− α), where T = (Cβ̂ − c0)>(CI−1(β̂)C>)−1(Cβ̂ − c0)

and χ2
q(1−α) is the 1−α quantile of a chi-square distribution with q degrees of freedom. For large

samples, we approximately have that β̂ ∼ N(β, I−1(β)), so that (CI−1(β)C>)−1/2(Cβ̂ − c0) ∼
N (λ(β), I) with λ(β) = (CI−1(β)C>)−1/2(Cβ − c0). This implies T is distributed as a non-
central chi-square with q degrees of freedom and non-centrality parameter ψ(β) = λ(β)>λ(β) =
(Cβ−c0)>(CI−1(β)C>)−1(Cβ−c0). Let FT (w; q, ψ) denote the cumulative distribution function
(cdf) of this distribution. The power of the test, which will be denoted $, is then approximately

$ = P(T > χ2
q(1− α)) = 1− FT (χ2

q(1− α); q, ψ(β)). (7)

Notice that FT (χ2
q(1− α); q, ψ(β)) = 1− α when Cβ = c0, which is the condition specified in H0.

The function FT is readily computed using standard statistical software. By using (7) to express
the power of the test, we can avoid more computationally demanding methods such as simulation
to compute power empirically. Expression (7) was obtained using informal arguments; Cordeiro
et al. (1994) provide a more rigorous justification under the closely-related setting of GLMs with
C = (Iq 0q×(d−q)).

We make several remarks before proceeding. Although the non-centrality parameter ψ(β) can
be directly chosen to satisfy a given power $, our purpose is to study $ through ψ(β), as a function
of the sample size. Next, H1 may be partitioned into spheres S(c0,∆) = {β ∈ Rd : ‖Cβ−c0‖ = ∆}
characterized by the effect size ∆ > 0. Each sphere contains a set of β for which the power $ may
vary. Finally, ψ(β) is not only a function of Cβ − c0, but also depends on the entire vector β
through I(β). In view of these remarks, we shall proceed as follows. Given a fixed effect size
∆ = ‖Cβ − c0‖, we find the value β̃ of β which solves the optimization problem,

minimize ψ(β) = (Cβ)>(CI−1(β)C>)−1(Cβ) subject to β ∈ S(c0,∆), (8)

and evaluate the power at ψ(β̃) via (7). Other options are possible, such as drawing β randomly
from the sphere S(c0,∆) and evaluating an average or quantile of attained power values, but we
will make use of the optimization (8) for the remainder of the paper to ensure that the power
calculation is conservative.

The constrained minimization problem (8) can be transformed to an unconstrained problem and
solved using standard optimization software such as optim in R; to do this, we proceed as follows.
Because Cβ ∈ Rq, the number of parameters not involved in the hypothesis is d0 = d − q. Let B
be a d0 × d matrix so that A = (B>, C>)> is a d × d nonsingular matrix. Thus c = Cβ is the
parameter of interest, which is constrained to lie on the sphere S(c0,∆). Furthermore, Bβ is the
nuisance parameter whose value, say Bβ = b0, is assumed to be known a priori. For example, b0
may be available from a pilot study. We can express c using spherical coordinates (e.g. Blumenson,
1960) as

c1 = ∆ cosφ1, c2 = ∆ cosφ2 sinφ1, . . . , cq−1 = ∆ cosφq−1

q−2∏
j=1

sinφj , cq = ∆ sinφq−1

q−2∏
j=1

sinφj

based on φ = (φ1, . . . , φq−1), where φj ∈ [0, π] for j = 1, . . . , q − 2 and φq−1 ∈ [0, 2π). Here,
π = 3.14159 . . . refers to the mathematical constant, not to be confused with (1). A second trans-
formation φj = πG(ϑj) for j = 1, . . . , q − 2 and φq−1 = 2πG(ϑq−1) yields φ from an unconstrained
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ϑ ∈ Rq−1, where G(x) again denotes the inverse logit function. Therefore, a candidate point
ϑ ∈ Rq−1 from the optimizer is transformed to β via

(b0,ϑ) −→ (b0,φ) −→ α = (b0, c) −→ β = A−1α. (9)

Such a β may be evaluated by the objective function in (8) with the constraint omitted.
An investigation to determine sample size can therefore be carried out as follows. Determine

samples J1, . . . ,Jm ⊆ {1, . . . , n} of increasing size which are viable for the experiment. Also
determine a grid {∆1, . . . ,∆r} of effect sizes to consider. For each combination of ∆ ∈ {∆1, . . . ,∆r}
and J ∈ {J1, . . . ,Jm}, solve optimization problem (8) using transformation (9). This yields
β̃, the corresponding non-centrality parameter ψ(β̃), and the associated power via (7) for each
combination. This process allows the test’s power to be studied as a function of the underlying
sample size. A sample may then be selected to meet testing objectives, or it can be determined
that no sample under consideration meets the objectives.

4 An Illustration
We now consider an illustration based on the enumerator training experiment described in Section 1.
To provide a compelling demonstration, some details anticipated for the actual experiment have
been included. A number of complexities have been omitted, however: some dilute the method-
ology discussion and may be considered out of scope, while others present relevant complications.
Section 7 discusses several of the latter.

Because the experiment is envisioned to be carried out within the decennial census, its design
must be compatible with census operations. It is worthwhile to review the major components of
the experiment, such as the experimental subjects, treatments, and the meaning of “sample size”.
A general reference for experimental design is Oehlert (2000). Experimental subjects here are
Spanish-speaking households in the NRFU operation; these are not known with certainty until the
actual NRFU operation is carried out, so we make use of estimates from previous operations in the
planning phase. The number of households included in the study is therefore associated with the
sample size, but is not something which we can directly manipulate in the design. Parameters of
interest are probabilities of Spanish-speaking households to respond to the NRFU operation.

As experimenters, we can assign control (“no training”) or experimental (“training”) treatments
to enumerators. It is impractical to assign treatments to enumerators individually, thus we instead
assign treatments at the level of Area Census Office (ACO). For this discussion, an ACO is consid-
ered to be a geographic delineation used in data collection for the census. Tracts from the standard
(“tabulation”) geography can generally overlap with multiple ACOs; however, tracts intersecting
the ACOs used in this study are contained strictly in one ACO. Enumerators associated with an
experimental ACO will receive the new training, while those in a control ACO will not receive the
new training. We cannot directly assign individual households to enumerators; instead, case as-
signments will be made dynamically based on enumerator availability and workloads (U.S. Census
Bureau, 2019). Under this system, each enumerator will visit multiple households, and a household
may be visited by multiple enumerators. We wish to avoid situations of “contamination” where
households in the study are visited by both trained and untrained enumerators. To minimize the
risk of such occurrences, we have ensured that control and experimental ACOs are geographically
separated. After the data collection, any cases in which a household is visited by both trained and
untrained enumerators will be discarded from the analysis.
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The number of households in the sample is controlled via the ACOs we select for the experiment.
This selection must be decided sufficiently in advance of field operations. To minimize impact to
operations, we would prefer a small number of ACOs which will provide adequate power. We
have pre-selected ACOs from several metropolitan statistical areas (MSAs) in Dallas, Houston, and
Los Angeles as a starting point. Historically, these areas have had large numbers of residents who
primarily speak Spanish and also a large expected workload for NRFU. Table 2 displays the fourteen
pre-selected ACOs: six in the Dallas area, six in Houston, and two in Los Angeles. All ACOs in
Dallas have been assigned to the control group, while Houston has been assigned to the experimental
group. Of the two ACOs in Los Angeles, one has been assigned to the experimental group and
the other to the control group. We have gathered some additional data from the Census Bureau
Planning Database2 for the selected ACOs, including the total number of households (HH_Total),
percent of Spanish speakers (Pct_Spanish), and percent of self-responders (Pct_Selfresp). We
obtain a rough estimate of the count of relevant households in each ACO using the formula

HH_Target = HH_Total× Pct_Spanish/100×
(
1− Pct_Selfresp/100

)
, (10)

and rounding down to the next integer. Calculation (10) is carried out at the tract level, then
aggregated to the ACO level. This provides a total sample size of up to 380,018 households;
although this represents a small proportion of households in the United States, it seems to be quite
a large number of households to use in an experiment. A formal power analysis will reveal whether
or not it is sufficient.

The fourteen ACOs have been matched into I = 7 pairs where each pair contains one ACO
for each of the J = 2 possible treatments. The Los Angeles ACOs form one pair, while the
remaining pairs were constructed by matching an ACO from Houston with an ACO from Dallas
where Pct_Spanish and Pct_Selfresp were similar. After matching, pairs were randomly assigned
indices i = 1, . . . , I. This defines samples using an increasing number of pairs, Ji = [i] for i =
1, 2, . . . , I, as discussed in Section 3. Within the ith pair, the control ACO receiving no training is
indexed j = 1, while the experimental ACO receiving training is indexed j = 2. Within the jth
ACO of the ith pair, Kij denotes the household count HH_Target from (10). Of primary concern
is whether the seven available pairs will be adequate or if more are needed. A secondary interest is
in plotting power curves when using one pair, two pairs, etc, up to all seven available pairs.

Let Wijk ∼ CRLL(pijk) indicate the number of contact attempts needed for a response for
the ith pair, jth treatment, and kth household for i ∈ [I], j ∈ [J ], k ∈ [Kij ], where pijk =
(pijk1, . . . , pijkL) are the associated probabilities of a response at each attempt. Recall that an
observation of wijk = L + 1 indicates that no response was obtained in the first L attempts. We
consider a basic model for response rate as

logit(pijk`) = ζj` (11)
= µ+ τj + δ` + (τδ)j` (12)
= s>j`β. (13)

Model formulation (11) uses unconstrained effects ζ11, . . . , ζJL to facilitate computations. Formu-
lation (12) provides a more clear interpretation, with an intercept term µ, treatment effects τj
which are of primary interest, contact attempt effects δ`, and effects (τδ)j` for treatment-attempt
interaction. Formulation (13) is a regression form of (11). To reparameterize from (11) to (12), we

2https://www.census.gov/topics/research/guidance/planning-databases.html

https://www.census.gov/topics/research/guidance/planning-databases.html
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assume constraints
J∑
j=1

τj = 0,
L∑
`=1

δ` = 0,
J∑
j=1

(τδ)j` = 0,
L∑
`=1

(τδ)j` = 0, (14)

and let ζj` = µ+ τj + δ` + (τδ)j` so that

1
JL

J∑
j=1

L∑
`=1

ζj` = µ,
1
L

L∑
`=1

ζj` − µ = τj ,
1
J

J∑
j=1

ζj` − µ = δ`.

Care should be taken when interpreting µ, τj , and δ`, as they are averages of the raw ζj` parameters.
There are J − 1 distinct parameters among the τj ’s, L − 1 among the δ`’s, (J − 1)(L − 1) among
the (τδ)j`’s; with the addition of µ, there are a total of (J − 1) + (L− 1) + (J − 1)(L− 1) + 1 = JL
parameters. In particular, JL is equivalent to 2L with J = 2 treatments. To rewrite (12) in the
form of (13), let

β =
(
µ, τ1, δ1, . . . , δL−1, (τδ)11, . . . , (τδ)1,L−1

)
with sj` coded in the manner shown in Table 1. To emphasize the grouping of trials implied by
the model, let H(j, `) represent the list of (i, j, k, `) indices corresponding to the jth treatment
and `th attempt, so that H(j, `) contains Nj` = L

∑I
i=1 Kij elements, and write pH(j,`) = (pijk` :

(i, j, k, `) ∈ H(j, `)). We can then rewrite (13) as

logit(pH(j,`)) = Xj`β, j = 1, . . . , J and ` = 1, . . . , L,

where Xj` = 1Nj`
⊗ s>j` and 1Nj`

is a vector of Nj` ones. Sample size determination will be based
on a test of the general linear hypothesis (6) with C = (0JL−1 IJL−1) and c0 = 0JL−1; i.e., a
test for the presence of any treatment effects, attempt effects, or their interactions. We will assume
significance level α = 0.10 for the test, which is a standard used by the Census Bureau (U.S. Census
Bureau, 2013). Section 6 will investigate the relationship between the sample size, the effect size
∆ = ‖Cβ−c0‖, and power $ of the test. Some discussion will be provided to interpret the achieved
∆.

It is important to consider the number of contact attempts L to be used in the model. Too few
contact attempts can fail to capture the response behavior of interest, while too many will lead to
an issue of sparse observations which we will now discuss. Although a high probability of response
during each contact attempt is desirable from the perspective of data collection, enumerations
during later attempts will be a more rare occurrence. In turn, corresponding counts will be close
to zero, large sample properties used in Section 3 will not take effect, and consequently the power
expression (7) will be inaccurate unless sample sizes are taken to be very large. To make this
issue concrete, suppose H0 is true so that the probability of a successful enumeration pijk` ≡ p,
given that any attempts 1, . . . , ` − 1 failed, depends only on µ. We may then write the overall
(unconditional) probabilities of enumeration as πijk` = p

∏`−1
b=1(1 − p) = p(1 − p)`−1. Values for

πijk = (πijk1, . . . , πijkL) are shown in Table 3 for L = 5 for several values of p under H0. It is
clear that responses occurring after two attempts are quite common under small p but become
increasingly rare events when p approaches 1. In practice, many factors can influence response
probability across attempts, but consideration of the model under H0 helps to serve as a guideline.
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Table 1: Coding for design matrix rows sj` used in (13).

j ` Intercept Treatment Attempt Treatment × Attempt
1 1 1 1 1 0 · · · 0 1 0 · · · 0

2 1 1 0 1 · · · 0 0 1 · · · 0
...

...
...

...
...

...
. . .

...
...

...
. . .

...
L− 1 1 1 0 0 · · · 1 0 0 · · · 1

1 L 1 1 -1 -1 · · · -1 -1 -1 · · · -1
2 1 1 -1 1 0 · · · 0 -1 0 · · · 0

2 1 -1 0 1 · · · 0 0 -1 · · · 0
...

...
...

...
...

...
. . .

...
...

...
. . .

...
L− 1 1 -1 0 0 · · · 1 0 0 · · · -1

2 L 1 -1 -1 -1 · · · -1 1 1 · · · 1

5 Simulation
Table 3 emphasized that successful enumerations in later attempts can be quite rare in some cir-
cumstances: in particular, under H0 with logit−1(µ) approaching 1. It is anticipated that large
sample approximations used in Section 3 will fail when data in later categories become too uncom-
mon. In this section, we will compare the empirical power of the Wald test to the approximate
power computed via (7). A simulation will be carried out in R (R Core Team, 2020) under the
experimental design introduced in Section 4.

Suppose there is I = 1 pair with K households in the experimental ACO and K households
in the control ACO; therefore, J = 2 treatments are assumed. We take K ∈ {10, 50, 200}.
We consider CRL models of the form (12) which include L ∈ {1, 2, 3, 4} attempts. For the
baseline effect, we take logit−1(µ) ∈ {0.60, 0.75, 0.90}. For the departure from H0, we consider
∆ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1}. Here, we explicitly choose the parameters to be

β =
(
µ, τ1 = ∆, δ1 = 0, . . . , δL−1 = 0, (τδ)11 = 0, . . . , (τδ)1,L−1 = 0

)
.

so that ∆ is entirely allocated to τ1. The simulation proceeds by drawing a sample Wijk ∼
CRLL(pijk) for i ∈ [1], j ∈ [2], and k ∈ [K], recoding Wijk’s to Yijk`’s via (4), then fitting
the (correctly specified) data-generating model (12) by a logistic regression with the glm function.
This is repeated R = 1,000 times for each simulation setting, yielding coefficient estimates β̂(r) and
corresponding covariance estimates V̂ (r) = I−1(β̂(r)) for r = 1, . . . , R. We then compute Wald
statistics

W (r) = (Cβ̂(r) − c0)>(CV̂ (r)C>)−1(Cβ̂(r) − c0),

to obtain an empirical probability of rejection 1
R

∑R
r=1 I(W (r) ≥ χ2

q(1−α)). Here, χ2
q(1−α) denotes

the 1 − α = 0.90 quantile of the χ2 distribution with q = JL − 1 degrees of freedom which is the
critical value of the test. For some repetitions, the coefficients or the associated covariance estimates
could not be fully computed. For example, this occurred when no outcomes were observed for an
attempt ` in one or both of the treatments. These were recorded as W (r) = NA and excluded from
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the empirical power calculation. The approximate rejection probability (7) is also computed for
each simulation setting; note that this does not make use of the simulation draws.

Tables 4 and 5 display the empirical power and approximated power, respectively, after carry-
ing out the simulation. Respective entries across the two tables can be compared to check their
agreement. Table 6 displays frequencies of W (r) = NA from the empirical power calculation; e.g.,
a count of zero indicates that all samples in the given setting could be estimated.

When L = 1, the empirical and approximate power closely agree when µ = logit(0.6), for all
sample sizes K and all ∆. When µ is increased to logit(0.75), K = 10 becomes too small, and
the empirical power is systematically smaller than the approximation. For this value of µ, K = 50
appears to be a sufficient number of households. When we further increase µ to logit(0.9), K = 50
is no longer sufficient, but increasing to K = 200 is enough for the two power calculations to agree.

If we increase L to 2, K = 10 is no longer a sufficient number of households for any displayed
setting of µ. K = 50 gives a sufficient power approximation when µ = logit(0.6), but not the two
larger values of µ. K = 200 is enough when µ = logit(0.6) or µ = logit(0.75). When µ = logit(0.90),
however, we need a larger sample to use the approximation reliably.

The pattern becomes more severe as L increases, with larger K needed for a reasonably good
approximation of the power for larger µ. Referring to Table 6, we notice that NA counts increase
accordingly when L and µ are both larger. For example, in the case of L = 3 and µ = logit(0.90),
it is rare to obtain valid estimates under K = 10, but slowly becomes more frequent as the number
of households increases to K = 50 and to K = 200. Referring back to Table 3, we see that Attempt
3 for µ = logit(0.90) has probability of about 0.009 under H0. Therefore, we expect that a sample
size of approximately 100 will be needed to observe third attempts in both treatments, which is a
minimum requirement to be able to use a model with L = 3.

6 Sample Size for Illustration
With some insight into the quality of the approximation (7), we now present a power study using the
fourteen ACOs from Table 2. For each J ∈ {[1], . . . , [7]} and each ∆ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0},
the optimization problem (8) is solved to yield the minimizer β = β̃(∆,J ) and associated power
$(∆,J ). We repeat this using L ∈ {2, . . . , 5} contact attempts and baseline response effect
logit−1(µ) ∈ {0.75, 0.90}. Figure 1 displays the results as a grid of power curves. For this dis-
cussion, we will consider $ = 0.80 as a rough target for the power.

First, we give an upper bound on µ to decide on the largest L that can be supported by the
model. Internal discussions with Census Bureau personnel have suggested that the baseline response
probability µ might be larger than logit(0.75) but should be no greater than logit(0.90); therefore,
Table 3 suggests modeling at most L = 3 attempts. With L = 3, using all seven pairs, we achieve
nearly $ = 1 when µ = logit(0.75). Under µ = logit(0.90), we also achieve $ ≈ 1 except under the
smallest effect size in the study, ∆ = 0.1, where $ ≈ 0.77 is achieved.

Therefore, ∆ = 0.1 represents the smallest effect size we can detect using all seven pairs,
modeling L = 3 contact attempts, achieving power $ ≈ 0.77, and assuming µ = logit(0.90).
Stakeholders of the experiment will likely need an intuitive interpretation of ∆ = 0.1 to decide if this
provides a level of detection precise enough to be practically useful. To assist with interpretation,
we can consider the extreme cases of the alternative hypothesis with effect size ∆, namely

β ∈
{

(µ,∆, 0, . . . , 0), . . . , (µ, 0, . . . , 0,∆)
}
, (15)
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so that ∆ is completely allocated to one of the coordinates of β aside from the intercept. Table 7
shows the pijk` and πijk` corresponding to each of the values in (15), along with the value β =
(µ, 0, . . . , 0) underH0. A comparison of each case (b)–(f) in Table 7 to case (a) suggests that ∆ = 0.1
corresponds to rather small changes in probabilities. Presented with this information, stakeholders
may determine whether this level of detection is sufficiently precise for the experiment.

7 Discussion and Conclusions
Experiments assessing changes to response rates may involve multiple attempts to establish contact
with households, persons, businesses, or other entities. Sequential models such as the continuation-
ratio logit (CRL) provide a statistical framework for such experiments. Through an illustration
based on an actual experiment for a new enumerator training module, we have explored use of
the CRL model in an experimental design to measure changes in response rates. The presented
methodology was used to justify a sample size and provide intuition on effect sizes which could be
detected in the experiment with a desired level of power.

A number of extensions can be considered in future work, which may be relevant to practical
applications. A likelihood ratio test can be considered in place of the Wald test using an approximate
power expression (e.g. Self et al., 1992). Test procedures relying less on asymptotic approximation
could also be considered, but may be onerous to scale to larger datasets if they rely heavily on
computation. In the illustration, all covariates have been treated as known ahead of the experiment,
but it would be desirable to account for uncertainty in the counts of housing units. This work has
focused solely on unit-level nonresponse; item-level nonresponse may also be of interest in sample
size calculation.

The illustration featured several notable simplifications which may need to be addressed in a
real-life experiment. The illustration assumed a common maximum number of attempts L across
all households. Section 4 mentioned plans to dynamically assign enumerators to households during
the 2020 Census NRFU operation until attempts are exhausted; however, L itself is also subject
to dynamic adjustment (U.S. Census Bureau, 2019). To account for uncertainty during planning,
it may be conceivable to formulate a model for L and extend the sample size methodology accord-
ingly. Experimenters may also wish to define “success” more broadly than in-person contact by an
enumerator, and may include contact by another mode such as phone call, contact with a proxy,
or an implicit response via administrative records in lieu of contact. For example, Ashmead et al.
(2017) consider a more holistic contact process in the context of the American Community Survey.
Therefore, it may be necessary to generalize the outcome model beyond simple sequences of trials
to provide a more comprehensive notion of response.

The ability to support mixed effects would be a desirable extension to this work. For example,
our illustration grouped the ACOs into pairs, with one element in the pair receiving the experimental
treatment and the other receiving the control treatment. Such a design would be especially desirable
if ACOs within a pair exhibit more similar response behavior than ACOs across pairs. Here, a
random intercept for each pair may be appropriate to reduce overall uncertainty in the fixed effects
of interest. Other random effects such as enumerator and enumerator-attempt interaction could
be considered as well; however, their use in sample size determination would be complicated in a
setting with dynamic workload allocation.
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A Appendix
Proof of Result 2.1. Write ηi` = x>i`β. To derive (a), first note that

∂

∂β
log pi` = 1

pi`
g(ηi`)xi` = (1 + e−ηi`) e−ηi`

(1 + e−ηi`)2xi` = [1−G(ηi`)]xi`

and

∂

∂β
log(1− pib) = − 1

1− pib
g(ηib)xib = −1 + e−ηib

e−ηib

e−ηib

(1 + e−ηib)2xib = −G(ηib)xib.
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We then have

∂

∂β
logL(β) = ∂

∂β

n∑
i=1

L+1∑
`=1

I(wi = `)
[

log pi` +
`−1∑
b=1

log(1− pib)
]

=
n∑
i=1

L+1∑
`=1

I(wi = `)
[

[1−G(ηi`)]xi` −
`−1∑
b=1

G(ηib)xib

]

=
n∑
i=1

L+1∑
`=1

I(wi = `)xi` −
n∑
i=1

L+1∑
`=1

I(wi ≥ `)G(ηi`)xi`.

For (b), let us first write

Dw = Diag
{
I(wi ≥ `)g(x>i`β) : (i, `) ∈ I,

}
,

Dβ = Diag
{

P(Wi ≥ `)g(x>i`β) : (i, `) ∈ I
}

= Diag
{
g(x>i`β)

`−1∏
b=1

[1−G(x>ibβ)] : (i, `) ∈ I

}
. (16)

so that Dβ = E[Dw]. The last equality in (16) can be justified by

pi` = πi`
πi` + · · ·+ πi,L+1

= πi`
P(Wi ≥ `)

=
pi`
∏`−1
b=1(1− pib)

P(Wi ≥ `)
⇐⇒ P(Wi ≥ `) =

`−1∏
b=1

(1− pib).

Now the second derivative of the log-likelihood is

∂2

∂β∂β>
logL(β) = −

n∑
i=1

L∑
`=1

I(wi ≥ `)g(x>i`β)xi`x>i` = −X>DwX. (17)

Taking the negative expectation of (17) yields the desired information matrix.
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Table 2: ACOs under consideration for the experiment.

Percent HH Counts
Pair Area Group Tracts Spanish Selfresp Total Target

1 Dallas Ctrl 176 6.8 62.8 352,347 11,900
1 Houston Expt 136 21.0 44.1 253,932 33,305
2 Dallas Ctrl 163 14.2 48.5 293,170 24,847
2 Houston Expt 148 10.1 47.9 278,782 18,412
3 Dallas Ctrl 180 10.4 57.4 337,574 19,828
3 Houston Expt 140 15.8 44.0 282,424 31,434
4 Dallas Ctrl 170 24.9 41.2 277,452 43,271
4 Houston Expt 122 21.6 41.3 240,950 36,575
5 Dallas Ctrl 194 11.6 55.6 335,557 23,521
5 Houston Expt 146 20.0 40.7 238,144 32,587
6 Dallas Ctrl 235 4.0 66.3 482,153 8,084
6 Houston Expt 91 8.0 61.3 268,572 9,525
7 LA Ctrl 304 13.9 49.5 441,726 35,989
7 LA Expt 355 16.1 48.5 496,564 50,740

Total 2,560 4,579,347 380,018
1 Total HH Counts, Percent Spanish, and Percent Self-Response are
based on Planning Database variables Tot_Occp_Units_ACS_13_17,
pct_Age5p_Spanish_ACS_13_17, and Self_Response_Rate_ACS_13_17,
respectively, which are sourced from American Community Survey 5-year
estimates for the year 2017.
2 Percentages are based on ACOs counts which have been aggregated from tract
data; Target HH Count cannot be reproduced via (10) from here.
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Table 3: Probabilities πijk` under H0 of a successful enumeration for attempts ` = 1, . . . , 5. Cate-
gory 6+ contains the leftover probability that enumeration occurs after attempt 5.

Attempt
p 1 2 3 4 5 6+

0.05 0.05 0.0475 0.0451 0.0429 4.073E-2 7.738E-1
0.10 0.10 0.0900 0.0810 0.0729 6.561E-2 5.905E-1
0.15 0.15 0.1275 0.1084 0.0921 7.830E-2 4.437E-1
0.20 0.20 0.1600 0.1280 0.1024 8.192E-2 3.277E-1
0.25 0.25 0.1875 0.1406 0.1055 7.910E-2 2.373E-1
0.30 0.30 0.2100 0.1470 0.1029 7.203E-2 1.681E-1
0.35 0.35 0.2275 0.1479 0.0961 6.248E-2 1.160E-1
0.40 0.40 0.2400 0.1440 0.0864 5.184E-2 7.876E-2
0.45 0.45 0.2475 0.1361 0.0749 4.118E-2 5.033E-2
0.50 0.50 0.2500 0.1250 0.0625 3.125E-2 3.125E-2
0.55 0.55 0.2475 0.1114 0.0501 2.255E-2 1.845E-2
0.60 0.60 0.2400 0.0960 0.0384 1.536E-2 1.024E-2
0.65 0.65 0.2275 0.0796 0.0279 9.754E-3 5.253E-3
0.70 0.70 0.2100 0.0630 0.0189 5.670E-3 2.430E-3
0.75 0.75 0.1875 0.0469 0.0117 2.930E-3 9.766E-4
0.80 0.80 0.1600 0.0320 0.0064 1.280E-3 3.200E-4
0.85 0.85 0.1275 0.0191 0.0029 4.303E-4 7.594E-5
0.90 0.90 0.0900 0.0090 0.0009 9.000E-5 1.000E-5
0.95 0.95 0.0475 0.0024 0.0001 5.938E-6 3.125E-7
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Table 4: Empirical power computed by simulation. A dash (—) means that no samples in this
setting yielded valid estimates of the coefficient and variance.

L K logit−1(µ) ∆ = 0 0.1 0.2 0.3 0.4 0.5 0.75 1.0
1 10 0.60 0.1090 0.1020 0.1100 0.1840 0.1950 0.2970 0.4480 0.5810

0.75 0.0450 0.0440 0.0670 0.0580 0.0860 0.1110 0.2200 0.2820
0.90 0.0010 0.0020 0.0000 0.0020 0.0020 0.0050 0.0070 0.0240

1 50 0.60 0.0900 0.1280 0.2470 0.4290 0.6230 0.7710 0.9800 0.9990
0.75 0.0940 0.1270 0.2300 0.3410 0.5420 0.6830 0.9450 0.9950
0.90 0.0590 0.0800 0.1220 0.1550 0.2670 0.3600 0.6380 0.7730

1 200 0.60 0.0900 0.2520 0.6450 0.9030 0.9820 1.0000 1.0000 1.0000
0.75 0.1160 0.2290 0.5380 0.8090 0.9680 0.9980 1.0000 1.0000
0.90 0.0840 0.1520 0.3320 0.5700 0.7720 0.9160 0.9960 1.0000

2 10 0.60 0.0071 0.0213 0.0163 0.0123 0.0392 0.0484 0.1065 0.2326
0.75 0.0034 0.0000 0.0022 0.0046 0.0082 0.0120 0.0294 0.0656
0.90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0034

2 50 0.60 0.0790 0.1290 0.2050 0.3670 0.5640 0.7400 0.9770 1.0000
0.75 0.0580 0.0820 0.1270 0.2170 0.3650 0.5200 0.8880 0.9900
0.90 0.0283 0.0263 0.0276 0.0443 0.0730 0.1313 0.2913 0.6145

2 200 0.60 0.0950 0.2190 0.5760 0.9120 0.9910 1.0000 1.0000 1.0000
0.75 0.0970 0.1890 0.4680 0.7810 0.9520 0.9940 1.0000 1.0000
0.90 0.0540 0.0870 0.1780 0.3290 0.5830 0.7630 0.9870 1.0000

3 10 0.60 0.0000 0.0000 0.0000 0.0000 0.0017 0.0017 0.0068 0.0408
0.75 0.0000 0.0000 0.0000 0.0000 0.0045 0.0000 0.0000 0.0088
0.90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 50 0.60 0.0430 0.0631 0.1474 0.2590 0.4789 0.6839 0.9621 1.0000
0.75 0.0087 0.0294 0.0496 0.0938 0.1553 0.3211 0.7169 0.9594
0.90 0.0351 0.0272 0.0210 0.0210 0.0000 0.0227 0.0962 0.2537

3 200 0.60 0.0900 0.2080 0.5580 0.8750 0.9930 1.0000 1.0000 1.0000
0.75 0.0480 0.1260 0.3490 0.6770 0.9179 0.9890 1.0000 1.0000
0.90 0.0384 0.0369 0.0865 0.1832 0.3450 0.5611 0.9657 1.0000

4 10 0.60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.90 — — — — — 0.0000 — —

4 50 0.60 0.0150 0.0352 0.0506 0.1226 0.2513 0.4449 0.8755 0.9909
0.75 0.0033 0.0071 0.0206 0.0326 0.1188 0.1741 0.5946 0.8889
0.90 0.0000 0.0000 0.0000 0.0000 0.0000 — 0.0000 1.0000

4 200 0.60 0.0810 0.1650 0.5055 0.8660 0.9850 0.9990 1.0000 1.0000
0.75 0.0242 0.0631 0.2335 0.5271 0.8302 0.9548 1.0000 1.0000
0.90 0.1800 0.1282 0.0645 0.2250 0.3333 0.6129 1.0000 1.0000
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Table 5: Approximate power in each simulation setting.

L K logit−1(µ) ∆ = 0 0.1 0.2 0.3 0.4 0.5 0.75 1.0
1 10 0.60 0.1000 0.1081 0.1321 0.1707 0.2220 0.2830 0.4551 0.6142

0.75 0.1000 0.1063 0.1250 0.1552 0.1951 0.2429 0.3796 0.5118
0.90 0.1000 0.1030 0.1120 0.1264 0.1455 0.1683 0.2345 0.3013

1 50 0.60 0.1000 0.1403 0.2558 0.4248 0.6084 0.7665 0.9622 0.9963
0.75 0.1000 0.1315 0.2226 0.3597 0.5183 0.6697 0.9098 0.9820
0.90 0.1000 0.1152 0.1595 0.2290 0.3171 0.4149 0.6461 0.8025

1 200 0.60 0.1000 0.2570 0.6198 0.8963 0.9859 0.9990 1.0000 1.0000
0.75 0.1000 0.2237 0.5308 0.8205 0.9586 0.9942 1.0000 1.0000
0.90 0.1000 0.1602 0.3270 0.5491 0.7515 0.8868 0.9917 0.9996

2 10 0.60 0.1000 0.1061 0.1246 0.1554 0.1980 0.2510 0.4117 0.5713
0.75 0.1000 0.1043 0.1170 0.1381 0.1669 0.2025 0.3111 0.4245
0.90 0.1000 0.1018 0.1071 0.1158 0.1274 0.1415 0.1838 0.2284

2 50 0.60 0.1000 0.1312 0.2281 0.3871 0.5776 0.7514 0.9656 0.9975
0.75 0.1000 0.1216 0.1881 0.2991 0.4428 0.5953 0.8735 0.9713
0.90 0.1000 0.1090 0.1363 0.1814 0.2429 0.3169 0.5192 0.6857

2 200 0.60 0.1000 0.2293 0.5922 0.8993 0.9899 0.9996 1.0000 1.0000
0.75 0.1000 0.1891 0.4572 0.7703 0.9442 0.9922 1.0000 1.0000
0.90 0.1000 0.1368 0.2508 0.4325 0.6358 0.8036 0.9776 0.9983

3 10 0.60 0.1000 0.1051 0.1206 0.1467 0.1833 0.2298 0.3759 0.5286
0.75 0.1000 0.1034 0.1134 0.1301 0.1531 0.1820 0.2725 0.3711
0.90 0.1000 0.1014 0.1054 0.1119 0.1207 0.1315 0.1642 0.1991

3 50 0.60 0.1000 0.1261 0.2100 0.3550 0.5399 0.7193 0.9581 0.9967
0.75 0.1000 0.1170 0.1704 0.2630 0.3899 0.5338 0.8304 0.9550
0.90 0.1000 0.1068 0.1275 0.1623 0.2109 0.2711 0.4475 0.6083

3 200 0.60 0.1000 0.2111 0.5556 0.8831 0.9881 0.9995 1.0000 1.0000
0.75 0.1000 0.1712 0.4035 0.7153 0.9197 0.9869 1.0000 1.0000
0.90 0.1000 0.1279 0.2172 0.3698 0.5587 0.7351 0.9590 0.9959

4 10 0.60 0.1000 0.1044 0.1177 0.1403 0.1723 0.2133 0.3457 0.4900
0.75 0.1000 0.1028 0.1112 0.1252 0.1446 0.1690 0.2471 0.3345
0.90 0.1000 0.1011 0.1044 0.1099 0.1172 0.1261 0.1533 0.1827

4 50 0.60 0.1000 0.1225 0.1958 0.3266 0.5015 0.6814 0.9458 0.9952
0.75 0.1000 0.1142 0.1592 0.2387 0.3513 0.4850 0.7883 0.9360
0.90 0.1000 0.1056 0.1228 0.1518 0.1926 0.2440 0.4005 0.5525

4 200 0.60 0.1000 0.1968 0.5169 0.8584 0.9836 0.9993 1.0000 1.0000
0.75 0.1000 0.1599 0.3636 0.6647 0.8916 0.9793 1.0000 1.0000
0.90 0.1000 0.1231 0.1980 0.3303 0.5044 0.6804 0.9385 0.9924
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Table 6: Count of NAs in each simulation setting when calculating empirical power.

L K logit−1(µ) ∆ = 0 0.1 0.2 0.3 0.4 0.5 0.75 1.0
1 10 0.60 0 0 0 0 0 0 0 0

0.75 0 0 0 0 0 0 0 0
0.90 0 0 0 0 0 0 0 0

1 50 0.60 0 0 0 0 0 0 0 0
0.75 0 0 0 0 0 0 0 0
0.90 0 0 0 0 0 0 0 0

1 200 0.60 0 0 0 0 0 0 0 0
0.75 0 0 0 0 0 0 0 0
0.90 0 0 0 0 0 0 0 0

2 10 0.60 11 15 16 26 30 29 61 110
0.75 109 111 106 132 145 167 252 314
0.90 576 589 572 587 583 613 649 708

2 50 0.60 0 0 0 0 0 0 0 0
0.75 0 0 0 0 0 0 0 4
0.90 10 10 23 29 28 48 80 144

2 200 0.60 0 0 0 0 0 0 0 0
0.75 0 0 0 0 0 0 0 0
0.90 0 0 0 0 0 0 0 0

3 10 0.60 303 324 339 359 400 414 557 681
0.75 804 800 794 773 776 795 853 887
0.90 995 989 993 985 988 991 986 996

3 50 0.60 0 1 3 4 4 13 49 150
0.75 77 81 91 158 182 265 410 532
0.90 827 852 855 856 866 868 896 933

3 200 0.60 0 0 0 0 0 0 0 0
0.75 0 0 0 0 1 3 24 102
0.90 244 269 306 356 371 435 592 747

4 10 0.60 772 754 794 789 803 832 892 930
0.75 979 977 976 985 968 993 983 983
0.90 1000 1000 1000 1000 1000 999 1000 1000

4 50 0.60 69 90 110 168 236 292 510 669
0.75 697 720 709 785 798 799 889 946
0.90 993 998 998 997 999 1000 998 999

4 200 0.60 0 0 1 0 3 5 59 203
0.75 91 97 135 207 317 380 625 765
0.90 950 961 969 960 973 969 980 991



Nonresponse Experiments using Sequential Models 23

µ = logit(0.75) µ = logit(0.90)

L = 2
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Figure 1: Power study using the fourteen pre-selected ACOs in Dallas, Houston, and Los Angeles.



Nonresponse Experiments using Sequential Models 24

Table 7: An aid to interpret effect size ∆ = 0.1 with µ = logit(0.9). Case (a) represents H0, while
cases (b)–(f) place all of effect size ∆ on one particular coordinate of β. Trial probabilities pijk
from case (a) can be compared to each case (b)–(f) to visualize the differences that can be detected
by the experiment. Similarly, overall enumeration probabilities πijk from case (a) can be compared
to each case (b)–(f).

(a) H0
j pijk1 pijk2 pijk3 πijk1 πijk2 πijk3 πijk4

1 0.9000 0.9000 0.9000 0.9000 0.0900 0.0090 0.0010
2 0.9000 0.9000 0.9000 0.9000 0.0900 0.0090 0.0010
(b) τ1 = ∆
j pijk1 pijk2 pijk3 πijk1 πijk2 πijk3 πijk4

1 0.9086 0.9086 0.9086 0.9086 0.0830 0.00758 0.000762
2 0.8906 0.8906 0.8906 0.8906 0.0974 0.01065 0.001308
(c) δ1 = ∆
j pijk1 pijk2 pijk3 πijk1 πijk2 πijk3 πijk4

1 0.9086 0.9000 0.8906 0.9086 0.0822 0.00814 0.000999
2 0.9086 0.9000 0.8906 0.9086 0.0822 0.00814 0.000999
(d) δ2 = ∆
j pijk1 pijk2 pijk3 πijk1 πijk2 πijk3 πijk4

1 0.9000 0.9086 0.8906 0.9000 0.0909 0.00814 0.000999
2 0.9000 0.9086 0.8906 0.9000 0.0909 0.00814 0.000999
(e) (τδ)11 = ∆
j pijk1 pijk2 pijk3 πijk1 πijk2 πijk3 πijk4

1 0.9086 0.9000 0.8906 0.9086 0.0822 0.00814 0.000999
2 0.8906 0.9000 0.9086 0.8906 0.0984 0.00994 0.000999
(f) (τδ)12 = ∆
j pijk1 pijk2 pijk3 πijk1 πijk2 πijk3 πijk4

1 0.9000 0.9086 0.8906 0.9000 0.0909 0.00814 0.000999
2 0.9000 0.8906 0.9086 0.9000 0.0891 0.00994 0.000999
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