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ABSTRACT
In comparing a collection of K populations, it is common practice to display in one visualization confidence
intervals for the corresponding population parameters θ1, θ2, . . . , θK . For a pair of confidence intervals that
do (or do not) overlap, viewers of the visualization are cognitively compelled to declare that there is not
(or there is) a statistically significant difference between the two corresponding population parameters. It
is generally well known that the method of examining overlap of pairs of confidence intervals should not
be used for formal hypothesis testing. However, use of a single visualization with overlapping and nonover-
lapping confidence intervals leads many to draw such conclusions, despite the best efforts of statisticians
toward preventing users from reaching such conclusions. In this article, we summarize some alternative
visualizations from the literature that can be used to properly test equality between a pair of population
parameters.We recommend that these visualizationsbeusedwith caution to avoid incorrect statistical infer-
ence. The methods presented require only that we have K sample estimates and their associated standard
errors. We also assume that the sample estimators are independent, unbiased, and normally distributed.

1. Introduction

Assume K independently sampled populations with associated
cumulative distribution functions F1(y), . . . , FK (y). Let θk be
a real-valued characteristic (parameter) related to Fk(y), for
k = 1, . . . ,K. While the values of θ1, . . . , θK are unknown, it
is desired to compare (and possibly rank) the K populations
based on these unknown values. If Yk1, . . . ,Yknk is a probabil-
ity sample of size nk from the kth population and the statistic
θ̂k = θ̂k(Yk1, . . . ,Yknk ) is an estimator of θk for k = 1, . . . ,K,
we compare the K populations based on the observed values,
θ̂1, . . . , θ̂K . In this article, K estimates and K associated esti-
mated standard errors form the basis for each of the methods.
Knowledge of the specific complex sampling design and estima-
tion methodology for each population is not required.

In Section 2, we give five visual methods that present statisti-
cal uncertainty in the comparisons by visually comparing pairs
of U.S. states. Pairs of any states k and k′ are visually compared
using differences θ̂k − θ̂k′ where k �= k′ for k, k′ = 1, 2, . . . ,K.
The visual methods make use of shading (I); use of compar-
isons of differences to zero (II); use of “comparison intervals”
(III); use of “adjustment” of confidence level (IV); and use
of “two-tiered error bars” (V). These methods construct and
display confidence intervals and hypothesis tests for individual
parameters for each population, and for the pairwise differ-
ence in the parameters for two populations. To facilitate the
comparison discussion, we rank the populations based on the
computed values of θ̂1, θ̂2, . . . , θ̂K and indicate the estimated
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rank of population k by r̂k, where r̂k = 1 corresponds to the
smallest θ̂k and r̂k = K corresponds to the largest θ̂k.

In the context of the U.S. Census Bureau’s American Com-
munity Survey (ACS), we discuss these methods based on
observed sample estimates during 2011 of θk, the mean travel
time (in minutes) to work of workers 16 years and over
who did not work at home (henceforth “mean travel time
to work”) for state k (including Washington, DC) where k =
1, 2, . . . , 51. The ACS’s sampling design is basically a national
stratified random sample with sampling and estimation follow-
ing a finite population design-based framework. Paraphrasing
https://www.census.gov/programs-surveys/acs/about.html,

the ACS provides data every year that help determine how hundreds of
billions of dollars in federal and state funds are distributed each year.
Currently, over 3,500,000 households are contacted each year to pro-
vide data for various geographic levels. The ACS questionnaire asks
about: age, sex, race, family and relationships, income and benefits,
health insurance, education, veteran status, disabilities, where people
work and how they get there, and where they live and how much they
pay for some essentials.

1.1. The Issue of Overlapping Confidence Intervals

Assuming that θ̂k is normally distributed, a 100(1 − α)% confi-
dence interval for θk is given by(

θ̂k − z α
2
SEk , θ̂k + z α

2
SEk

)
, (1)
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Figure . A 90% confidence interval for θk for each state for mean travel time to work (in minutes). (Data Source:  American Community Survey.)

where SEk =
√
v̂ar(θ̂k) is the standard error, z α

2
= �−1(1 − α

2 ),
and � is the standard normal cumulative distribution function.

Our initial focus is illustrated in Figure 1 which ranks
the 51 states (including Washington, DC) and provides a
90% confidence interval for each state’s mean travel time to
work for 2011 (θk). There is strong temptation in viewing
such a visual to conclude that there are (are not) differences
between states that have confidence intervals that do not (do)
overlap. In fact, for two independently sampled populations,
Cumming and Finch (2005) gave an approximate rule for using
the amount of observed overlap between two confidence inter-
vals to judge statistical significance. However, it is well known
(e.g., Schenker and Gentleman 2001; Wright, Klein, and Wiec-
zorek 2014) that the method of examining overlap of pairs of
confidence intervals should not be used to formally test H0 :
θk = θk′ versus HA : θk �= θk′ . Specifically in our set-
ting, we show below that CLAIM 1 is true, but CLAIM 2 is false.

CLAIM 1 (True): If a 100(1 − α)% confidence interval for θk
does not overlap a 100(1 − α)% confidence interval for θk′ ,
then the 100(1 − α)% confidence interval for θk − θk′ does
not contain 0.

CLAIM 2 (False): If a 100(1 − α)% confidence interval for
θk does overlap a 100(1 − α)% confidence interval for θk′ ,

then the 100(1 − α)% confidence interval for θk − θk′ does
contain 0.

As noted, it is common practice to present one plot showing
the 51 90% confidence intervals as in Figure 1 where each 90%
confidence interval is computed as in (1). Incorrectly, some infer
that overlapping confidence intervals for θk and θk′ imply no sta-
tistically significant differences for θk and θk′ at level α, while
correctly inferring that nonoverlapping intervals for θk and θk′

imply statistically significant differences in θk and θk′ for k �= k′

at level α. In comparing populations k and k′, the approach of
considering a 90% confidence interval for the difference θk − θk′

is appropriate for α = 0.10 (see Section 1.2); merely compar-
ing the 90% confidence interval of θk with the 90% confidence
interval for θk′ is not for α = 0.10. The approach of looking at
overlapping and nonoverlapping intervals asmight be donewith
Figure 1 as opposed to the approach of constructing a confidence
interval for a difference are not equivalent approaches as we now
demonstrate.

Proof of CLAIM 1: Let the 100(1 − α)% confidence intervals
for θk and θk′ be(
θ̂k − z α

2
SEk , θ̂k + z α

2
SEk

)
and

(
θ̂k′ − z α

2
SEk′ , θ̂k′ + z α

2
SEk′

)
,

respectively. Also let the 100(1 − α)% confidence interval for
θk − θk′ be
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(
(θ̂k − θ̂k′ ) − z α

2

√
(SEk)2 + (SEk′ )2 , (θ̂k − θ̂k′ )

+ z α
2

√
(SEk)2 + (SEk′ )2

)
,

where θ̂k and θ̂k′ are independent estimators.

Case 1. θ̂k < θ̂k′ : Assume that the intervals for θk and
θk′ do not overlap. Because θ̂k < θ̂k′ , this implies
the following sequence of inequalities: θ̂k + z α

2
SEk <

θ̂k′ − z α
2
SEk′ ; (θ̂k − θ̂k′ ) + z α

2
(SEk + SEk′ ) < 0; and

(θ̂k − θ̂k′ ) + z α
2

√
(SEk)2 + (SEk′ )2 < 0. The last inequal-

ity follows because
√

(SEk)2 + (SEk′ )2 ≤ SEk + SEk′ , and it
implies that the 100(1 − α)% confidence interval for θk − θk′

does not contain 0.
Case 2. θ̂k > θ̂k′ : The proof is similar to that in Case 1. Hence

CLAIM 1 is shown.

Demonstration that CLAIM 2 is false by counterexample:
From Figure 1 for Colorado and Michigan, θ̂CO = 24.51,
SECO = 0.19, θ̂MI = 24.11, and SEMI = 0.10. It follows that (i)
the usual 90% confidence interval for θCO is (24.20, 24.82); (ii)
the usual 90% confidence interval for θMI is (23.95, 24.27); and
(iii) the usual 90% confidence interval for θCO − θMI is (0.05,
0.75) which does not contain 0. However, the individual 90%
confidence intervals do overlap, and CLAIM 2 has been shown
to be false.

1.2. General Setting for Each of the Five Visual Methods

For population k, let θ̂k have estimated standard error SE(θ̂k) =
SEk for k = 1, . . . ,K and assume E(θ̂k) = θk. In this article, we
treat the SEk estimates as known constants. Let k∗ be a specific
reference population among the K populations.

Assuming θ̂k∗ and θ̂k are independent and each normally
distributed for k �= k∗, a 100(1 − α)% confidence interval for
θk − θk∗ is given by(

(θ̂k − θ̂k∗ ) − z α
2

√
(SEk)2 + (SEk∗ )2 , (θ̂k − θ̂k∗ )

+ z α
2

√
(SEk)2 + (SEk∗ )2

)
, (2)

where z α
2

= �−1(1 − α
2 ), and � is the standard normal cumu-

lative distribution function. To test the following at significance
level α,

H0 : θk = θk∗ versus HA : θk �= θk∗ , (3)

reject H0 in favor of HA if (2) does not contain 0; otherwise, do
not rejectH0. For the applications in this article, the sample sur-
vey sizes nk are sufficiently large to support the assumption of
normality for θ̂k for all k.

Finally, in most of the article we assume independent sample
estimators and standard errors and focus on methods that
do not restrict the ranges of the plotted intervals. We dis-
cuss dependent estimators in general in Section 3, but one
important special case is addressed by Baguley (2012), whose
graphical methods account for the dependence induced by
estimating within-subjects and between-subjects effects in clas-
sical ANOVA designs. Also, we assume no restrictions on the
allowable ranges of our parameters, but it may be desirable to

construct “range-preserving” confidence intervals, for example,
to ensure that the intervals are nonnegative when a parameter
is known to be nonnegative. Noguchi and Marmolejo-Ramos
(2016) proposed a way to adjust a pair of range-preserving con-
fidence intervals so that checking for (non) overlap is equivalent
to significance testing.

1.3. Multiple Comparisons

For the methods discussed in Section 2, our illustrative exam-
ples use a demi-Bonferroni (Almond et al. 2000) correction
to perform one-to-many multiple comparisons adjustments. By
“demi-Bonferroni” we mean that we only correct for 50 com-
parisons between a reference state and all others, not for all

(51
2

)
possible pairwise comparisons. For instance, journalists writing
a story on travel time to work for their state k∗ may want to
compare state k∗ with all others, ignoring any comparisons that
exclude k∗.

More powerful alternatives to the Bonferroni correction
exist, butmany of them assume equal variances between groups.
When that assumption is warranted, as in the simple one-way
ANOVA setting, our figures could be remade using other pro-
cedures, such as Dunnett’s for one-to-many comparisons, or
using a variant of Tukey–Kramer’s Honestly Significant Differ-
ence procedure for all-to-all comparisons as in Gabriel (1978).
However, in this article’s example dataset and those of many
other sample surveys, the equal variance assumption is implau-
sible. Also, for one-to-many comparisons using significance
tests alone, Figures 2 and 3 could be remade using Holm’s
step-down procedure, which allows for unequal variances
and has more power than our demi-Bonferroni adjustment.
However, Holm’s procedure does not directly translate into
interval estimates that we could use for later figures. For these
reasons, we choose to consistently illustrate everymethod in this
article using the same, simple, generally-applicable Bonferroni
approach. Also, we use demi-Bonferroni in particular because
the figures in Sections 2.2 and 2.3 are only suitable for one-to-
many comparisons. When using the methods of Sections 2.1,
2.4, or 2.5, it would be possible to use full Bonferroni or other
all-to-all multiple comparisons adjustment.

2. Visual Comparisons of Pairs

2.1. Comparing One Reference StateWith Each of the
Others Using Shading

Figure 2, a “shaded column plot,” gives an estimated ranking
of the K = 51 states (including Washington, DC) based on
point estimates θ̂k for the kth state’s mean travel time to work
with associated standard error SEk for k = 1, . . . , 51 using 2011
American Community Survey data. For example, the 2011 ACS
estimate θ̂k of mean travel time to work for California (CA) is
27.14 min with standard error SEk = 0.07 min. California has
estimated rank r̂k = 44.

For reference state k∗ ≡ Colorado (CO), and using a demi-
Bonferroni correction for each of the 50 tests (3) comparing θk∗

with each θk for k �= k∗, the shaded (both heavy and light shad-
ing) states in the column (Figure 2) are statistically significantly
different from the reference state CO, while the nonshaded
states in the column are not. The level of significance for each
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Figure . Shaded column plot. Shaded states do (unshaded states do not) differ
from the reference state Colorado for mean travel time to work (in minutes). Sig-
nificance level for each pair being compared is .. The familywise (or overall)
significance level for all pairs simultaneously being compared is .. (Data Source:
 American Community Survey.)

test is α
50 = 0.002 (note 0.002

2 = 0.001 and z0.001 = 3.1), and the
familywise (or overall) level of significance for the collection of
50 tests in the column is α = 0.10. Where statistical packages
may use an asterisk or star (*) to indicate a statistically signifi-
cant difference from 0, we use shading in Figure 2 to indicate a
statistically significant difference from the reference state.

The full “shaded columns plot” (also called “panty-hose
plot”) in Figure 3 (inspired byAlmond et al. 2000) gives the over-
all visualization for all states where each column presents the 50

tests using demi-Bonferroni corrections for the reference state
noted at the very bottom of the column.

The “letter display” of Piepho (2004) is an alternative visual
form closely related to our Figures 2 and 3. Where we use white
shading within a column to indicate a group of rows that are
not significantly different from the reference state, a letter dis-
play would repeat a given letter within a column to indicate
rows that are not significantly different from one another. Let-
ter displays are designed for all-to-all comparisons, in which
case Piepho (2004) also provided an algorithm to condense
the display by removing redundant columns. This generalizes
the familiar “lines display” for all-to-all comparisons, which
only works when the states can be ordered such that not-
significantly-different states are always adjacent. In contrast, our
Figure 3 shows one-to-many comparisons for a different refer-
ence population in each column, so it would not make sense to
condense the columns. Unlike the letter display, Figures 2 and
3 provide heavy and light shading to remind the reader which
statistically significant differences are higher or lower. Finally,
either our Figure 3 or a letter display (as appropriate) could
be placed alongside a plot of ordinary confidence intervals like
Figure 1, showing both the original intervals and the significance
of comparisons in one display.

2.2. Comparing One Reference StateWith Each of the
Other States Showing Confidence Intervals for
Differences

Using the same setup as in Section 1.2, Figure 4 gives 50 con-
fidence intervals for the difference θk − θk∗ for reference state
k∗ ≡ Colorado and k �= k∗. We use a demi-Bonferroni correc-
tion as noted in Section 2.1. The bold intervals show the states
that are statistically significantly different from Colorado (CO),
while the nonbold intervals show the states that are not statisti-
cally significantly different from CO. Figures 2 and 4 both com-
pare CO with each of the other 50 states and Washington, DC.

Section 2.4 gives a method of adjusting the level of the indi-
vidual confidence intervals that leads to a test of significance
level α based on the overlap/nonoverlap of one confidence inter-
val with another confidence interval. Before that, we consider
the overlap/nonoverlap of one confidence interval with a “com-
parison interval.”

2.3. Comparing One Reference State Using Its Confidence
IntervalWith Each of the Other States Using Their
“Comparison Intervals”

Given a reference state k∗ with a 100(1 − α)% confidence inter-
val for θk∗ as in (1), it is possible to construct an interval (θ̂k −
wk, θ̂k + wk) for state k �= k∗ such that when the two intervals
overlap, θk and θk∗ are not statistically significantly different at
level α, whereas if the two intervals do not overlap, then θk
and θk∗ are statistically significantly different. We proceed as in
Almond et al. (2000).

If θ̂k∗ is normal, a 100(1 − α)% confidence interval for θk∗ is
given by (see also (1))(

θ̂k∗ − z α
2
SEk∗ , θ̂k∗ + z α

2
SEk∗

)
. (4)
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Figure . Fifty-one shaded columns plot. In each column, shaded states do (unshaded states do not) differ from reference state for mean travel time to work (in minutes).
Significance level for each pair being compared is .. For each column, the familywise (or overall) significance level for all pairs simultaneously being compared is ..
(Data Source:  American Community Survey.)

Now consider another population, say k, where θ̂k < θ̂k∗ . We
want to find the width wk such that the interval (θ̂k − wk, θ̂k +
wk) overlaps the interval in (4) if and only if θk and θk∗ are
not significantly different at level α. In other words, referring to
Figure 5, we want

(dk(low), dk(high)) =
(
(θ̂k∗ − z α

2
SEk∗ ) − (θ̂k + wk) ,

(θ̂k∗ + z α
2
SEk∗ ) − (θ̂k − wk)

)
=
(
(θ̂k∗ − θ̂k) − (z α

2
SEk∗ + wk) ,

(θ̂k∗ − θ̂k) + (z α
2
SEk∗ + wk)

)
(5)

to be a 100(1 − α)% confidence interval for the difference θk∗ −
θk. But a 100(1 − α)% confidence interval for θk∗ − θk is given
by (see also (2))(

(θ̂k∗ − θ̂k) − z α
2

√
(SEk∗ )2 + (SEk)2 , (θ̂k∗ − θ̂k)

+ z α
2

√
(SEk∗ )2 + (SEk)2

)
. (6)

Equating results in (5) and (6) gives

z α
2
SEk∗ + wk = z α

2

√
(SEk∗ )2 + (SEk)2 (7)

or equivalently

wk = z α
2

√
(SEk∗ )2 + (SEk)2 − z α

2
SEk∗ . (8)

Note:When θ̂k∗ < θ̂k, we have a figure analogous to Figure 5with
a new definition of d′

k(low)
and d′

k(high)
given in (5′) as

(d′
k(low), d

′
k(high)) =

(
(θ̂k − wk) − (θ̂k∗ + z α

2
SEk∗ ) ,

(θ̂k + wk) − (θ̂k∗ − z α
2
SEk∗ )

)
. (5′)

If (θ̂k − wk, θ̂k + wk) and (4) do not overlap as in Figure 5, both
dk(low) and dk(high) are positive; the confidence interval in (5)
does not contain zero; hence θk and θk∗ are significantly differ-
ent at level α. In the cases where (θ̂k − wk, θ̂k + wk) and (4) do
overlap, dk(low) is negative and dk(high) is positive; the confidence
interval in (6) will contain zero; hence θk and θk∗ are not signif-
icantly different at level α.
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Figure . Fifty different 100(1 − 0.002)% = 99.8% confidence intervals for θk − θk∗ with reference state k∗ ≡ Colorado formean travel time towork (inminutes). Overall
α = 0.10 for the collection of  tests. (Data Source:  American Community Survey.)

Relative to θ̂k∗ , we refer to (θ̂k − wk, θ̂k + wk) as a “θk∗ com-
parison interval for θk.” The comparison interval for θk is not
a confidence interval, while the interval for θk∗ is a confidence
interval. Thus for K = 2 (where θ̂k < θ̂k∗), three of many possi-
bilities are shown in Figure 6. In each case, the distance from θ̂k
to each bar iswk. In Figure 6(a), populations k∗ and k are signif-
icantly different at level α. In Figure 6(b) or 6(c), populations k∗

and k are not significantly different at level α.
Figure 7 shows a typical visualization where K = 51, and the

reference population (workers who live in Colorado) has rank

31 based on the sample estimates. Figure 7 makes use of a demi-
Bonferroni correction for 50 separate tests of hypotheses where
Colorado state’s mean travel time to work is compared with each
of the other K − 1 = 50 states’ mean travel time. The level of
significance for each test is then α

50 = 0.002, and the familywise
(or overall) level of significance for the collection of 50 tests is
α = 0.10.

From the testing in Figure 7 at overall level α = 0.10, Col-
orado’s mean travel time to work is significantly different from
all states except Mississippi (MS), Alabama (AL), Nevada (NV),

Figure . Illustration of motivation for method of Almond et al. ().
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Figure . For K = 2, three of many possibilities for method of Almond et al. (). In each given possibility, the confidence interval for θk∗ is shown with shading; the
comparison interval for θk is shown with a bar. (a) Both estimates are precise relative to the difference in their means, and their difference is statistically significant. (b)–(c)
One estimate is precise but the other is not, and their difference is not statistically significant.

Michigan (MI), Tennessee (TN), Louisiana (LA), Arizona (AZ),
Texas (TX), Connecticut (CT), Delaware (DE), and West Vir-
ginia (WV). (Note the same comparison results for Colorado in
Figures 2, 3, and 4.) The interval aroundColorado (the reference
state) that corresponds to the shaded strip is an approximate
99.8% confidence interval (demi-Bonferroni-corrected) for
Colorado’s mean travel time to work during the year 2011. In

other words, Colorado’s displayed 99.8% confidence interval
follows from applying a demi-Bonferroni correction to a 90%
confidence interval. The interval around each of the other states,
say k, represents the comparison interval (θ̂k − wk, θ̂k + wk)

with wk in (8).
Figures 4 and 7 provide the same information regarding com-

paring Colorado (θk∗) to the other states, but not the same

Figure . Comparisons with reference state Colorado using overlapping intervals for mean travel time to work (in minutes). A 100(1 − α)% = 99.8% confidence interval
for Colorado (θk∗ ) is shownwith shading; the other intervals are comparison intervals. Significance level of test for each state being comparedwith Colorado is .. Overall
α = 0.10 for the collection of  tests. (Data Source:  American Community Survey.)
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information about Colorado itself. In Figure 7, the usual 99.8%
confidence interval for the reference state Colorado (θk∗) is
shown explicitly; it is not shown in Figure 4. The (demi-
Bonferroni-corrected) “comparison intervals” are not usual con-
fidence intervals, and their endpoints or widths should not be
interpreted separately from the reference state’s interval. Finally,
each state’s comparison interval (θk), along with the 99.8% con-
fidence interval (θk∗) for the reference state Colorado, provides
the usual test of H0 : θk = θk∗ via the 99.8% confidence interval
for θk − θk∗ as given by (2).

It is possible to visually obtain the 100(1 − α)% confidence
intervals for θk − θk∗ given in Figure 4 by using the confidence
interval and comparison intervals in Figure 7.

For states k with θ̂k < θ̂k∗ : The value of dk(high) is obtained by
measuring the distance between the upper bound of the con-
fidence interval and the lower bound of the comparison inter-
val for θk; dk(high) equals this distance. The value of dk(low) is
obtained bymeasuring the distance between the lower bound of
the confidence interval and the upper bound of the comparison
interval for θk; if the comparison interval does not overlap the
confidence interval, then dk(low) equals this distance; if the inter-
vals overlap, then dk(low) equals the negative of this distance. The
99.8% confidence interval for θk∗ − θk is (dk(low), dk(high)). The
upper axis in Figure 7 is helpful for measuring these distances.
Note that the width of the 99.8% confidence interval for θCO is
1.2. Using (5), we illustrate with three examples from Figure 7.

Example for θSD − θCO: dSD(high) = 7.50 + 1.20 = 8.70;
dSD(low) = 6.60; the 99.8% confidence interval for θCO − θSD is
(6.60, 8.70); and for θSD − θCO, it is (−8.70, −6.60) as shown in
Figure 4.

Example for θMS − θCO: dMS(high) = 0.4 + 1.2 = 1.6;
dMS(low) = −0.3; the 99.8% confidence interval for θCO − θMS
is (−0.3, 1.6); and for θMS − θCO, it is (−1.6, 0.3). See Figure 4.

Example for θTN − θCO: dTN(high) = 1.01; dTN(low) = −0.45;
the 99.8% confidence interval for θCO − θTN is (−0.45, 1.01);
and for θTN − θCO, it is (−1.01, 0.45). See Figure 4.

For states k with θ̂k∗ < θ̂k: The value of d′
k(high)

is obtained by
measuring the distance between the upper bound of the θk com-
parison interval and the lower bound of the confidence interval;
d′
k(high)

equals this distance. The value of d′
k(low)

is obtained by
measuring the distance between the lower bound of the θk com-
parison interval and the upper bound of the confidence interval;
if the comparison interval does not overlap the confidence inter-
val, then d′

k(low)
equals this distance; if the intervals overlap, then

d′
k(low)

equals the negative of this distance. The 99.8% confidence
interval for θk − θk∗ is (d′

k(low)
, d′

k(high)
). We illustrate with three

examples from Figure 7. For the shown precision, we use (5′).
Example for θAZ − θCO: d′

AZ(high)
= 1.0; d′

AZ(low)
= −0.5;

and the 99.8% confidence interval for θAZ − θCO is (−0.5, 1.0).
See Figure 4.

Example for θDE − θCO: d′
DE(high)

= 1.20 + 0.88 = 2.08;
d′
DE(low)

= −0.50; and the 99.8% confidence interval for θDE −
θCO is (−0.50, 2.08). See Figure 4.

Example for θMD − θCO: d′
MD(high)

= 1.20 + 7.25 = 8.45;
d′
MD(low)

= 6.95; the 99.8% confidence interval for θMD − θCO
is (6.95, 8.45). See Figure 4.

When comparison intervals in Figure 7 do or do not over-
lap the confidence interval for the reference state, we are com-
pelled to make a correct inference of comparison, but we have

one interval which is a usual confidence interval while the other
comparison intervals are not. The method presented in Section
2.4 is an attempt to make use of usual confidence intervals for
all states in the visual display.

2.4. Comparing Two States by Presenting Appropriate
Overlapping/Nonoverlapping Confidence Intervals
for Each State in the Pair

Goldstein and Spiegelhalter (1996) argued for the use of inter-
vals in conveying uncertainty explicitly in estimates or esti-
mated ranks. Two procedures for deriving intervals are given: (i)
the usual confidence intervals around estimated means of each
population and (ii) a proposal by Goldstein and Healy (1995)
described next.

Consider the pair of populations k and k′ with parameters θk
and θk′ . For given α, we want to determine αA so that the fol-
lowing statement is true: “a 100(1 − αA)% confidence interval
for θk overlaps a 100(1 − αA)% confidence interval for θk′ if and
only if a 100(1 − α)% confidence interval for θk − θk′ contains
0”; equivalently, “a 100(1 − αA)%confidence interval for θk does
not overlap a 100(1 − αA)% confidence interval for θk′ if and
only if a 100(1 − α)% confidence interval for θk − θk′ does not
contain 0.” Goldstein and Healy (1995) showed how to do this
when comparing one pair of estimates, as well as how to approx-
imate it when comparing several pairs of estimates. We explain
and illustrate their method. Assume K independently normally
distributed θ̂k with standard error SEk for k = 1, . . . ,K.

Comparing one pair of populations k and k′: When compar-
ing one pair of populations k and k′, we want to determine an
adjusted value αA for a desired significance level α such that
when the 100(1 − αA)% confidence interval for θk does not
overlap the 100(1 − αA)% confidence interval for θk′ , we can
correctly declare θk and θk′ statistically significantly different at
level α.

Let the 100(1 − αA)% confidence interval for θk be (θ̂k −
z αA

2
SEk , θ̂k + z αA

2
SEk) and the 100(1 − αA)% confidence inter-

val for θk′ be (θ̂k′ − z αA
2
SEk′ , θ̂k′ + z αA

2
SEk′ ). If |θ̂k − θ̂k′ | >

z αA
2
(SEk + SEk′ ), then we have two cases: (i) θ̂k − θ̂k′ >

z αA
2
(SEk + SEk′ ) or (ii) −(θ̂k − θ̂k′ ) > z αA

2
(SEk + SEk′ ).

(i) In the first case, θ̂k − θ̂k′ > z αA
2
(SEk + SEk′ ) is equivalent

to θ̂k − z αA
2
SEk > θ̂k′ + z αA

2
SEk′ . So the 100(1 − αA)%

confidence intervals for θk and θk′ do not overlap.
(ii) In the second case, −(θ̂k − θ̂k′ ) > z αA

2
(SEk + SEk′ )

is equivalent to θ̂k′ − z αA
2
SEk′ > θ̂k + z αA

2
SEk. So the

100(1 − αA)% confidence intervals for θk′ and θk do not
overlap.

Thus,

|θ̂k − θ̂k′ | > z αA
2
(SEk + SEk′ ) (9)

if and only if the 100(1 − αA)% confidence intervals for θk and
θk′ do not overlap.

If αA is given, Equation (10) below gives the probability of a
Type I error, which we call γkk′ . We can set γkk′ equal to a chosen
α and use (10) to determine the appropriateαA using (11) below.

Specifically, let (SEkk′ )2 ≡ var(θ̂k − θ̂k′ ) = (SEk)
2 + (SEk′ )2.

The probability of the event in (9) under the hypothesis θk = θk′ ,
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Figure . 100(1 − αA)% confidence intervals for three separate pairs: Declare states k and k′ statistically significantly different at significance level α = 0.10 if 100(1 −
αA)% confidence intervals in each pair do not overlap. (Data Source:  American Community Survey.)

that is, probability of a Type I error, is

γkk′ = P
(
|θ̂k − θ̂k′ | > z αA

2
(SEk + SEk′ )

)
= 2P

(
(θ̂k − θ̂k′ ) − 0

SEkk′
> z αA

2

(SEk + SEk′ )

SEkk′

)
(10)

= 2
(
1 − �(z αA

2

(SEk + SEk′ )

SEkk′
)

)
.

Thus (10) relates γkk′ and z αA
2
(hence α and αA) for given values

of SEk and SEk′ . So if we want the probability of a Type I error
γkk′ to be equal to a specific value, say α, then we can determine
αA such that when the two 100(1 − αA)% confidence intervals
for θk and θk′ do not overlap we can correctly say that θk and
θk′ are statistically significantly different at significance level α.
In practice, we set γkk′ equal to a chosen α, and determine the
appropriate αA given SEk and SEk′ using

z αA
2

SEk + SEk′

SEkk′
= z α

2
. (11)

Using values of θ̂k and SEk from Figure 1 for Arizona (AZ:
θ̂1 = 24.76; SE1 = 0.15), Colorado (CO: θ̂2 = 24.51; SE2 =
0.19), andWyoming (WY: θ̂3 = 18.10; SE3 = 0.50), we illustrate
the method of Goldstein and Healy (1995).

Example, comparing the pair of states AZ and CO: Let α =
0.10. Determine αA such that if the 100(1 − αA)% confidence
interval for Arizona’s θ1 does not overlap the 100(1 − αA)%con-
fidence interval for Colorado’s θ2, then we can correctly declare
θ1 and θ2 are statistically significantly different at level α. Note
that (SE1+SE2)

SE12
= 1.40. Forα = 0.10, z0.05 = 1.645.Hence by (11)

and solving z αA
2
1.40 = 1.645, z αA

2
= 1.17 which implies αA =

0.242. Thus, the 100(1 − 0.242)% = 76% confidence interval
for θ1 by (1) is (24.62, 24.98). Similarly, a 76% confidence inter-
val for θ2 is (24.28 , 24.72). Note that they overlap (Figure 8(a)).
Note also for α = 0.10, that a 90% confidence interval for θ1 −
θ2 by (2) is (−0.10, 0.70) which includes 0. So we would not
be able to say that the populations are significantly different at
α = 0.10. This is consistent with the 76% confidence intervals
for θ1 and θ2 which overlap.

Example, comparing the pair of states WY and CO: For
Colorado (θ2) and Wyoming (θ3) and α = 0.10, we are led to
100(1 − αA)% = 80% confidence intervals for θ2 and θ3, respec-
tively, as (24.26, 24.74) and (17.46, 18.74) which do not overlap.
We infer that θ2 and θ3 are different at α = 0.10. See Figure 8(b).

A 90% confidence interval for θ3 − θ2 is (−7.28, −5.52) which
does not contain 0.

Example, comparing the pair of states AZ and WY: For Ari-
zona (θ1) and Wyoming (θ3) and α = 0.10, we are led to 81%
confidence intervals for θ1 and θ3, respectively, as (24.56, 24.96)
and (17.44, 18.76) which do not overlap. We infer that θ1 and
θ3 are different at α = 0.10. See Figure 8(c). A 90% confidence
interval for θ1 − θ3 is (6.57, 6.75) which does not contain 0.

Comparing all pairs of populations k and k′: When there are
more than two populations, Goldstein and Healy (1995) pro-
posed to select αA so that the average value of γkk′ over all (k, k′)
is a predetermined value α. Thus, we compute αA such that

α = 1(K
2

) ∑
1≤k<k′≤K

2
[
1 − �

(
z αA

2

SEk + SEk′

SEkk′

)]
. (12)

Equation (12) can be solved numerically using an iterative pro-
cedure. Based on (11), Goldstein and Healy (1995) suggested
that a starting point is to choose z αA

2
such that

z αA
2

(
1(K
2

) ∑
1≤k<k′≤K

SEk + SEk′

SEkk′

)
= z α

2
. (13)

Finally, the confidence interval for the kth population is (θ̂k −
z αA

2
SEk , θ̂k + z αA

2
SEk).

We will illustrate this advice by finding z αA
2
simultaneously

for the three pairs (AZ, CO), (WY, CO), and (AZ, WY) so that
the average significance level across all three pairs is α = 0.10.
Note that for the various pairs we have the values in Table 1.

The average value of 1.40, 1.29, and 1.25 is 1.313. Using (13),
wewant z αA

2
such that z αA

2
(1.313) = 1.645 or equivalently z αA

2
=

1.25. For z αA
2

= 1.25, 100(1 − αA)% = 100(1 − 2(.1056))% ≈
79%. The 79% confidence intervals are given in Table 2.

For z αA
2

= 1.25, the level of significance for testing each pair

is by (10) γkk′ = 2P(Z > z αA
2

SEk + SEk′

SEkk′
). We have the values in

Table 3.

Table . Values of
SEk+SEk′
SEkk′

for three pairs.

Pairs
SEk+SEk′
SEkk′

(AZ, CO) .
(WY, CO) .
(AZ, WY) .
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Table . % Confidence intervals for each state.

State(k) 79% confidence intervals for θk (see Figure )

AZ .± .(.)⇒ (., .)
CO .± .(.)⇒ (., .)
WY .± .(.)⇒ (., .)

Table . Values of γkk′ for three pairs.

Testing pair γkk′

(AZ, CO) .
(WY, CO) .
(AZ, WY) .

Figure . 100(1 − αA)% = 79% confidence intervals for three states: For any pair,
declare states k and k′ statistically significantly different at “average significance
level” α = 0.10 if the 79% confidence intervals for the pair k and k′ do not over-
lap. (Data Source:  American Community Survey.)

For example, for the pair (AZ, CO),

γkk′ = 2P(Z > 1.25(1.40)) = 2P(Z > 1.75)
= 2(0.0401) = 0.0802.

Also note that the average of the levels of significance is
(0.0802 + 0.1074 + 0.1188)/3 = 0.1021 ≈ α, so in this case no
further search is needed. Furthermore, the 100(1 − γkk′ )% con-
fidence intervals for the differences are given in Table 4.

Figure 9 permits comparisons for three pairs of states while
Figure 10 permits comparisons for all pairs of states. Again, no
further search is needed after direct use of (13) on all pairs of
states, which gives an average of the levels of significance of
0.1009 ≈ α.

Unlike Figure 1, the visual display in Figure 10 leads to
valid statistical inferences. In Figure 10, the 77.49% confidence
intervals for Iowa and Idaho do not overlap, and by (13), we
would correctly declare that Iowa and Idaho differ for an average
significance level of α = 0.10. In Figure 1, the 90% confidence
intervals for Iowa and Idaho do not overlap, and by CLAIM
1, we would correctly declare that Iowa and Idaho differ for
significance level of α = 0.10. Note that the confidence intervals
for Iowa and Kansas overlap in both Figures 1 and 10. So from
Figure 10, we could say that Iowa and Kansas are not different

for an average statistical significance level of α = 0.10, but
Figure 1 does not allow the analogous inference. Further, the
intervals for Colorado and Delaware do not overlap in Figure 10
while they do overlap in Figure 1. Hence from Figure 10, we can
correctly say that Colorado and Delaware differ for an average
statistical significance level of α = 0.10.

2.5. Comparing Two States by Presenting Appropriate
Overlapping/Nonoverlapping Confidence Intervals
for Each State in the Pair, OverlaidWith Usual
Confidence Intervals

The method of Section 2.4 is designed for making a single
comparison valid at average significance level α = 0.10, when
the particular comparison is not known in advance. By show-
ing intervals with a single nonstandard confidence level, for
example, 77.49% as in Figure 10, we risk misleading readers
who expect to see 90% confidence intervals and who judge
individual estimates’ precision this way. This problem can be
addressed by using two-tiered error bars (Cleveland 1994). An
“outer tier” runs the full length of the wider interval, with no
cross-bars at the end, while an “inner tier” runs between cross-
bars somewhere along the interval’s length. As an illustration,
Figure 11 shows two-tiered error bars for each estimate and
brings the visualizations in Figures 1 and 10 together in one
visualization. Each error bar’s inner tier (between the cross-
bars) of Figure 11 shows the same 77.49% confidence inter-
val as in Figure 10. Each outer tier (the full width beyond
the cross-bars) shows the original 90% confidence interval of
Figure 1.

On the other hand, if we expect the reader to make a col-
lection of comparisons, we may want a multiple comparisons
correction. For example, we could use a Bonferroni correction
to control the familywise error over all possible

(51
2

) = 1275 tests
comparing two populations. Alternatively, to be comparable
with Sections 2.1 through 2.3, we could use a demi-Bonferroni
correction for 50 tests of hypotheses, with the intent of compar-
ing a reference state with each of the other 50 states. Using a level
of significance of αA/50 = (1 − 0.7749)/50 = 0.0045 for each
test, we plot a (1 − 0.0045) × 100% = 99.55% confidence inter-
val for each state. This admits aGoldstein andHealy (1995)-style
average significance level of 0.1/50 = 0.002. The value 0.002
includes a demi-Bonferroni correction for 50 tests. The two-
tiered error bars using a demi-Bonferroni correction for 50 tests
of hypotheses are shown in Figure 12. In Figure 12, note the
reversed role of the inner and outer tiers relative to Figure 11:
each error bar’s inner part (between the cross-bars) shows the
same 90% confidence interval as in Figure 1. Each outer tier (the
full width beyond the cross-bars) shows the 99.55% confidence
interval just described: 50-way demi-Bonferroni-corrected ver-
sions of the error bars from Figure 10. In this way, the outer tier

Table . Confidence intervals for differences.

Pair γkk′ z γkk′
2

100(1 − γkk′ )% 100(1 − γkk′ )% Confidence interval for θk − θk′

(AZ, CO) . . 92% (24.76 − 24.51) ± 1.75
√

(0.15)2 + (0.19)2 ⇒ (−0.17, 0.67)
(WY, CO) . . 89% (18.10 − 24.51) ± 1.61

√
(0.50)2 + (0.19)2 ⇒ (−7.29,−5.53)

(AZ, WY) . . 88% (24.76 − 18.10) ± 1.56
√

(0.15)2 + (0.50)2 ⇒ (6.14, 7.18)
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Figure . A 100(1 − αA)% = 77.49% confidence interval for each state: For any pair, declare states k and k′ statistically significantly different at “average significance
level”α = 0.10 if 100(1 − αA)% confidence intervals for the pair k and k′ do not overlap. (Data Source:  American Community Survey.)

allows up to 50 comparisons of the sort described in Section 2.4,
controlled to a familywise average significance level of α = 0.10.
Meanwhile, readers can judge the precision of each individual
estimate using the inner tier’s usual 90% confidence intervals.

A demi-Bonferroni correction can cause the inner and outer
tiers to swap roles between figures, as in Figures 11 and 12,
although not within a single figure. For example, if a reader
planned in advance to compare Colorado and Maine, Figure 10
shows that the 77.49% confidence intervals for Colorado and
Maine do not overlap, so they differ at an average significance
level of α = 0.10. One can also see this from Figure 11 which
shows the two-tiered error bars for both states. The inner tiers
do not overlap, showing they differ at an average significance
level of α = 0.10, but we also see the outer tiers giving the orig-
inal 90% confidence intervals.

On the other hand, if a reader is comparing Colorado to
all other 50 states, Figure 12 shows that the 99.55% confidence
intervals for Colorado andMaine do overlap, so they do not dif-
fer at a familywise average significance level of α = 0.10. Note
that in this case, the combination of demi-Bonferroni correction
with average significance level turns out to bemore conservative
for Colorado than using a demi-Bonferroni correction alone. In

Figure 12, Colorado’s outer-tier intervals overlap with Hawaii,
Maine, and Rhode Island, although Colorado was significantly
different from these states in Figures 2, 3, 4, and 7.

Baguley (2012) suggested similar two-tiered error bars
specifically for within-subject ANOVA designs, although the
idea applies in amuchwider setting. Two-tiered error bars could
also be presented in a different visual form: Gelman and Hill
(2007) plotted the outer tier as a thin line and the inner tier
as a thicker line overlaid on top, instead of using cross-bars as
in our Figures 11 and 12. Either of these forms (cross-bars vs.
thick/thin lines) could be more visually distinct than the other,
depending on the visual medium, for example, when a printout
is photocopied or slides are projected at low resolution.

3. The Case of Dependent Estimators

Throughout, we have assumed that the parameter estimators
θ̂1, . . . , θ̂K are independently distributed, and we have used
this assumption in the construction of all visualizations. Alter-
natively, suppose that θ̂1, . . . , θ̂K are jointly distributed as
K-dimensional multivariate normal. As before, for k =
1, . . . ,K, we assume E(θ̂k) = θk and the standard error of
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Figure . Two-tiered error bars showing a 100(1 − αA)% = 77.49% confidence interval (inner) and a 100(1 − α)% = 90% confidence interval (outer) for each state: For
any pair, declare states k and k′ statistically significantly different at “average significance level”α = 0.10 if 100(1 − αA)% confidence intervals (inner) for the pair k and k′
do not overlap. Note that the tiers swap roles in Figure , where the individual intervals become inner tiers. (Data Source:  American Community Survey.)

θ̂k is a known constant SEk, but we now assume that the cor-
relation between θ̂k and θ̂k′ equals a known constant ρkk′ for
each k �= k′. In this situation, it is still true that a 100(1 − α)%
confidence interval for θk is given by (1). Because of depen-
dence among the estimators, a 100(1 − α)% confidence for the
difference θk − θk′ , k �= k′, is no longer given by (2), but is now
given by

(
(θ̂k − θ̂k′ ) − z α

2
SE(θ̂k − θ̂k′ ) , (θ̂k − θ̂k′ ) + z α

2
SE(θ̂k − θ̂k′ )

)
,

(14)

where SE(θ̂k − θ̂k′ ) = √
(SEk)2 + (SEk′ )2 − 2ρkk′ (SEk)(SEk′ ).

Referring to CLAIM 1 and CLAIM 2 from Section 1, with the
100(1 − α)% confidence interval for θk − θk′ now given by (14),
we observe that it is still the case that CLAIM 1 is true, while
CLAIM 2 in general is false.

Proof of CLAIM 1: Let the 100(1 − α)% confidence inter-
vals for θk and θk′ be (θ̂k − z α

2
SEk, θ̂k + z α

2
SEk) and (θ̂k′ −

z α
2
SEk′ , θ̂k′ + z α

2
SEk′ ), respectively. Also, let the 100(1 − α)%

confidence interval for θk − θk′ be (14). For −1 ≤ ρkk′ ≤ 1, we

observe that

√
(SEk)2 + (SEk′ )2 − 2ρkk′ (SEk)(SEk′ )

≤
√

(SEk)2 + (SEk′ )2 + 2(SEk)(SEk′ ) = (SEk + SEk′ ).

(15)

Case 1. θ̂k < θ̂k′ : Assume the intervals for θk and θk′ do
not overlap. Because θ̂k < θ̂k′ , this implies: θ̂k + z α

2
SEk <

θ̂k′ − z α
2
SEk′ =⇒ (θ̂k − θ̂k′ ) + z α

2
(SEk + SEk′ ) < 0. Combin-

ing the previous inequality with (15), we find that (θ̂k − θ̂k′ ) +
z α

2

√
(SEk)2 + (SEk′ )2 − 2ρkk′ (SEk)(SEk′ ) ≤ (θ̂k − θ̂k′ ) +

z α
2
(SEk + SEk′ ) < 0. Thus the confidence interval (14) does

not contain 0.
Case 2. θ̂k′ < θ̂k: Assume the intervals for θk and θk′ do

not overlap. Because θ̂k′ < θ̂k, this implies: θ̂k′ + z α
2
SEk′ <

θ̂k − z α
2
SEk =⇒ 0 < (θ̂k − θ̂k′ ) − z α

2
(SEk + SEk′ ).

Combining the previous inequality with (15), we find
that 0 < (θ̂k − θ̂k′ ) − z α

2
(SEk + SEk′ ) ≤ (θ̂k − θ̂k′ ) −

z α
2

√
(SEk)2 + (SEk′ )2 − 2ρkk′ (SEk)(SEk′ ). Thus the confidence

interval (14) does not contain 0.
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Figure . Two-tiered error bars (demi-Bonferroni corrected for  tests) showing a 100(1 − αA/50)% = 99.55% confidence interval (outer) and a 100(1 − α)% = 90%
confidence interval (inner) for each state: For any pair, declare states k and k′ statistically significantly different at familywise “average significance level”α = 0.10 if 100(1 −
αA/50)% confidence intervals (outer) for the pair k and k′ do not overlap, for up to  such tests. Note that the tiers swap roles in Figure , where the individual intervals
become outer tiers. (Data Source:  American Community Survey.)

Counterexample to CLAIM 2: Suppose θ̂k = 24.51, SEk =
0.19, θ̂k′ = 24.11, and SEk′ = 0.10. If ρkk′ = 0, then this is the
same example used in Section 1 to show that CLAIM 2 is
false under the assumption that the parameter estimators are
independent. There we noted that the usual 90% confidence
interval for θk is (24.20, 24.83), the usual 90%confidence interval
for θk′ is (23.95, 24.27), and hence these intervals overlap. Now
if, for example, ρkk′ = 0.7 then the 90% confidence interval (14)
for θk − θk′ is (0.17, 0.63), thus contradicting CLAIM 2. In fact,
onemay notice that for these particular values of θ̂k, SEk, θ̂k′ , and
SEk′ , the 90% confidence interval (14) for θk − θk′ will contain 0
if and only ifρkk′ < [(SEk)

2 + (SEk′ )2 − (θ̂k−θ̂k′ )2

z2α
2

]/(2SEkSEk′ ) ≈
−0.343.

Schenker and Gentleman (2001) observed that the 100(1 −
α)% confidence intervals (θ̂k − z α

2
SEk, θ̂k + z α

2
SEk) and (θ̂k′ −

z α
2
SEk′ , θ̂k′ + z α

2
SEk′ ) overlap if and only if the interval

(
(θ̂k − θ̂k′ ) − z α

2
(SEk + SEk′ ) , (θ̂k − θ̂k′ ) + z α

2
(SEk + SEk′ )

)
(16)

contains 0. Intervals (14) and (16) are both centered at θ̂k − θ̂k′ ,
but from (15), it is seen that in general interval (16) is wider
than the 100(1 − α)% confidence interval (14). However, when
ρkk′ = −1, the 100(1 − α)%confidence interval in (14) is equiv-
alent to the interval in (16). Hence, in the special case where
ρkk′ = −1, both CLAIM 1 and CLAIM 2 are true. We refer
to Schenker and Gentleman (2001), Afshartous and Preston
(2010), and Baguley (2012) for more discussion on the effects
of correlation. While the visualizations presented in Sections
2.1– 2.5 assume that the estimators θ̂1, . . . , θ̂K are indepen-
dent, with appropriate adjustments, the visualizations can also
be constructed in the case of dependent estimators when the
100(1 − α)% confidence interval for θk − θk′ is given by (14).
Themethod of Goldstein andHealy (1995) presented in Section
2.4 has been extended to the case of dependent samplemeans by
Afshartous and Preston (2010).

4. Concluding Comments

The visual methods of Section 2 are simple and easy to use. They
are widely applicable and, with care, can be widely understood.
For implementation, they mainly require K sample estimates
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θ̂k and their associated standard errors SEk, for k = 1, . . . ,K.
Theory exists to support their use. The methods presented
require normality on θ̂k, which can be justified in the ACS and
other sample surveys where sample sizes are sufficiently large.

Each of the five visual methods has different ideal use-cases.
A summary follows:

(i) Themethod of Section 2.1 (Figures 2 and 3) is a compact
display if we only care about the statistical significance of
differences and not their magnitudes.

(ii) The method of Section 2.2 (Figure 4) is helpful if we care
about the size and precision of differences from a ref-
erence state, but not the precision of the reference state
itself.

(iii) The method of Section 2.3 (Figure 7) is effective when
we care about precision of one reference state and the
statistical significance (but not concretely the estimated
precision) of its differences with other states. Because
the method of Section 2.3 involves “comparison inter-
vals” which are not confidence intervals, we hesitate to
recommend this method for general audiences to avoid
confusion where one might refer to them incorrectly as
confidence intervals. Our reason for including compar-
ison intervals is to be instructive. First, when a com-
parison interval does or does not overlap the confi-
dence interval for the reference state, we are compelled to
make a correct inference of comparison. Second, unlike
Figure 4, Figure 7 with comparison intervals shows the
confidence interval of the reference state.

(iv) The method of Section 2.4 (Figure 10) is valuable when
we care about the precisions of each state individually as
well as the “average significance” of their differences. On
the other hand, the individual precisions will be overes-
timated without a careful reading which recognizes that
these are not the usual 90% or 95% confidence intervals.

(v) The method of Section 2.5 (Figures 11 and 12) indi-
cates both the individual precisions, in familiar 90%
confidence interval format, as well as the “average sig-
nificance” of their differences. Specifically, in Figure 11,
we visually link the original 90% confidence intervals of
Figure 1 together with the adjusted 77.49% confidence
intervals of Figure 10. In Figure 12, we take Figure 11 one
step further by bringing in a demi-Bonferroni correction
for 50 tests.

Finally, in many analyses we also have the original observa-
tions, not only their sample estimates and standard errors. In
such cases, it may be useful to enhance the methods of Sections
2.3– 2.5 by overlaying each population’s interval with a dot plot
of its raw data, perhaps jittered for legibility. This approach
would inform readers about the original data’s distribution, not
just the statistical summaries.

5. R Software for Figures

All figures in this article were made in R (R Core Team
2017). We also use the tikzDevice package (Sharpsteen
and Bracken 2016) to allow our figures’ text to match the
article’s LaTeX typesetting and fonts. We have collected our

dataset, plotting functions, and example code into an R pack-
age, RankingProject (Wieczorek 2017), which is avail-
able online at the CRAN repository, https://cran.r-project.org/
package=RankingProject. Our functionsmake it easy to produce
equivalent figures for any dataset ofK sample estimates and their
standard errors. This package also contains a vignette which
reproduces all major figures in our article.
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