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Abstract

One significant concern in releasing survey microdata is the possibility of iden-

tifying the records of some survey units by matching the values of some of the vari-

ables, called key or pseudo-identifying variables, whose values can be obtained easily

from other sources. For categorical key variables, Nayak, Zhang and You [Int. Stat.

Rev, 86(2), 2018, 300-321] developed a novel approach for measuring and controlling

identification risks. For any ξ > 1/3, it can guarantee that any unit’s probability of

correct identification would not exceed ξ. We present another post-randomization

method for giving that guarantee more stringently, even for ξ ≤ 1/3. We use data

partitioning and unbiased post-randomization as two effective tools for preserving

data utility. We illustrate and assess the procedure by applying it to a U.S. Census

Bureau’s publicly released data set.
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1. Introduction

One basic goal of most statistical agencies is to collect and release data to assist research

and inform the public and policy makers. However, the original data may reveal private

information about some of the survey participants or units, even if name, social security

number and other direct identifiers are removed. In a microdata set that contains each

unit’s values for many variables, one might be able to correctly identify the records of

a target unit by matching the values of some of the variables, such as gender, race and

occupation, which can be learned easily from other sources. Then, one can learn the

identified unit’s values for all other variables. This is called identity disclosure and it is

regarded as one of the most severe forms of exposing a respondent’s private information.

In this paper, we focus on identity disclosure in microdata release and controlling iden-

tification risks. However, data confidentiality breaches may occur in many other forms

and even when only data summaries are released. For discussions about other types of

disclosure and various disclosure control methods, such as grouping, data swapping, cell

suppression, noise addition, synthetic data and post-randomization, we refer interested

readers to the books: Willenborg and de Waal (2001), Duncan et al. (2011) and Hunde-

pool et al. (2012).

Protecting data confidentiality, which is required for legal reasons and upholding public

trust, usually requires some perturbation of the true data before publishing. That also

dilutes and distorts statistical information. So, one should examine the trade-offs between

confidentiality protection and data utility to choose a suitable perturbation method. But,

formalizing this idea mathematically is difficult largely because neither disclosure risk nor

data utility can be defined precisely and also satisfactorily to diverse data subjects and
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data users; see e.g., Lambert (1993), Cox et al. (2011) and Skinner (2012). For assessing

data utility, we shall compare the original and perturbed data distributions.

Consider a microdata set containing values of multiple variables for each sampled

unit. The variables that an intruder may use for matching and identifying the records of

a target unit are called key (or pseudo-identifying) variables, whose values should be easily

available from other sources. Customarily, it is assumed that the key variables are stated

by the agency and all are categorical. Many papers e.g., Paass (1988), Bethlehem et al.

(1990), Greenberg and Zayatz (1992), Chen and Keller-McNulty (1998), Skinner and Elliot

(2002), Shlomo and De Wall (2008) and Shlomo and Skinner (2010), discuss measuring

and controlling identification risk. Bethlehem et al. (1990) defined identification risk as

the probability that a unit is population unique, given that it is sample unique, with

respect to the key variables. That ignores the effects of data perturbation on identity

disclosure. Taking data perturbation into account, Shlomo and Skinner (2010) defined

a unit’s identification risk as the probability that the unit is correctly identified given

that it has a unique match in released data. This and previous measures are difficult

to use because they vary with the units and also depend on unknown population level

frequencies. Nayak, Zhang and You (2018), henceforth NZY, proposed another approach

for controlling identification risk that does not involve unknown parameters. We shall use

the NZY framework and so review it in more details below.

As in NZY and previous works, we assume that all key variables are categorical and

are specified by the agency. Let X denote the cross-classification of all key variables.

Suppose X has k cells, denoted c1, . . . , ck. While category and cell are synonymous, for

clarity we shall use cell for a cross-classified variable and category for a single variable.

For identification risk control, the true values (cells) of X are replaced by their post-
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randomized values, as reviewed later. Let Z denote the post-randomized version of X.

Most of our discussions involve X and Z, as the values of all other variables are not

changed. Let Tj and Sj denote the frequencies of cj in the original and perturbed data,

respectively, and let T = (T1, ..., Tk)
′ and S = (S1, ..., Sk)

′.

Consider an intruder A who wants to identify the records of a target unit B in the

released data. Let X(B) denote B’s value of X, and suppose X(B) = cj. NZY assumed

that (i) A knows X(B), (ii) A knows that B is in the sample and (iii) A randomly selects

one of the records in the released data that match X(B), as a match for B. Note that B

(with X(B) = cj) matches with Sj records in the released data, and if Sj = 0, the intruder

declares no match. Thus, B can be matched correctly only if B’s value of X remain

unchanged during data perturbation. As NZY noted, the assumption in (ii) above is

overly stringent because agencies do not reveal which population units are in the sample.

Let CM denote the event that B is correctly matched in the preceding setup and

define Rj(a) = P (CM |X(B) = cj, Sj = a) taking randomnesses in both sampling and

data perturbation into account. NZY proposed that to limit identification risks, the

agency should guarantee, with appropriate data perturbation, that

Rj(a) ≤ ξ for all j = 1, . . . , k, and all integers a ≥ 1, (1.1)

where ξ is specified by the data agency. Thus, no unit’s correct identification probability

would exceed ξ. In Rj(a), conditioning on Sj = a is quite sensible because an intruder’s

confidence in a declared match may depend on the number of matches for B in the released

data.

As with all past identification risk measures, Rj(a) also depends on the unknown

4



population frequencies. To tackle this impediment, NZY cleverly further conditioned on

T and focused on

Rj(a, t) = P (CM |X(B) = cj, Sj = a,T = t), (1.2)

which does not involve unknown parameters when the data are perturbed using post-

randomization. So, Rj(a, t) can be assessed without estimating any parameter. NZY

derived an upper bound for (1.2) and used that to develop a method that can guarantee

Rj(a, t) ≤ ξ for j = 1, . . . , k, all a > 0 and all t, (1.3)

for any given ξ > 1/3. Obviously, (1.3) implies (1.1).

The NZY procedure works only for ξ > 1/3; it cannot ensure (1.3) if ξ ≤ 1/3. However,

a data agency might want to guarantee (1.1) for some ξ ≤ 1/3. In this paper, we propose

another method that can guarantee (1.3) more stringently, even when ξ ≤ 1/3. In Section

2, we briefly review the main parts of the NZY procedure. In Section 3, we describe our

method. Basically, we change the post-randomization part of the NZY method, using

a different structure for the randomization probabilities. In Section 4, we present an

example to illustrate our method and compare it with the NZY method. In Section 5, we

make some concluding remarks.

2. A Review of the NZY Procedure

The probability of correctly identifying any unit in cell cj (of X) in the original data is

1/tj, which exceeds ξ if and only if tj < 1/ξ. So, for given 0 < ξ < 1, a cell is considered

sensitive if its frequency is less than 1/ξ. The NZY procedure satisfies (1.3) by post-
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randomizing X for all units in all sensitive cells. To better preserve data utility, it divides

the sensitive cells into relatively homogeneous groups, called post-randomization blocks

(PRBs), and then post-randomizes X within each PRB. A simple method for creating

PRBs is: (i) first partition the data using coarsened versions of the key variables and

(ii) then take all sensitive cells in each partition set to form one PRB. For additional

clarity and later comparison with our procedure, we next review the following example

from NZY.

The example applies the NZY method to the U.S. Census Bureau’s 2013 person-level

Public Use Microdata Sample (PUMS) for the state of Maryland, available at

https://www.census.gov/programs-surveys/acs/data/pums.html. It contains the values

of several demographic and economic variables of 59,033 individuals. The example takes

gender (2), age (92), race (9), marital status (5) and Public Use Microdata Area (PUMA)

(44) as the key variables, where the values in parentheses show the number of categories

of the variables. The cross-classification of the five key variables yields 364,320 cells.

The example considers 1/3 < ξ < 1/2, which implies that only singleton and doubleton

cells (with frequency 1 and 2, respectively) are sensitive. The data set yields only 25,406

nonempty cells, of which 13,662 are singleton and 4,777 are doubleton. So, the number

of sensitive cells is 13, 662 + 4, 777 = 18, 439, which contain 13, 662 + (2× 4772) = 23, 216

units, out of 59,033.

In the example, the data are partitioned using gender, 7 age intervals, viz. 0–17, 18–

24, 25–34, 35–44, 45–54, 55–64, and 65 and above, and the three race categories: white,

black and ‘other races.’ Their possible combinations divide the data into 42 partition

sets. For example, all females of ‘other races’ with age between 25 and 34 constitute

one partition set. All originally singleton and doubleton cells (of the key variables) in a
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partition set define one PRB. For the data set, the 42 PRBs contained between 124 and

1480 cells. By applying post-randomization within each PRB, the NZY method keeps

the perturbed value of each unit in its PRB. This controls the nature and magnitude of

data perturbation. For example, the preceding partitioning preserves gender, age in the

broader intervals and race if black or white. But, it permits marital status and PUMA

to change freely.

Inspired by randomized response (RR) methods, Gouweleeuw et al. (1998) introduced

the post-randomization method (PRAM) as a statistical disclosure control tool for cat-

egorical variables. It has been further studied by Van den Hout and Van der Heijden

(2002), Van den Hout and Elamir (2006), Cruyff et al. (2008), Shlomo and De Waal

(2008), Shlomo and Skinner (2010) and others. PRAM applies randomized response, pro-

posed originally by Warner (1965) and subsequently studied by many others; see Chaud-

huri and Mukerjee (1988), Blair et al. (2015) and Nayak et al. (2016) for reviews and

additional references. However, as Nayak and Adeshiyan (2016) observed, a salient dif-

ference between RR and PRAM is that the transition probabilities may depend on the

data in PRAM but not in RR. The choice of the transition probability matrix (TPM) is

vital to using PRAM. As we describe next, the NZY method uses TPMs with a specific

structure and determined by one design parameter.

Suppose a PRB contains l cells, denoted c1, . . . , cl, for notational simplicity. Natu-

rally, l is much smaller than the total number of sensitive cells of X. The NZY method
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randomizes the true cell of each unit in this PRB with the probabilities

pij = P (Z = ci|X = cj) =


1− θ

tj
, if i = j;

θ
(l−1)tj , if i 6= j,

(2.1)

where tj is the original frequency of cj and θ is a design parameter, chosen suitably to

satisfy (1.3). Specifically, for given 1/3 < ξ < 1, θ is the solution of h(θ) = ξ, where

h(θ) =


1−θ

1−θ+θ2 , if θ ≤ 2
3
,

2−θ
4−2θ+θ2 , if θ > 2

3
.

It was shown that (i) h(θ) is a strictly decreasing function of θ, with h(0) = 1 and

h(1) = 1/3 and thus for any 1/3 < ξ < 1, h(θ) = ξ admits a unique solution for θ in (0, 1)

and (ii) this choice of θ ensures (1.3), if l ≥ (1− θ)−1 for all PRBs.

Clearly, the TPM P = ((pij)) given by (2.1) is adaptive, viz. it depends on the

frequencies of the cells in the PRB. Also, P is determined by a single parameter θ. Under

(2.1), a unit’s cell is changed with probability θ/tj, which is inversely proportional to the

frequency of the unit’s true cell, and when it is changed, the replacement is picked at

random from the remaining cells in the PRB. NZY called this IFPR (inverse frequency

post-randomization). Also, it is an unbiased procedure in the sense that the expected

frequency of any cell after data perturbation is the same as its original frequency.

One limitation of the NZY method is that it can guarantee (1.3) only for ξ > 1/3,

because if ξ ≤ 1/3, then h(θ) = ξ does not admit a solution in (0, 1). Actually, this is a

consequence of the structure of the TPM given by (2.1). It changes the cell of a doubleton
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unit with probability θ/2, which must be less than 0.5, as 0 < θ < 1. This limits the

amount of protection it can give to doubleton units. Also, as Table 3 of NZY shows, under

IFPR, empirical identification risks of doubleton units are higher than those of singleton

units. So, one way to ensure (1.3) when ξ ≤ 1/3 might be to use TPMs with a different

structure, which we do in the next section.

3. The Proposed Method

Our main objective is to develop a method that can satisfy (1.3) more stringently than

NZY, i.e., even when ξ ≤ 1/3. We shall use the idea of data partitioning and form

PRBs similarly as in the NZY method. But, we shall use a different post-randomization

scheme. Here, it is important to discuss two important points related to the value of ξ.

First, as NZY noted, one should not use quite a small value for ξ because (i) an intruder

should have strong evidence, viz. a high correct match probability, to declare a match

and (ii) the assumption that the intruder knows that the target is in the sample is overly

conservative; it ignores the protection given by sampling, which is substantial when the

sampling fraction is small, as is the case in most applications. An unduly small value of

ξ should not be used to avoid unnecessary data utility loss. Actually, NZY felt that in

most applications reasonable values of ξ should be larger than 1/3.

Second, as ξ decreases, the data perturbation needs changes discretely at ξ = 1/2, 1/3,

1/4, 1/5, . . . . Specifically, the “sensitivity” of a cell may change only at these values; recall

that a cell is sensitive if its frequency is less than 1/ξ. For 1/3 ≤ ξ < 1/2, singleton and

doubleton cells are sensitive; for 1/4 ≤ ξ < 1/3, tripleton cells are also sensitive and

so on. Thus, our method, especially how we form the PRBs, changes discretely at the
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above mentioned values of ξ. Considering these two points, we shall present our method

for satisfying (1.3) specifically for any 1/4 ≤ ξ < 1/3, i.e., for protecting all singleton,

doubleton and tripleton units. However, the basic ideas can be used to guarantee (1.3)

even when ξ < 1/4. For example, for 1/5 ≤ ξ < 1/4, our method should work if cells

with frequency 4 are also included in the PRBs.

3.1. Our Post-randomization Scheme

Suppose a PRB contains l cells. Let c1, . . . , cl denote its cells, Ti and Si denote the

frequency of ci before and after post-randomization, respectively, and m =
∑
Ti(=

∑
Si)

denote the total number of units in the PRB. Let T = (T1, . . . , Tl)
′ and S = (S1, . . . , Tl)

′.

We alert the reader that some of these symbols were used earlier to denote analogous

quantities for the whole data set. For notational simplicity, we use them also locally for a

PRB. Also, we shall explore effects of our procedure on both identification risk and data

utility at PRB level, which should give an insightful understanding of global effects of the

procedure.

For given T = t, a PRAM with TPM P is unbiased if

E(S|t, P ) = t or P t = t (3.1)

where the expectation is with respect to post-randomization. It is seen easily that the

solutions of (3.1) for P form a nonempty convex set. Equation (2.1) gives one class of

solutions of (3.1), which NZY used. Two specific solutions that are of interest to us are
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I (identity matrix) and

P∗ =
1

m



t1 t1 . . . t1

t2 t2 . . . t2

...
...

. . .
...

tl tl . . . tl


=

1

m
t1′. (3.2)

Nayak and Adeshiyan (2016) derived some useful properties of unbiased PRAM. Let-

ting P1, . . . , Pl denote the columns of a solutions of (3.1), they showed that the conditional

variance of S given t and P is

V (S|t, P ) =
l∑

i=1

ti[DPi
− PiP ′i ] = Dt −

l∑
i=1

tiPiP
′
i , (3.3)

where for a vector a = (a1, . . . , al)
′, Da denotes the diagonal matrix with diagonal elements

a1, . . . , al. They also show that (3.3), which may be viewed as the post-randomization

induced variance, is the largest when P = P∗, as given in (3.2), in the sense that

V (S|t, P∗) − V (S|t, P ) is nonnegative definite for all P satisfying (3.1). Thus, the least

and most variance inducing solutions of (3.1) are P = I and P = P∗.

As with IFPR, we wanted to consider a class of solutions of (3.1) indexed by a single

quantity, for easily assessing identification risks and data utility loss. We decided to
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explore convex combinations of the two extreme TPMs, viz.

Pα = αT∗ + (1− α)I =



1− α + α t1
m

α t1
m

. . . α t1
m

α t2
m

1− α + α t2
m

. . . α t2
m

...
...

. . .
...

α tl
m

α tl
m

. . . 1− α + α tl
m


(3.4)

for α ∈ (0, 1). Here, the probabilities of changing the true categories increase with α.

Next, we discuss how to choose the value of α to satisfy (1.3).

3.2. Assessment and Control of Identification Risk

First, we consider X(B) = c1 and evaluate R1(a, t), as defined in (1.2), under Pα. One can

similarly derive Rj(a, t) for j = 2, . . . l. Let U denote the number of units in c1 excluding B

that stay in c1 after post-randomization and V denote the number of units that move into

c1 from other cells (in the PRB). Under Pα, U and V are independent binomial random

variables with U ∼ b(r, η1) and V ∼ b(ν, η1), where r = t1−1, ν = m− t1, η1 = 1−α+α t1
m

and η2 = α t1
m

. For a ≥ 1, note that P (CM |Z(B) = c1, X(B) = c1, S1 = a,T = t) = 1/a

and P (CM |Z(B) 6= c1, X(B) = c1, S1 = a,T = t) = 0. Using these, as in NZY, and letting
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βi = ηi/(1− ηi), i = 1, 2, we obtain

R1(a, t) =
1

a
P (Z(B) = c1|X(B) = c1, S1 = a,T = t)

=
1

a

P (Z(B) = c1, S1 = a|X(B) = c1,T = t)

P (S1 = a|X(B) = c1,T = t)

=
1

a

[ η1P (U + V = a− 1)

η1P (U + V = a− 1) + (1− η1)P (U + V = a)

]
=

1

a

[
1 +

1

β1

Σa

Σa−1

]−1
, (3.5)

where

Σa =
r∑

u=0

(
r

u

)(
ν

a− u

)
βu1β

a−u
2 (3.6)

with the understanding that
(
b
c

)
is 0 if c < 0 or c > b; the actual range of the summation

is max{0, a− ν} ≤ u ≤ min{a, r}. In particular, Σ0 = 1,Σ1 = rβ1 + νβ2 and considering

a = 1 in (3.5) we get

R1(1, t) =
[
1 +

rβ1 + νβ2
β1

]−1
=
[
t1 +

α2t1(m− t1)2

(m− αt1){m(1− α) + αt1}

]−1
, (3.7)

as r = t1 − 1, ν = m− t1, β1 = (1−α)m+αt1
α(m−t1) and β2 = αt1

m−αt1 .

Clearly, R1(1, t) depends on t only through t1. We can verify that R1(1, t) is a de-

creasing function of t1 and thus attains its maximum when t1 = 1. So,

R1(1, t) ≤
[
1 +

α2(m− 1)2

(m− α){m(1− α) + α}

]−1
= ψ(α), say, (3.8)

for all t. One can verify that ψ(α) in (3.8) is an increasing function of α with ψ(1) = 1/m
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and ψ(0) = 1. So for any 1/m < ξ < 1, the equation ψ(α) = ξ admits a unique solution

for α, say αξ. For 1/4 ≤ ξ < 1/3, which is our focus, we need m > 4 to find a proper αξ.

However, this condition is easily satisfied. We use this αξ in (3.4) for post-randomizing

all units in the PRB. Clearly, this guarantees R1(1, t) ≤ ξ for all t. We shall show that

this also guarantees R1(a, t) ≤ ξ for all a ≥ 2 and all t.

From (3.5) it follows that for a ≥ 1, R1(a, t) ≥ R1(a+ 1, t) if and only if

β1ΣaΣa−1 + (a+ 1)Σa−1Σa+1 − aΣ2
a ≥ 0. (3.9)

For a = 1, the left hand side of (3.9) is

β1(rβ1 + νβ2) + 2
[r(r − 1)

2
β2
1 + rνβ1β2 +

ν(ν − 1)

2
β2
2

]
− (rβ1 + νβ2)

2

= νβ1β2 − νβ2
2 = νβ2(β1 − β2) > 0,

as β1 > β2. This shows that under any Pα, R1(1, t) ≥ R1(2, t) for all t and consequently,

Pα with α = αξ guarantees that R1(2, t) ≤ ξ for all t. In the appendix, we prove that

under Pα, we also have R1(2, t) ≥ R1(3, t) for all t. Note from (3.5), that R1(a; t) < 1/4

for a ≥ 4. In conclusion, for 1/4 ≤ ξ < 1/3, post-randomization of all units in each PRB

using Pα with α as the solution of ψ(α) = ξ guarantees (1.3).

We should note that αξ, which is the solution of ψ(α) = ξ, depends also on m, the

number of units in the PRB. So, αξ would vary over the PRBs, which are formed via

data partitioning. Table 1 shows αξ for some (m, ξ) pairs. As expected, αξ increases

as ξ decreases. Also, for each ξ, as m increases, αξ decreases, but quite slowly over

moderate to large m (m ≥ 20). Thus, when all PRBs are moderate or large (m ≥ 20),
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one may use a common αξ in all PRBs for convenience. It can be verified that for large

m, αξ ≈ [
√
d2 + 4d − d]/2, where d = 1/ξ − 1. In our example in the next section, we

calculate αξ for each PRB (considering its size) and use it.

m
ξ 20 30 40 50 100 500 1000

1/2 0.645 0.636 0.631 0.628 0.623 0.619 0.619
1/3 0.759 0.748 0.743 0.740 0.734 0.729 0.728
1/4 0.827 0.815 0.809 0.805 0.798 0.793 0.792
1/5 0.866 0.853 0.847 0.843 0.836 0.830 0.829
1/6 0.894 0.880 0.874 0.870 0.862 0.856 0.855
1/8 0.930 0.915 0.908 0.904 0.896 0.889 0.888

Table 1: Values of αξ for some m and ξ.

3.3. Variance Due to Data Perturbation

Here, we study the effects of our method on the frequencies of the cells of X. Consider

a fixed data partitioning, as described in Section 2. Then, each cell falls in a specific

partition set, irrespective of the data. Consider a cell with original frequency ti. Let Si

denote its frequency after data perturbation. Generating Si depends on the data in two

important ways. First, if ti = 0 or ti ≥ 1/ξ, then Si = ti, as the cell is not sensitive and

its units are left unperturbed. If 0 < ti < 1/ξ, then the cell is included in the PRB for

the partition set, and Si is generated via post-randomization.

For 0 < ti < 1/ξ, the value of Si depends only on the post-randomization in its PRB.

However, the composition of each PRB is data dependent, via cell frequencies in the

partition set. Let us examine the properties of the perturbed frequencies of the cells of a

given PRB. Consider a PRB and denote its cells, frequencies etc. as in Section 3.1. Note

that here 0 < ti < 1/ξ for i = 1, . . . , l. Since we use an unbiased post-randomization, we
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have:

E(S|t,PRB) = t

for all t, which implies that the expected perturbed frequency of any cell under our method

is the same as its original frequency.

To derive the conditional variance-covarince matrix of S given t and the PRB, we use

(3.3). Here, Pi = (1− α)ei + α t
m

, where ei is a vector whose ith component is 1 and the

rest are 0. By routine algebra we obtain:

V (S|t,PRB) = α(2− α)[Dt −
1

m
tt‘]. (3.10)

In particular, (3.10) shows that

V (Si|t,PRB) = α(2− α)ti(1−
ti
m

) ≈ α(2− α)ti (3.11)

when ti/m is small. Note that (3.11), which is the variance induced by our method,

applies only to the cells with 0 < ti < 1/ξ. Otherwise, the induced variance is 0.

For comparison, we note from NZY that under IFPR,

V (Si|t,PRB) = θ(2− θ

ti
)− θ2

∑
j 6=i

1

tj
≤ θ(2− θ

ti
)− θ2

2
, (3.12)

where the inequality follows from the fact that each PRB contains at least two cells.

However, note that even under a common data partitioning, the PRBs under NZY and

our methods are different for 1/3 < ξ ≤ 1/4, where our PRBs also include all tripleton

cells. Nonetheless, for 1/3 < ξ < 1/2, the two methods use the same PRBs and usually
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(3.12) is smaller than (3.11). For example, for ξ = .395, θ = .8 and αξ ≈ .69 and for

ti = 2, the right hand sides of (3.11) and (3.12) are 1.808 and 0.96, respectively.

4. An Example

We applied our method to the PUMS data set described in Section 2. For fair comparison,

we used the same key variables (gender, age, race, marital status and PUMA) and data

partitioning as in NZY (and described in Section 2), which yielded 42 partition sets.

However, we applied our post-randomization with two values of ξ, viz. ξ = .395 (as in

NZY) and ξ = .25, which the NZY method cannot attain. For ξ = .395, only singleton

and doubleton cells are sensitive and those within a partition set form a PRB. For ξ = .25,

tripleton cells are also sensitive and thus included in the PRBs. As stated in Section 2,

the data set contains 59,033 observations and shows 13,662 singleton and 4,777 doubleton

cells. It also yields 2,360 tripleton cells.

For ξ = .395, the number of cells in the PRBs ranged between 124 and 1,480 (as

reported in NZY), θ = 0.8 and αξ ≈ 0.69. Thus, our method changes the true cell

of each unit in singleton and doubleton cells with probability about 0.69. In contrast,

the NZY method (with θ = 0.8) changes the cell of singleton and doubleton units with

probabilities 0.8 and 0.4, respectively. As Table 1 shows, for ξ = .25, αξ ≈ 0.79. Here,

the cell counts in the 42 PRBs varied between 251 and 2,535, which are much larger than

the corresponding values for ξ = .395. This is because tripleton cells are included in the

PRBs when ξ = .25 but not for ξ = .395. For ξ = .25, we could use a finer data partition

to improve data utility. Following NZY, we report below some results from two perturbed

data sets, generated using our method for ξ = .395 and .25, respectively.
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4.1. Identification Risk Evaluation

Here, we examine some identification risks associated with our perturbed data sets. To

present certain empirical correct match probabilities, we let τ and τ ∗ denote the number

of matches for a unit in the original and perturbed data, respectively. Actually, τ and τ ∗

depend on the unit, but for simplicity we do not make that explicit in our notation. Then,

the correct match probability of a unit in perturbed data is 0 if its category changed by

post-randomization, and 1/τ ∗ otherwise. Suppose that nij units have τ = i and τ ∗ = j,

and n∗ij of those units have changed X category in perturbed data. As in NZY, for

i ≥ 1, j ≥ 1, we calculate the empirical value of P (CM |τ = i, τ ∗ = j) as [0×n∗ij + 1
j
(nij −

n∗ij)]/nij = 1
j
(1− n∗

ij

nji
).

Table 2 gives some empirical correct match probabilities based on the perturbed data

set that we created using our method with ξ = .25. For a brief exposition, take P (CM |τ =

1, τ ∗ = 1) as an example. We found 5,066 units that are singleton in the original data

and have unique matches in the perturbed data set. Of those, only 969 units are matched

correctly. Using these values, we calculate P (CM |τ = 1, τ ∗ = 1) = 969/5066 = 0.1913. In

Table 2, all empirical conditional correct match probabilities are smaller than the target

value 0.25, with the largest being 0.1913 for τ = 1, τ ∗ = 1. Also, P (CM |τ = i, τ ∗ = j)

decreases with both i and j.

τ = 1 τ = 2 τ = 3 1 ≤ τ ≤ 3
τ ∗ = 1 0.1913 0.1584 0.1416 0.1713
τ ∗ = 2 0.1598 0.1430 0.1265 0.1458
τ ∗ = 3 0.1370 0.1187 0.1116 0.1228
τ ∗ ≥ 0 0.1249 0.1131 0.1051

Table 2: Empirical correct match probabilities for ξ = 0.25

Table 3 gives the empirical correct match probabilities for our method with ξ = 0.395.
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For comparison, we give the corresponding values for the NZY method (as given in their

Table 3) in parentheses. All probabilities for our method are smaller than 0.395, as

expected, and the largest value is P (CP |τ = 1, τ ∗ = 1) = 0.3447. Here also the correct

match probabilities decrease as τ and/or τ ∗ increase. For both ξ = .395 and .25, under

our method the correct match probabilities for singletons (τ = 1) are higher than those

for doubletons (τ = 2). In contrast, under the NZY method, correct match probabilities

of doubletons are larger than those of singletons. As intruders would learn τ ∗ and not

τ , the values in the last columns of Tables 2 and 3, which can be regarded as empirical

values of Rj(a) (with a = τ ∗), are practically most relevant. Note that those values are

all much smaller than target ξ (0.25 and 0.395), which indicates that our method is fairly

conservative.

τ = 1 τ = 2 1 ≤ τ ≤ 2
τ ∗ = 1 0.3447 (0.2315) 0.2522 (0.3933) 0.3080 (0.2849)
τ ∗ = 2 0.2592 (0.1961) 0.2178 (0.3477) 0.2405 (0.2827)
τ ∗ ≥ 0 0.2094 (0.1348) 0.1812 (0.3027)

Table 3: Empirical correct match probabilities for ξ = 0.395.

4.2. Effects on Data Utility

To assess data utility, we shall examine the effects of our method on the distribution of

race and some joint distributions. Table 4 gives the frequency distributions of race based

on the original data and three perturbed data sets. The first column gives the nine race

categories, some of which are abbreviated as follows: Amer Indian = American Indian

alone, Alaska Native = Alaska Native alone, Am Ind & AK Native = American Indian

and Alaska Native, and Hawaiian & PI = Native Hawaiian and other Pacific Islander. The

second column gives the frequencies based on the original data. The frequencies based on
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two perturbed data sets created using our method for ξ = 0.395 and 0.25, respectively,

are given in the columns with heading ‘Our.’ The column ‘NZY’ gives the NZY perturbed

frequencies for ξ = 0.395. The ‘diff’ columns give the differences between perturbed and

true counts. The last column gives the standard error (SE) of the true counts under

multinomial sampling. Specifically, for a category with true count ti, the SE is calculated

as [n(ti/n)(1− ti/n)]1/2 = [ti(1− ti/n)]1/2, where n is the total sample size (59,033).

True ξ = .395 ξ = .25 Standard
Race Count Our diff NZY diff Our diff Error

White 37201 37201 0 37201 0 37201 0 117.29
Black 15239 15239 0 15239 0 15239 0 106.33

Amer Indian 97 116 19 92 -5 121 24 9.84
Alaska Native 1 1 0 0 -1 4 3 1

Am Ind & AK Native 42 43 1 46 4 39 -3 6.48
Asian 3461 3419 -42 3445 -16 3311 -150 57.08

Hawaiian & PI 20 20 0 21 1 23 3 4.47
Some other race alone 1349 1340 -9 1337 -12 1406 57 36.31

Two or more races 1623 1654 31 1652 29 1689 66 39.73

Table 4: Perturbation effects on the distribution of race.

As we noted in Section 2, the specific data partitioning used in the example preserves

race if it is White or Black. Consequently, in Table 4, the perturbed frequencies of

those two categories do not differ from the true frequencies. Frequencies of the remaining

categories may change due to data perturbation. In Table 4, the differences between

perturbed and true frequencies are mostly quite small, especially in comparison to SE.

For ξ = 0.395, the absolute differences for our method are fairly similar to those for the

NZY method. Also, our differences increased in magnitude as ξ is reduced from 0.395 to

0.25, as one would expect intuitively.

Next, we examine the effects of our method on some joint distributions, following the

approach and work of NZY. Specifically, we consider the same combinations of variables,
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given in Table 5, and use the total variation distance (TVD) to measure the discrepancy

between the estimates of a distribution from the original and perturbed data, respectively.

The TVD between two discrete distributions p(x) and q(x) over a common sample space

X is defined as

TV D(p, q) =
1

2

∑
x∈X

|p(x)− q(x)|.

It is known that TV D(p, q) = supA⊆X |p(A)− q(A)|. Thus, TV D(p, q) is a uniform upper

bound for |p(A)−q(A)|. Consider a set of categorical variables and denote the original and

perturbed frequencies of the ith cell by fi and f̃i, respectively. Then, the TVD between

their estimated joint distributions, based on the original and perturbed data, is

TV D =
1

2

∑
i

|fi
n
− f̃i
n
| = 1

2n

∑
i

|fi − f̃i|, (4.1)

where n is the sample size. Actually, (4.1) may also be used for a single variable. It can

be seen that for race, the TVD values for our method with ξ = .25 and ξ = .395 and NZY

with ξ = .395 are 0.00518, 0.00141 and 0.00115, respectively.

For examining joint distributions, we follow NZY and consider some combinations of

the five key variables and two non-key variables, viz. class of workers and education level,

which have nine and eight categories, respectively. For twelve joint distributions, Table

5 gives the TVD values for our method for ξ = .395 and .25 and the NZY method with

ξ = .395. There, we use the following abbreviated variable names: mar = marital status,

edu = level of education, and work = class of workers. As expected, Table 5 shows that our

method’s TVDs increase as ξ is reduced from .395 to .25; the average increment is about

48%. Table 5 also shows that for ξ = .395, our TVDs are larger than the corresponding
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NZY values, by about 50% on average. Recall that the NZY method cannot guarantee

(1.3) for ξ ≤ 1/3. Actually, NZY recommended to use their method for ξ ≥ .35. For such

ξ, one should use the NZY method to better preserves data utility. Our proposed method

should be used when ξ < .35, where the NZY methods fails to give the desired protection

against identity disclosure.

ξ = .395 ξ = .25 ξ = .395 ξ = .25
Variables Our NZY Our Variables Our NZY Our
race, mar 0.0076 0.0028 0.0146 puma, work 0.0348 0.0198 0.0454
race, puma 0.0152 0.0013 0.0233 puma, edu 0.0483 0.0324 0.0649
race, edu 0.0094 0.0088 0.0123 sex, race, mar 0.0088 0.0060 0.0157
race, work 0.0046 0.0035 0.0046 sex, race, edu 0.0107 0.0093 0.0132
mar, edu 0.0135 0.0127 0.0231 mar, race, edu 0.0258 0.0218 0.0397
mar, work 0.0107 0.0070 0.0216 race, sex, work 0.0057 0.0039 0.0058

Table 5: TVD between original and perturbed joint distributions.

5. Discussion

In this paper, we present a variation of the NZY method, via a new post-randomization

scheme, that can provide a more stringent identification risk control than the NZY

method. The example in Section 4 shows that our method (i) is fairly conservative,

as the empirical correct match probabilities in Tables 2 and 3 are much smaller than the

nominal values and (ii) it affects the estimates of joint distributions more than the NZY

method. Our method can be improved in two ways. First, using smaller PRBs via finer

data partitioning is expected to enhance data utility. Second, one may use an α that

is smaller than αξ to guarantee (1.1). In a given problem, we suggest to calculate the

empirical correct match probabilities, as in Tables 2 and 3, for several values of α and

thereby find a suitably small (or nearly optimal) value of α for assuring (1.1).
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We have discussed our method mainly for 1/4 ≤ ξ ≤ 1/3. But, we believe that it can

guarantee (1.1) also for ξ < 1/4. It may be possible to establish this mathematically by

proving that R1(1, t) ≥ R1(a, t) for all a ≥ 2 and t. But, in view of the observations

from our example and the fact that the set of cells needing protection changes in steps,

as discussed in the second para of Section 3, we suggest to take the above mentioned

experimental approach in practice to evaluate correct match probabilities and determine

a suitable value of α.

Both NZY and we use highly structured TPMs, determined by a single design param-

eter. This is very convenient for bounding identification risks. But, more general TPMs

are likely to better preserve data utility while providing desired risk control. Finding

an optimal post-randomization scheme is an important problem for future investigation.

We hope that our work will stimulate further research on the theory and applications of

identification risk control in releasing microdata.

6. Appendix

Lemma 6.1. Under any Pα, we have R1(2, t) > R1(3, t) for all t.

Proof. We shall prove that the inequality in (3.9) holds true for a = 2, i.e., Σ1

[
β1Σ2 +
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3Σ3

]
− 2Σ2

2 > 0. Using routine algebra and the fact that β1 > β2, we obtain:

Σ1

[
β1Σ2 + 3Σ3

]
− 2Σ2

2 =
(
rβ1 + νβ2

)[
β1

{(r
2

)
β2
1 + rνβ1β2 +

(
ν

2

)
β2
2

}
+ 3
{(r

3

)
β3
1

+

(
r

2

)
νβ2

1β2 + r

(
ν

2

)
β1β

2
2 +

(
ν

3

)
β3
2

}]
− 2
[(r

2

)
β2
1 + rνβ1β2 +

(
ν

2

)
β2
2

]2
=
(
rβ1 + νβ2

)[r(r − 1)2

2
β3
1 +

rν(3r − 1)

2
β2
1β2 +

(
ν

2

)
(3r + 1)β1β

2
2

+ 3

(
ν

3

)
β3
2

}]
− 2
[(r

2

)
β2
1 + rνβ1β2 +

(
ν

2

)
β2
2

]2
=
rν(r + 1)

2
β3
1β2 +

rν(2ν − r − 3)

2
β2
1β

2
2 +

ν(ν − 1)(ν − 2r)

2
β1β

3
2 −

ν2(ν − 1)

2
β4
2

>
rν(r + 1)

2
β3
1β2 +

rν(2ν − r − 3)

2
β2
1β

2
2 +

[ν(ν − 1)(ν − 2r)

2
− ν2(ν − 1)

2

]
β1β

3
2

=
rν(r + 1)

2
β3
1β2 +

rν(2ν − r − 3)

2
β2
1β

2
2 − rν(ν − 1)β1β

3
2

>
[rν(r + 1)

2
+
rν(2ν − r − 3)

2
− rν(ν − 1)

]
β2
1β

2
2

= 0,

which proves the lemma.

Acknowledgment. We sincerely thank Eric Slud for giving us some constructive sug-

gestions, which helped to improve the presentation.

References

[1] Bethlehem, J.G., Keller, W.J., and Pannekoek, J. (1990). Disclosure control of

microdata. Journal of the American Statistical Association, 85, 38-45.

[2] Blair, G., Imai, K. and Zhou, Y-Y. (2015). Design and analysis of the randomized

response technique. Journal of the American Statistical Association, 110, 1304-1319

24



[3] Chaudhuri, A. and Mukerjee, R. (1988). Randomized Response: Theory and Tech-

niques. New York: Marcel Dekker.

[4] Chen, G. and Keller-McNulty, S. (1998). Estimation of identification disclosure

risk in microdata. Journal of Official Statistics, 14, 79-95.

[5] Cox, L.H., Karr, A.F. and Kinney, S.K. (2011). Risk-utility paradigms for statis-

tical disclosure limitation: How to think, but not how to act (with discussion and

rejoinder). International Statistical Review, 79, 160-199.

[6] Cruyff, M. J., Van Den Hout, A., and Van Der Heijden, P. G. (2008). The anal-

ysis of randomized response sum score variables, Journal of the Royal Statistical

Society, Ser. B, 70, 21-30.

[7] Duncan, G.T., Elliot, E. and Juan Jose Salazar, G. (2011). Statistical Confiden-

tiality: Principles and Practice, New York: Springer.

[8] Greenberg, B. V., and Zayatz, L. V. (1992). Strategies for measuring risk in public

use microdata files. Statistica Neerlandica, 46, 33-48.

[9] Gouweleeuw, J.M., Kooiman, P., Willenborg, L.C.R.J. and De Wolf, P.-P. (1998).

Post randomisation for statistical disclosure control: Theory and implementation.

Journal of Official Statistics, 14, 463-478.

[10] Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Nordholt, E. S.,

Spicer, K. and de Wolf, P-P. (2012). Statistical Disclosure Control, New York:

Wiley.

25



[11] Lambert, D. (1993). Measures of disclosure risk and harm. Journal of Official

Statistics, 9, 313-313.

[12] Nayak, T.K. and Adeshiyan, S. A. (2016). On invariant post-randomization for

statistical disclosure control. International Statistical Review, 84, 26-42.

[13] Nayak, T.K., Adeshiyan, S.A. and Zhang, C. (2016). A concise theory of random-

ized response techniques for privacy and confidentiality protection. In Data Gather-

ing, Analysis and Protection of Privacy through Randomized Response Techniques:

Qualitative and Quantitative Human Traits, Eds. A. Chaudhuri, T.C. Christofides

and C.R. Rao, pp. 273-286. New York: Elsevier.

[14] Nayak, T.K., Zhang, C., and You, J. (2018). Measuring identification risk in micro-

data release and its control by post-randomisation. International Statistical Review,

86, 300-321.

[15] Paass, G. (1988). Disclosure risk and disclosure avoidance for microdata. Journal

of Business & Economic Statistics, 6, 487-500.

[16] Shlomo, N., and De Waal, T. (2008). Protection of micro-data subject to edit

constraints against statistical disclosure. Journal of Official Statistics, 24, 229-253.

[17] Shlomo, N., and Skinner, C. (2010). Assessing the protection provided by

misclassification-based disclosure limitation methods for survey microdata. Annals

of Applied Statistics, 4, 1291-1310.

[18] Skinner, C. (2012). Statistical disclosure risk: Separating potential and harm (with

discussion and rejoinder). International Statistical Review, 80, 349-381.

26



[19] Skinner, C. J., and Elliot, M. J. (2002). A measure of disclosure risk for microdata.

Journal of the Royal Statistical Society, Ser. B, 64, 855-867.

[20] Van den Hout, A., and Elamir, E.A. (2006). Statistical disclosure control using

post randomisation: Variants and measures for disclosure risk. Journal of Official

Statistics, 22, 711-731.

[21] Van den Hout, A. and Van der Heijedn, P.G. (2002). Randomized response, sta-

tistical disclosure control and misclassification: A review. International Statistical

Review, 70, 269-288.

[22] Warner, S.L. (1965). Randomized response: A survey technique for eliminating

evasive answer bias. Journal of the American Statistical Association, 60, 63-69.

[23] Willenborg, L.C.R.J. and De Waal, T. (2001). Elements of Statistical Disclosure

Control. New York: Springer.

27




