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Abstract

Randomized response (RR) is a common privacy protection tool. It perturbs true responses

using a probabilistic mechanism. Local differential privacy (LDP) is a rigorous privacy protec-

tion criterion that demands a guarantee that no intruder will get much new information about

any respondent’s true value from its perturbed value. Considering linear unbiased estimation

of multinomial probabilities under LDP and squared error loss, we derive minimax RR meth-

ods. We address optimal choices for both the RR mechanism (or design) and the estimator.

We obtain a minimax design, which has a specific structure and is termed a t-subset design.

We describe and study properties of t-subset designs including their practical implementation.

We also study mixtures of t-subset designs and examine the RAPPOR method, which is used

notably by Google and Apple. We note inadmissibility of the RAPPOR design and offer some

suggestions for improving both the design and the customary estimator.
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1. Introduction

Warner (1965) proposed the first randomized response (RR) method for protecting respondents’

privacy in interview surveys of sensitive dichotomous variables. Greenberg et al. (1969) proposed

another method that uses unrelated non-sensitive questions. Numerous papers have extended

and generalized the basic ideas of these two papers to propose various RR methods for using in

surveys of categorical and quantitative variables. The books Chaudhuri and Mukerjee (1988),

Chaudhuri (2011) and Fox (2016) review various methods and cite important works.

We shall consider only categorical survey variables. Thus, consider a categorical survey vari-

able X and let SX = {c1, . . . , ck} denote its sample space. An RR procedure converts each

true response into a randomized output. The randomization mechanism is predetermined and

is applied independently to each true response. Conceptually, it consists of an output space

and a set of probabilities for changing the true responses. For an RR procedure, let Z and

SZ = {d1, . . . , dm} denote the output variable and its sample space, respectively. Also, let

pij = P (Z = di|X = cj), i = 1, . . . ,m, j = 1, . . . , k, denote the transition probabilities, which

are preset and are embedded in the randomization mechanism. Thus, for a true response cj ,

the RR method outputs di with probability pij . The resultant values of Z constitute the data.

Any RR mechanism is characterized by its transition probability matrix (TPM), to be denoted

P = ((pij)), as it determines all effects of randomization on both privacy and data utility. Thus,

P represents the RR design. In general, the two sample spaces SX and SZ need not be identical,

or even have the same cardinality. Thus, P may not be a square matrix. For example, m = 2k in

the RAPPOR algorithm of Erlingsson et al. (2014), further discussed in Section 4.

Let πi = P (X = ci), i = 1, . . . , k, and π = (π1, . . . , πk)
′, which are unknown. Typically, the

primary goal of a survey is to make inferences about π. We shall denote the sample size by

n and the sample frequency of di by Si, for i = 1, . . . ,m. We shall assume random sampling,

in which case the frequency vector S = (S1, S2, . . . , Sm)′ has a multinomial distribution, viz.
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S ∼ mult(n, λ), where

λm×1 = Pm×kπk×1. (1.1)

The relative frequency vector λ̂ = S/n is a natural (and method of moments) estimator of λ.

Usually, inferences about λ can be translated into inferences about π, via (1.1). For example, if

P is square and nonsingular, an estimator λ̃(S) of λ gives the estimator π̃ = P−1λ̃(S) for π. If

rank(P ) < k, then the distribution of S is not identifiable with respect to π and hence π is not

estimable. So, for estimability, we shall require that m ≥ k and rank(P ) = k.

For many years, mainly statisticians worked on RR theory and methods and for protecting

privacy in interview surveys. More recently, privacy concerns have expanded significantly, largely

in reaction to pervasive data collection from surveys, administrative records, customer informa-

tion, on-line activities etc. That has stimulated strong interest in privacy research in other fields,

especially in computer science; see e.g., Agrawal and Srikant (2000), Rizvi and Harista (2002),

Aggarwal and Yu (2008), Chen et al. (2009) and Fung et al. (2010). In particular, the interest

in RR methods has increased and for a wider range of applications. Evfimievski et al. (2004),

Aggarwal et al. (2009) and Erlingsson et al. (2014) and others have suggested RR methods for

addressing privacy challenges in emerging contexts such as privacy preserving data mining and

on-line data collection.

Designing an RR mechanism reduces to choosing m and P suitably, taking both privacy

protection and accuracy of inferences about π from RR data into account. However, many papers

compared RR methods by comparing only the variance of estimators. That is misleading. A fair

comparison should also require a common level of privacy protection. Some authors did that,

but mainly for binary characteristics, see e.g., Anderson (1976), Fligner et al. (1977), Nayak

(1994) and Nayak and Adeshiyan (2009). For a general categorical variable, the RR literature

does not give much guidance on how to choose m and P . We believe that the choice of P could

not be addressed properly because privacy measures and precise privacy protection goals were not
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developed until very recently.

Remark 1.1. The RR theory needs to address two questions: (i) how to randomize true re-

sponses? and (ii) how to make inferences from RR data? We shall use “RR mechanism” and

“RR process” to refer to how randomization is done. Its mathematical crux is P , the transition

probability matrix, which we shall call the “RR design.” We shall call a pair of P and an estimator

an “RR method” or “RR strategy” (analogous to sampling strategy). Evidently, only P affects

privacy whereas estimation accuracy is affected by both P and the estimator.

The following is a recently introduced privacy criterion (see, Duchi et al., 2018).

Definition 1.1. An RR design provides ε-differentially local privacy (ε-DLP), for ε > 0, if

sup
B⊆SZ

sup
ci,cj∈SX

P (Z ∈ B|X = ci)

P (Z ∈ B|X = cj)
≤ exp(ε). (1.2)

This criterion has been investigated and used by Kairouz et al. (2016b), Wang et al. (2016),

Duchi et. al. (2018), Ye and Barg (2018) and others. A helpful interpretation of ε-DLP comes

from an equivalency between ε-DLP and the strict information privacy (SIP) criterion of Chai

and Nayak (2018). To describe SIP, we let α = (α1, α2, . . . , αk) denote an intruder’s (subjective)

prior distribution for a respondent’s true value of X, and for any Q ⊆ SX , let Pα(Q) and Pα(Q|di)

denote, respectively, the intruder’s prior and posterior probabilities of {X ∈ Q}, given Z = di.

Definition 1.2. (Chai and Nayak, 2018). Let hl and hu be two functions from [0, 1] to [0, 1]

such that 0 ≤ hl(a) ≤ a ≤ hu(a) ≤ 1 for all 0 ≤ a ≤ 1. An RR design is said to provide strict

information privacy (SIP) with respect to hl and hu if for all α,Q ⊆ SX and i = 1, . . . ,m,

hl(Pα(Q)) ≤ Pα(Q|di) ≤ hu(Pα(Q)). (1.3)

The SIP criterion formalizes the notion that an RR procedure should guarantee that any
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Figure 1: Plots of privacy breach boundaries

posterior probability would be “close” to the corresponding prior probability, as specified by hl

and hu. The ρ1-to-ρ2 privacy (Evfimievski et al., 2003) and β-factor privacy (Nayak et al., 2015)

are special cases of Definition 1.2. A relevant result that follows from Chai and Nayak (2018) is

that an RR procedure provides ε-DLP if and only if

Pα(Q)

1 + (γ − 1)(1− Pα(Q))
≤ Pα(Q|di) ≤

γPα(Q)

1 + (γ − 1)Pα(Q)
(1.4)

for all α,Q and di, where γ = exp(ε). Figure 1 shows the upper and lower boundaries in (1.4)

for some values of γ. For each γ, the points inside the region enclosed by the two curves satisfy

privacy. Any prior-posterior pair falling outside the region constitutes a privacy breach. As

expected, the privacy breach region increases as γ decreases. A useful characterization of all P

that satisfy ε-DLP involves the following.
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Definition 1.3. (Nayak et al., 2015). The ith row parity of P is defined as

ηi(P ) = max
{pij
pil
| j, l = 1, . . . , k

}
=

maxj{pij}
minj{pij}

,

with the convention 0/0 = 1 and a/0 =∞ for any a > 0. Furthermore, the parity of P is defined

as η(P ) = maxi{ηi(P )}.

It can be seen that an RR design P provides ε-DLP if and only if

η(P ) ≤ γ = exp(ε). (1.5)

The SIP criterion also yields the constraint in (1.5), because (1.3) is equivalent to (1.5) with a

suitable γ, determined by hl and hu (see Chai and Nayak, 2018). Thus, to find an optimal ε-DLP

satisfying RR procedure, we should maximize estimation accuracy subject to (1.5). In Section

2, we motivate and formulate a precise problem. Specifically, we shall consider finding an RR

strategy that is minimax under squared error loss for estimating π, subject to (1.5), unbiasedness

and linearity. This problem is solved in Section 3. An optimal design has a specific balanced

structure, called a t-subset design, and an estimator that minimizes the risk under π1 = · · · = πk

is a minimax estimator. In Section 4, we discuss a convenient approach for implementing our

minimax strategy. We also examine mixtures of t-subset designs, which includes the RAPPOR

method of Erlingsson et al. (2014) that is in use by Google and Apple. We derive minimax

estimators under mixture designs and show that for RAPPOR design, it is uniformly better than

the customary estimator. Thus, the RAPPOR method can be improved by changing the design

and/or the estimator. Numerical calculations show that moderate to low privacy domain (γ ≥ 6)

statistical efficiency gains can be substantial. Section 5 contains some concluding remarks.
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2. Optimality Criteria

To find an optimal RR design at a specified privacy level γ (> 1), one should try to find a P

in {P : η(P ) ≤ γ} that maximizes “data utility.” To formulate this idea, one needs to specify a

measure of data utility. Also, as the data may be used for various purposes by diverse users, one

should use a widely suitable measure. Chai and Nayak (2018) explored a general criterion, based

on Blackwell’s (1951, 1953) concept of sufficiency of experiments.

Definition 2.1. An RR design Pm×k is said to be sufficient for (or at least as informative as)

another RR design Ar×k, to be denoted P � A, if there exists a transition probability matrix Cr×m

such that A = CP .

If P � A and also A � P , then A and P are equivalent, and P is better than A if P � A but

A 6� P . Furthermore, P is said to be admissible if there does not exist any better design A.

The above criterion is appealing because P � A implies that under any loss function, for any

inference rule δ based on the data from A, there exists a rule δ∗ based on P such that the risk of

δ∗ is no larger than the risk of δ. In this sense, if P � A, then P is universally at least as good

as A. Two natural restrictions on P are: (i) each row of P must have at least one nonzero value

(otherwise the corresponding response is irrelevant) and (ii) no two rows of P can be proportional

to each other (see, Chai and Nayak, 2018). With these two conditions, a characterization of all

admissible RR designs is:

Theorem 2.1. (Chai and Nayak, 2018). For a given privacy level γ, an RR design P is admissible

if and only if (i) ηi(P ) = γ for all i (i.e., each row parity is γ) and (ii) each row of P contains

exactly two distinct values.

Let Caγ denote the class of all admissible P at privacy level γ. Generally, Caγ is large and

sufficiency does not yield a best procedure. So, to find optimum designs and strategies we need

additional criteria and measures of data utility. Examples of such criteria and some related results

7



can be found in Agrawal et al. (2009), Kairouz et al. (2016b), Duchi et al. (2018) and Chai and

Nayak (2018).

In this paper, we shall explore optimum RR strategies for linear unbiased estimation of π

under squared error loss. Specifically, we shall consider only unbiased estimators that are linear

in S, or equivalently linear in λ̂ = S/n. A linear estimator π̂ = Lλ̂ is unbiased, i.e., E(Lλ̂) = π

or LPπ = π for all π, if and only if LP = I, which can hold only if r(P ) = k (and m ≥ k).

Conversely, if r(Pm×k) = k, there exists Lk×m such that LP = I. Thus, we must restrict our

attention to RR designs P with r(P ) = k. Adopting squared error loss, we define the risk function

of a linear unbiased RR strategy (P,L) as

R(P,L;π) = nEP,π

[
‖Lλ̂− π‖2

]
= n[tr(VP,π(Lλ̂))] = tr(LDλL

′)−
k∑
i=1

π2i , (2.1)

where λ = Pπ, for a vector v = (v1, . . . , vk)
′, Dv denotes the diagonal matrix with diagonal

elements v1, . . . , vk, the expectation is with respect to both sampling and randomization. In

(2.1), the multiplier n normalizes the risk for sample size.

Note that the conclusions of Theorem 2.1 hold also under the added restriction r(P ) = k. If

r(P ) = k and P is inadmissible, it follows easily that there exists A ∈ Caγ such that r(A) = k and

P = CA for some TPM C, i.e., there exists a more informative design A with r(A) = k. Thus,

we shall restrict our attention to C1γ , the class of all admissible procedures P with r(P ) = k. To

be precise, C1γ consists of all Pm×k,m ≥ k, satisfying the conditions

C1: r(P ) = k.

C2: No two rows of P are proportional to each other.

C3: ηi(P ) = γ for i = 1, . . . ,m.

C4: Each row of P contains two distinct values.

Note that C3 implies that all elements of P must be positive. A natural goal is to find P ∈ C1γ

and an L such that the risk in (2.1) is minimum. First, consider minimizing (2.1) with respect to
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L, for given P . If P is square and nonsingular, then P−1λ̂ is the unique linear unbiased estimator

of π (see Chaudhuri and Mukerjee, 1988), hence the optimal L is P−1. For any Pm×k ∈ C1γ with

m > k, unbiased L is not unique and the following result gives locally optimal linear unbiased

estimators.

Proposition 2.1. For any given P ∈ C1γ and π,

R(P,L;π) ≥ tr(P ′D−1λ P )−1 −
k∑
i=1

π2i (2.2)

for all L such that LP = I, and the lower bound is attained when

L = (P ′D−1λ P )−1P ′D−1λ = L∗, say. (2.3)

Proof. For given P ∈ C1γ , take any L such that LP = I. In view of (2.1), it suffices to show

that tr(LDλL
′) ≥ tr(P ′D−1λ P )−1. Let U = D

−1/2
λ P and U− = LD

1/2
λ . Then, U−U = I and

U ′U = P ′D−1λ P , and thus

LDλL
′ = U−(U−)′ =

(
U− − (U ′U)−1U ′

)(
U− − (U ′U)−1U ′

)′
+ (U ′U)−1

=
(
U− − (U ′U)−1U ′

)(
U− − (U ′U)−1U ′

)′
+ (P ′D−1λ P )−1. (2.4)

Now, (2.4) shows that LDλL
′ − (P ′D−1λ P )−1 is non-negative definite and thus tr(LDλL

′) ≥

tr(P ′D−1λ P )−1. Moreover, the equality holds if and only if U− − (U ′U)−1U ′ = 0 ⇔ L =

(P ′D−1λ P )−1P ′D−1λ .

Remark 2.1. Clearly, L∗ depends on P and π, but for notational simplicity we do not write

that explicitly. The proof of Proposition 2.1 shows that L∗λ̂ is locally best also under D- and

E-optimality criteria. Also, (2.2) holds more generally for any P (not limited to C1γ) and π such

that r(P ) = k and all elements of Pπ are positive.
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The optimum L in (2.3) depends on π, unless P is square and non-singular. So, a uniformly

minimum risk estimator among all linear estimators does not exist. This also shows that an

RR strategy (P,L) with uniformly minimum risk does not exist. As an alternative, we shall use

minimaxity to find an optimality RR strategy. Specifically, we shall try to find a strategy (P0,

L0) such that P0 ∈ C1γ , L0P0 = I and

inf
P∈C1γ

inf
L

sup
π

R(P,L;π) = sup
π

R(P0, L0;π). (2.5)

In (2.5), for brevity, we do not show the requirement LP = I explicitly. The left side of (2.5)

is the minimax value. Duchi et al. (2018) considered a similar approach and derived some

asymptotic results for a general class of loss functions. In particular, they obtained minimax

rates of convergence for several estimation problems and loss function. In contrast, we shall

derive exact minimax procedures, but under linearity, unbiasedness and squared error loss.

3. Derivation of Minimax Methods

To find a minimax strategy (P,L), we shall first find (P0, L0) that minimizes (2.1) at π =

(1/k, . . . , 1/k) = πu, say, i.e.,

inf
P∈C1γ

inf
L

R(P,L;πu) = R(P0, L0;πu). (3.1)

Then, we shall prove that the solution (P0, L0) satisfies (2.5). In a sense, the degenerate distri-

bution at πu is least favorable.

In view of Proposition 2.1, solving (3.1) reduces to finding P ∈ C1γ such that tr(P ′D−1λ P )−1

is minimum, where λ = Pπu. Note that P ′D−1λ P is a symmetric positive definite matrix, and let
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α1 ≤ α2 ≤ · · · ≤ αk denote its eigenvalues. Then,

tr(P ′D−1λ P )−1 =
k∑
i=1

1

αi
, (3.2)

which suggests that we should try to make αi’s large as we search for an optimum P , viz. a mini-

mizer of (3.2). However, αi’s cannot be arbitrarily large, as they must satisfy certain restrictions.

Note that here λ = Pπu = k−1P1k, where 1k denotes the vector of dimension k whose all com-

ponents are 1. So, P ′D−1λ P1k = kP ′D−1(Pπu)
Pπu = kP ′1m = k1k. Thus, for π = πu, (P ′D−1λ P )/k

is a doubly stochastic matrix and hence the dominant eigenvalue of P ′D−1λ P is αk = k (Lax,

2007, p.241). Moreover,
∑k

i=1 αi = tr(P ′D−1λ P ) has a tight upper bound, as the following lemma

shows. Recall that conditions C3 and C4 imply that for any P ∈ C1γ , each row of P contains two

distinct values and the ratio of the largest to smallest values is γ (> 1). Subsequently, we shall

refer to the smaller (larger) of the two values as the small (large) value.

Lemma 3.1. For given γ > 1 and k ≥ 2, let

f(x) =
k2(xγ2 + k − x)

(xγ + k − x)2
, x ≥ 0, (3.3)

and

q =


b k

1 + γ
c, if f(b k

1 + γ
c) ≥ f(d k

1 + γ
e) and b k

1 + γ
c ≥ 1

d k

1 + γ
e, otherwise.

(3.4)

Then, for all P ∈ C1γ ,

tr(P ′D−1λ P ) ≤ f(q), (3.5)

and the equality holds if each row of P contains exactly q large values.
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Proof. Take any Pm×k ∈ C1γ and let Pπu = λ = (λ1, . . . , λm)′. Then,

tr(P ′D−1λ P ) = tr(D−1λ PP ′) =

m∑
i=1

1

λi

k∑
j=1

p2ij . (3.6)

Recalling that each row of P contains two distinct values, for i = 1, . . . ,m, let si denote the ‘small’

value in the ith row of P , and so the ‘large’ value is γsi. Also, suppose that the ith row contains

qi large values and (k − qi) small values, with 1 ≤ qi ≤ k − 1. Note that λi = (1/k)
∑k

j=1 pij , as

πu is uniform. This implies that qiγsi + (k − qi)si = kλi or si = (λik)/(qiγ + k − qi). Thus,

k∑
j=1

p2ij = qi(γsi)
2 + (k − qi)s2i = λ2i

k2(qiγ
2 + k − qi)

(qiγ + k − qi)2
= λ2i f(qi). (3.7)

Combining (3.6) and (3.7), we get

tr(P ′D−1λ P ) =
m∑
i=1

λif(qi).

Taking derivative, it can be seen that as x increases, f(x) first increases and then decreases,

reaching its maximum at x = k/(1 + γ). Then, for x ∈ {1, . . . , k − 1}, it can be seen that f(x) is

maximized at q, as defined in (3.4). So,

m∑
i=1

λif(qi) ≤ (

m∑
i=1

λi)f(q) = f(q),

which establishes (3.5). Clearly, the upper bound is attained if all rows of P contain exactly q

large values.

Remark 3.1. If f(q) 6= f(q+ 1), the upper bound is attained if and only if qi = q, irrespective of

the small value si in each row.

Now, minimizing (3.2) reduces to minimizing
∑k−1

i=1 (1/αi), subject to
∑k−1

i=1 αi ≤ f(q)−k, and
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αi > 0, i = 1, . . . , k−1, as αk = k. It can be seen easily that
∑k−1

i=1 (1/αi) is a strictly Schur-convex

function on ∆ = {(α1, . . . , αk−1) :
∑k−1

i=1 αi = f(q) − k, αi > 0, i = 1, . . . k − 1}. So,
∑k−1

i=1 (1/αi)

is minimized over ∆ if and only if αi = [f(q)− k]/(k− 1), i = 1, . . . , k− 1 (Marshall et al., 2011).

Now, the following conclusion can be reached readily.

Lemma 3.2. A lower bound for tr(P ′D−1λ P )−1 is
(k − 1)2

f(q)− k
+

1

k
, and it is attained if and only if

the eigenvalues of P ′D−1λ P are

αk = k and αi =
f(q)− k
k − 1

for 1 ≤ i ≤ k − 1.

As P ′D−1λ P1k = k1k (observed earlier), the eigenvector of P ′D−1λ P corresponding to the

eigenvalue k (= αk) is 1k. Using this and the spectral decomposition of P ′D−1λ P we get the

following alternative perspective of Lemma 3.2.

Lemma 3.3. The lower bound in Lemma 3.2 is attained if and only if

P ′D−1λ P = aqI + bq1k1
′
k, (3.8)

where aq = [f(q)− k]/(k − 1) and bq = 1− aq/k.

Next, we need to explore existence of P ∈ C1γ satisfying (3.8) and find one, if it exists. For

simplicity, consider the situation where f(q) 6= f(q + 1). Then, recall that to attain the lower

bound in Lemma 3.2, each row of P must contain exactly q large values and (k− q) small values.

The positions for q large values can be chosen in
(
k
q

)
ways. It is reasonable to explore RR designs

which utilize all possible arrangements of large (and small) values. Wang et al. (2016) and Ye

and Barg (2018) studied the following class of RR designs, requiring additionally all small values

to be equal.

Definition 3.1. For any integer t with 1 ≤ t ≤ k − 1, an RR design P ∈ C1γ is called a t-subset
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design if (i) P has
(
k
t

)
rows, (ii) P contain exactly 2 distinct values; a large value and a small

value and (iii) each row contains exactly t large and (k − t) small values.

We shall denote a t-subset design by Pt and let mt =
(
k
t

)
. Since proportional rows are not

allowed, for each t, Pt is unique up to row permutation. We shall see in the sequel that our minimax

RR design is Pq, i.e., Pt with t = q, with q as defined in (3.4). To review some basic properties of

Pt, denote its small value by st; so its large value is γst. Clearly, Pt has mt rows. It can be seen

that each column of Pt contains exactly
(
k−1
t−1
)

= (
t

k
)mt large values and

(
k−1
t

)
= (

k − t
k

)mt small

values. From these, we can find that

st =
k

mt(tγ + k − t)

and that the sum of each row is k/mt.

Remark 3.2. A t-subset design can be constructed as follows. Consider all
(
k
t

)
subsets of size

t of SX = {c1, . . . , ck}, the sample space of X. Call the subsets d1, . . . , dmt, where mt =
(
k
t

)
.

Thus, each di contains a subset of the t categories in SX . Then, let pij = γst if cj ∈ di, otherwise

pij = st. Fugure 2 illustrates this for k = 4, γ = 2 and t = 1, 2, 3, where the columns represent

c1, c2, c3 and c4, respectively, and the subsets are shown to the right of each TPM.

1

5


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


{c1}
{c2}
{c3}
{c4}

1

6



2 2 1 1
2 1 2 1
2 1 1 2
1 2 2 1
1 2 1 2
1 1 2 2



{c1, c2}
{c1, c3}
{c1, c4}
{c2, c3}
{c2, c4}
{c3, c4}

1

7


2 2 2 1
2 2 1 2
2 1 2 2
1 2 2 2


{c1, c2, c3}
{c1, c2, c4}
{c1, c3, c4}
{c2, c3, c4}

t = 1 t = 2 t = 3

Figure 2: t-subset designs

Next, we present some additional properties of t-subset designs, for 1 ≤ t ≤ k − 1. As each
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row of Pt adds to k/mt, it follows that

Ptπu = Pt

(1

k
1k

)
=

1

mt
1mt =⇒ D(Ptπu) =

1

mt
I. (3.9)

By (3.9), we get P ′tD
−1
(Ptπu)

Pt = mtP
′
tPt. As noted earlier, each column of Pt has

(
k−1
t−1
)

values

that are γst and the rest are st. Any two columns of Pt have the large value (γst) in
(
k−2
t−2
)

common

rows, the small value st in
(
k−2
t

)
common rows and the remaining rows contain one large and one

small value. Using these and routine algebra we can verify that

P ′tD
−1
(Ptπu)

Pt = mtP
′
tPt = atI + bt1k1

′
k, (3.10)

where

at =
f(t)− k
k − 1

and bt = 1− at
k
. (3.11)

By (3.10), Lemma 3.3 and previous observations we obtain:

Theorem 3.1. For given k and γ, let q and Pq be as defined earlier and let Lq denote the optimal

L∗ in (2.3) for P = Pq and π = πu. Then,

inf
P∈C1γ

inf
L

R(P,L;πu) = R(Pq, Lq;πu) =
(k − 1)2

f(q)− k
. (3.12)

This result tells us that (Pq, Lq) is a locally (at π = πu) optimal RR strategy at privacy level

γ. To investigate its properties more generally and to solve the minimax problem of (2.5), we

next describe some additional properties of t-subset designs. For a given Pt, the locally (at πu)
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optimum L, to be denoted Lt, can be simplified by using (3.9) and (3.10) in (2.3). Specifically,

Lt = mt(atI + bt1k1
′
k)
−1P ′t

= mt(a
−1
t I − dt1k1′k)P ′t

= a−1t (mtP
′
t − bt1k1′mt), (3.13)

where dt = bt/{at(at + kbt)} = bt/(kat) and the last = follows from 1′kP
′
t = (k/mt)1

′
mt .

Lemma 3.4. For any t-subset design Pt and Lt as in (3.13), tr(LtDλL
′
t) is a constant, indepen-

dent of π, where λ = Ptπ.

Proof. Let ((fij)) = Fmt×mt = L′tLt. Then, fii is the squared length of the ith row of L′t. Using

(3.13) and considering the structure of Pt, we see that in each row of L′t, exactly t values are

a−1t (mtγst − bt) and (k − t) are a−1t (mtst − bt). So, all rows are have the same length and

consequently, f11 = · · · = fmtmt = f0, say. Now,

tr(LtDλL
′
t) = tr(DλL

′
tLt) =

mt∑
i=1

λif0 = f0

mt∑
i=1

λi = f0,

which is independent of π, as the lemma asserts.

The next two theorems give a minimax estimator for given Pt and a minimax strategy satisfying

(2.5).

Theorem 3.2. For any given t-subset design Pt, a linear unbiased minimax estimator of π is

Ltλ̂, where Lt is as given by (3.13).
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Proof. First, we note that

sup
π

R(Pt, Lt;π) = sup
π

[
tr(LtDλL

′
t)−

∑
π2i

]
= tr(LtDλL

′
t)− inf

π

∑
π2i

= R(Pt, Lt;πu), (3.14)

as tr(LtDλL
′
t) is independent of π by Lemma 3.4 and

∑
π2i is minimum when π = πu. Consider

any L such that LPt = I. Then, by (3.14) and Proposition 2.1,

sup
π

R(Pt, Lt;π) = R(Pt, Lt;πu) ≤ R(Pt, L;πu) ≤ sup
π

R(Pt, L;π),

which proves the theorem.

Theorem 3.3. For a given privacy level γ, a minimax strategy that solves (2.5) is (Pq, Lq) and

inf
P∈C1γ

inf
L

sup
π

R(P,L;π) = sup
π

R(Pq, Lq;π) =
(k − 1)2

f(q)− k
, (3.15)

where f(.), q, Pq and Lq are as defined earlier.

Proof. By (3.14) and Theorem 3.1 we get

sup
π

R(Pq, Lq;π) = R(Pq, Lq;πu)

= inf
P∈C1γ

inf
L

R(P,L;πu)

≤ inf
P∈C1γ

inf
L

sup
π

R(P,L;π).

Now, (3.15) follows readily from (3.12).

Clearly, the minimax risk in (3.15) is a function of k and γ. From (3.4), q ≈ k/(1 + γ), and
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hence it can be seen that

minimax risk =
(k − 1)2

f(q)− k
≈ 4

(k − 1)2

k

γ

(γ − 1)2
.

Figure 3 exhibits the dependence of the minimax risk on k and γ. Approximately, the risk is

proportional to k and inversely proprtional to γ.

Figure 3: The dependence of minimax risk on k and γ

We should briefly discuss how our results differ from those of Wang et al. (2016) and Ye

and Barg (2018). Ye and Barg (2018) also introduced t-subset designs and arrived at Pq and a

method of moments estimator of π as an optimal strategy, but by considering minimax rate of

convergence, similar to Duchi et al. (2018). Wang et al. (2016) considered finding an RR design

P , subject to (1.2) or equivalently (1.5), that maximizes the mutual information between true and

randomized responses under π = πu and proved that Pq is an optimal design. They also proposed

the same estimator of π as in Ye and Barg (2018). We shall prove in the next section that the

method of moments estimator coincides with our minimax estimator.
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γ

k 1.1 1.5 2 5 10 20

4
2 2 1 1 1 1
6 6 4 4 4 4

6
3 2 2 1 1 1
20 15 15 6 6 6

10
5 4 3 2 1 1

252 210 120 45 10 10

20
10 8 7 3 2 1

184,756 125,970 77,520 1140 190 20

Table 1: values of q and mq for some combinations of k and γ

4. Further Properties of t-subset and RAPPOR designs

4.1. Practical Aspects of t-subset Designs

The mathematical solution of the minimax problem derived in the preceding section is a bit ab-

stract and hard to use. To construct and implement the minimax design Pq and calculate the

estimator Lqλ̂, following Section 3 results literally, we need to calculate q, define d1, . . . , dmq , com-

pute Pq, apply randomization, obtain λ̂ and finally calculate Lqλ̂. That can be overly burdensome

and time consuming because mq may easily be very large. Table 1 gives values of q and mq for

several combinations of k and γ. In each cell, the top number is the value of q and the bottom

number is mq. As an example, for k = 20 and γ = 2, we have q = 7 and mq = 77, 520, and

so we shall need to create 77,520 response categories, randomize each true value among 77,520

categories (with very small probabilities) etc.

Wang et al. (2016) and Ye and Barg (2018) described an alternative and simpler method for

using t-subset designs. In the following, we review that approach and present some new results.

Using indicator vectors, both original and perturbed data may be presented conveniently as n×k

matrices. Recording each true category with a row vector X = (X1, . . . , Xk) whose ith component

is 1 if the true category is ci and 0 otherwise, the unperturbed data from n units yields an n× k

data matrix D∗. Perturbed data can also be organized as a matrix using the following scheme.
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Take any t-subset design Pt with parity γ. Recall that Pt has mt =
(
k
t

)
rows and each row has

t large values (γst) and (k − t) small values (st). The output variable has mt categories, which

we labeled earlier d1, . . . , dmt (arbitrarily) and attached those to the rows of Pt. The alternative

scheme represents the output categories with the k dimensional row vectors that are obtained by

replacing the large values by 1 and small values by 0 in Pt. Specifically, for i = 1, . . . ,mt, the

response corresponding to the ith row of Pt is recorded as (zi1, . . . , zik), where zij is 1 if pij = γst

and zero otherwise. This data representation scheme is the reverse of the construction method

noted in Remark 3.2. Note that
∑

j zij = t for all i and the possible responses are the indicator

vectors for all subsets of {c1, . . . , ck} of size t. Denoting the randomized response with a vector

Z = (Z1, . . . , Zk) and using one row for each respondent, the data from using Pt can be given as

a matrix D of order n× k.

Wang et al. (2016) and Ye and Barg (2018) gave the following algorithm for implementing

Pt and generating a data matrix D. For a true response (x1, . . . , xk) the algorithm generates a

randomized response (z1, . . . , zk) as follows. Recall that only one of x1, . . . , xk is 1 and the rest

are 0. Suppose xj = 1. Then, first using a suitable binary experiment set zj = 1 with probability

p = tmtγst/k, else set zj = 0. Next, if zj = 1, randomly select (t − 1) of the remaining (k − 1)

components of z and set those to 1. For zj = 0, assign 1 to t of the remaining components of z,

selected at random. In either case, all other components of z are 0. Then, it can be verified that

P (Z = (z1, . . . , zk)|xj = 1) =


γst, if zj = 1

st, if zj 6= 1

and hence the algorithm implements Pt. Actually, the algorithm can be motivated and justified

by noting that each column of Pt contains
(
k−1
t−1
)

large values and
(
k−1
t

)
small values and we have

the following:

P (Zi = 1|Xi = 1) =

(
k − 1

t− 1

)
γst =

t

k
mtγst,
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P (Z = (z1, . . . , zk)|Zi = 1, Xi = 1) =


1/
(
k−1
t−1
)
, if zi = 1

0, otherwise,

P (Z = (z1, . . . , zk)|Zi = 0, Xi = 1) =


1/
(
k−1
t

)
, if zi = 0

0, otherwise.

Both Wang et al. (2016) and Ye and Barg (2018) used method of moments for estimating

π from the data matrix D. Let V ′ = (V1, . . . , Vk) denote the vector of column sums of D. For

j = 1, . . . , k, let nj denote the original frequency of cj . Then, it follows that

E(Vj |D∗) = njp+
(
n− nj

)[
p
t− 1

k − 1
+ (1− p) t

k − 1

]

and unconditionally,

E(
Vj
n

) = pπj +
(
1− πj

)[
p
t− 1

k − 1
+ (1− p) t

k − 1

]
, (4.1)

which is a linear function of πj . Recall that p = tmtγst/k, mt =
(
k
t

)
and st = k/[

(
k
t

)
(tγ + k − t)].

So, p = (tγ)/(tγ + k − t). Using this in (4.1) and standard algebra, one obtains the following

method of moments estimator of πj (for j = 1, . . . , k):

π̃j =
(k − 1)(tγ + k − t)
t(γ − 1)(k − t)

(Vj
n

)
+

1

k

[(1− k)(tγ + k − t)
(γ − 1)(k − t)

+ 1
]
. (4.2)

Note that the method of moments estimator π̃ of π requires only the column totals of the data

matrix D and is very easy to calculate. It can also verified that π̃ is an unbiased estimator of π.

Another interesting property of π̃ is the following:

Proposition 4.1. The method of moments estimator π̃ is also a minimax linear unbiased esti-

mator of π under the t-subset design Pt.

21



Proof. We shall simplify our minimax estimator π̂ = Ltλ̂ to prove this result. Using (3.13), we

get

Ltλ̂ = a−1t mtP
′
t λ̂− (a−1t bt)1k = a−1t mtP

′
t λ̂− (a−1t − k−1)1k.

So,

π̂j = a−1t mt

mt∑
i=1

pij λ̂i − (a−1t − k−1). (4.3)

Represent the response categories using indicator vectors di = (zi1, . . . , zik), i = 1, . . . ,mt, as

discussed above. Recall that zij = 1 if pij = γst and zij = 0 if pij = st. Let Bj = {di : zij = 1}.

Then,
m∑
i=1

Pij λ̂i = γst
∑
i∈Bj

λ̂i + st
∑
i/∈Bj

λ̂i = γst
(Vj
n

)
+ st

(
1−

(Vj
n

))
and (4.3) reduces to

π̂j = a−1t (γ − 1)mtst

(Vj
n

)
+ a−1t (mtst − 1) + k−1. (4.4)

Next, we can verify the following identities:

mtst =
k

tγ + k − t
, mtst − 1 =

t(1− γ)

tγ + k − t
and at =

kt(γ − 1)2(k − t)
(k − 1)(tγ + k − t)2

.

Using these and routine algebra (4.4) can be reduced to (4.2).

In view of the preceding result and (4.2), the minimax estimator π under Pt is π̂ = c1(
V
n )+ c2,

where c1 and c2 are evident from (4.2). Note that V is the sum of n independent realizations of

the response vector Z = (Z1, . . . , Zk). So, the variance-covariance matrix of π̂ is V (π̂) = (c21/n)Σ,

where Σ = ((σij)) = V (Z). Since each Zi’s are binary variables, σjj = P (Zj = 1)[1− P (Zj = 1)]

and σij = P (Zi = 1, Zj = 1)− P (Zi = 1)P (Zj = 1) for i 6= j. Moreover, the right side of (4.1) is
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P (Zj = 1) and simplifying it further we get

P (Zj = 1) =
[ t(γmtst − 1)

k − 1

]
πj +

t(k − γmtst)

k(k − 1)

=
t

(k − 1)(tγ + k − t)

[
(γ − 1)(k − t)πj + {t(γ − 1) + k − t}

]
.

For t = 1, P (Zi = 1, Zj = 1) = 0. For t ≥ 3, using simpler algorithm for implementing Pt,

discussed above, and letting p = (tγmtst)/k, we get

P (Zi = 1, Zj = 1) =

k∑
r=1

πrP (Zi = 1, Zj = 1|Xr = 1)

=(πi + πj)p
[(k − 2

t− 2

)
÷
(
k − 1

t− 1

)]
+ (1− πi − πj)

[
p
{(k − 3

t− 3

)
÷
(
k − 1

t− 1

)}
+ (1− p)

{(k − 3

t− 2

)
÷
(
k − 1

t

)}]
=(πi + πj)p

t− 1

k − 1
+ (1− πi − πj)

[
p

(t− 1)(t− 2)

(k − 1)(k − 2)

+ (1− p) t(t− 1)

(k − 1)(k − 2)

]
=

t(t− 1)

(k − 1)(k − 2)(tγ + k − t)

[
(k − t)(γ − 1)(πi + πj) + (tγ − 2γ + k − t)

]
.

(4.5)

Actually, (4.5) holds for all 1 ≤ t ≤ k − 1. For t = 2, the above derivation remains valid if
(
k−3
t−3
)

is interpreted as 0.

4.2. Mixture of t-subset Designs

This section is motivated by the RAPPOR (randomized aggregatable privacy-preserving ordinal

response) algorithm proposed by Erlingsson et al. (2014). It is an RR procedure and has been

further discussed by Kairouz et al. (2016a), Fanti et al. (2016), Wang et al. (2017), Ye and Barg

(2018) and others. Quite importantly, Google and Apple use RAPPOR for privacy protection.
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Basic RAPPOR is directly relevant to our context and it works as follows. As in Section 4.1,

it represents the true category with an indicator vector X = (X1, . . . , Xk). Then, it produces

a perturbed output Z = (Z1, . . . , Zk) by changing each component of X independently with

probability p = 1/(
√
γ+ 1). So, the output space has 2k elements. As we explain next, RAPPOR

is a mixture of t-subset designs, with t = 0, 1, . . . , k.

Consider RAPPOR perturbation and let T =
∑k

j=1 Zj denote the number of 1’s in a random-

ized response (Z1, . . . , Zk). Then, for any 0 ≤ t ≤ k and 1 ≤ j ≤ k,

P (T = t|Xj = 1) = P (T = t, Zj = 1|Xj = 1) + P (T = t, Zj = 0|Xj = 1)

=

(
k − 1

t− 1

)
pt−1(1− p)k−t+1 +

(
k − 1

t

)
pt+1(1− p)k−t−1. (4.6)

Since (4.6) is independent of j, it is also the unconditional probability P (T = t), which we shall

denote by pt. Also,

P (Z = z, T = t|Xj = 1) =


pt−1(1− p)k−t+1, if zj = 1,

∑
zi = t,

pt+1(1− p)k−t−1, if zj = 0,
∑
zi = t.

Recall that p = 1/(
√
γ + 1) and so γ = [(1 − p)/p]2. Using this and the above, conditionally on

T = t and X we have

P (Z = z|T = t,Xj = 1) =


1/[
(
k−1
t−1
)

+
(
k−1
t

)
γ−1] = γst, if zj = 1,

∑
zi = t,

1/[
(
k−1
t−1
)
γ +

(
k−1
t−1
)
] = st, if zj = 0,

∑
zi = t,

which are the transition probabilities of the t-subset design with parity γ.

From the preceding observations it follows that RAPPOR perturbation is equivalent to a two

step procedure: Perturb each true response by first drawing a value t from {0, 1, . . . , k} with

probabilities p0, p1, . . . , pk and then applying the t-subset design with parity γ. Thus, RAPPOR
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is a mixture of t-subset designs and its TPM is P =
[
p0P

′
0 | p1P ′1 | . . . |pkP ′k

]′
, where Pt is the

TPM of the t-subset design, for t = 0, 1, . . . , k.

Note that Theorem 2.1 implies that the basic RAPPOR design is inadmissible, as the two

rows of its TPM corresponding to t = 0 and t = k have parity 1 (i.e., each row contains a

common value). The two associated outputs, i.e., Z = (0, 0, . . . , 0) and Z = (1, 1, . . . , 1), give

no information about the true category and hence about π. Effectively, RAPPOR throws away

the units that yield those two responses. This wastage is minimal for large k, where both p0 and

pk are small. But, for small k, the loss can be substantial. We can remove those two rows and

normalize the TPM to get an admissible design.

Motivated by the preceding discussion, we shall next explore properties of mixtures of t-subset

designs, with t = 1, . . . , k − 1. The TPM of such a design is a partitioned matrix

PM =
[
w1P

′
1 | w2P

′
2 | . . . |wk−1P ′k−1

]′
, (4.7)

where wj ≥ 0 are the mixing probabilities and
∑
wj = 1. Naturally, if wj = 0 for some j, the

corresponding rows should be omitted. We may conveniently view PM as a two-step procedure:

first select a value t from {1, . . . , k−1} with probabilities w1, . . . , wk−1 and then apply the t-subset

design. Note that Dλ = diag(PMπ) is a block diagonal matrix

Dλ = diag(D
(1)
λ , D

(2)
λ , . . . , D

(k−1)
λ ),

where D
(t)
λ = diag(wtPtπ) for t = 1, . . . k − 1.

We can derive the minimax linear unbiased estimator of π under PM , using arguments similar

to those used in Section 3. The uniform distribution π = πu turns out to be a least favorable

distribution in this case too. When π = πu, D−1λ = diag(
m1

w1
Im1 ,

m2

w2
Im2 , . . . ,

mk−1
wk−1

Imk−1
) with
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mt =
(
k
t

)
, and by Proposition 2.1, the locally best unbiased estimator of π is π̂ = LM λ̂, where

LM =
( k−1∑
t=1

wtP
′
t(D

(t)
λ )−1wtPt

)−1
P ′MD

−1
λ (4.8)

=
(

(
k−1∑
t=1

wtat)Ik + (
k−1∑
t=1

wtbt)1k1
′
k

)−1
P ′MD

−1
λ (4.9)

=
(
a∗Ik + b∗1k1

′
k

)−1
P ′MD

−1
λ

=
(
a−1∗ Ik −

b∗
ka∗

1k1
′
k

)
P ′MD

−1
λ , (4.10)

a∗ =
∑k−1

t=1 wtat and b∗ =
∑k−1

t=1 wtbt (and at and bt are as defined in (3.11)). Moreover, P ′MD
−1
λ =

[m1P
′
1 | m2P

′
2 | . . . |mk−1P

′
k−1], and so

LM = [L∗1 | L∗2 | . . . |L∗k−1], with L∗t = a−1∗ (mtP
′
t − b∗1k1′mt). (4.11)

Note that L∗t and Lt (in (3.13)) have the same structure, with different constants. So, letting

λ = PMπ, it can be seen as in Lemma 3.4 that tr(L∗tD
(t)
λ L

′∗
t ) is independent of π for all t. Now,

using LMDλL
′
M =

∑k−1
t=1 (L∗tD

(t)
λ L

′∗
t ), we can prove the following:

Lemma 4.1. Consider any mixture of t-subset designs, PM as in (4.7), and the corresponding

LM in (4.11), and let λ = PMπ. Then, tr(LMDλL
′
M ) is a constant, independent of π.

This lemma leads to the following result, whose proof is similar to that of Theorem 3.2 and

hence omitted.

Theorem 4.1. Under PM in (4.7), a linear unbiased minimax estimator of π is LM λ̂, where LM

is as in (4.11).

Next, we give a simpler view of the minimax estimator LM λ̂. For t = 1, . . . , k−1, let λ̂(t) denote

the vector of relative frequencies of the response types that satisfy
∑

j zij = t, i.e., generated by a

t-subset design (in the second step of our two-step view of PM ). The data D can be be represented
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as D′ = [D′1 | D′2 | . . . | D′k−1], where D′t contains all responses generated by the t-subset

design. Let nt denote the sample size of D′t. Then, using (4.11) we get

LM λ̂ =
k−1∑
t=1

L∗t λ̂
(t) =

k−1∑
t=1

a∗mtP
′
t λ̂

(t) −
k−1∑
t=1

nt
n

(a−1∗ − k−1)1k.

Now, using some results from the proof of Proposition 4.1, we get

π̂j =
k−1∑
t=1

[
a−1∗ mtst(γ − 1)

V
(t)
j

n
+
nt
n
a−1∗ (mtst − 1) +

nt
n
k−1

]

= a−1∗

k−1∑
t=1

[
mtst(γ − 1)

V
(t)
j

n
+
nt
n

(mtst − 1)
]

+ k−1,

where V
(t)
j is the jth column sum of Dt.

The minimax criterion compares maximum (over the parameter space) risks of competing

procedures, and in general, a minimax procedure need not dominate (or be uniformly better)

another procedure, i.e., have a uniformly smaller risk. Interestingly, the following theorem shows

that the minimax estimator Lqλ̂ based on the q-subset design dominates the minimax estimator

LM λ̂ based on any mixture of t-subset designs.

Theorem 4.2. Let PM be a mixture of t-subset designs and suppose PM 6= Pq. Then, the strategy

(PM , LM ) is dominated by the minimax strategy (Pq, Lq), i.e., R(Pq, Lq;π) ≤ R(PM , LM ;π) for

all π and the “=” holds if and only if PM = Pq.

Proof. By (2.1) and lemmas 3.4 and 4.1, the difference of the risk functions of the two strategies,

R(PM , LM ;π)−R(Pq, Lq;π) = tr(LMDλL
′
M )− tr(LqDλL

′
q),
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is independent of π. So,

R(PM , LM ;π)−R(Pq, Lq;π) = R(PM , LM ;πu)−R(Pq, Lq;πu). (4.12)

Now, the proof can be completed by noting that if PM 6= Pq, then PM contains rows that have

more than q large values and hence by Theorem 3.1, (4.12) > 0.

Remark 4.1. For a mixture design PM =
[
w0P

′
0 | w1P

′
1 | . . . |wkP ′k

]′
that includes the two

constant rows corresponding to t = 0 and t = k, as in RAPPOR design, the preceding results hold

with simple changes. In particular, the sums in (4.8) and (4.9) will be over t = 0 to k and LM

in (4.11) will include L∗0 and L∗k. With these changes, theorems 4.1 and 4.2 hold true. Note from

(3.3) and (3.11) that a0 = ak = 0 and b0 = bk = 1 and so in (4.10), a∗ remains the same and

b∗ = (w0 + wk) +
∑k−1

t=1 wtbt.

Next, we shall discuss some directions for improving upon the basic RAPPOR strategy. The

empirical estimator currently being used with RAPPOR (see Erlingsson et al. (2014) and Ye and

Berg (2018)) is

π̃R =
(√γ + 1
√
γ − 1

)V
n
− 1
√
γ − 1

1k, (4.13)

where V is the vector of column sums of the data matrix, as in Section 4.1. Specifically, the jth

component (Vj) of V is the number of responses with Zj = 1. Kairouz et al. (2016a) derived the

risk of the empirical estimator as

R(PR, π̃R;π) =
k
√
γ

(
√
γ − 1)2

+ 1−
k∑
i=1

π2i . (4.14)

It can be seen that π̃R is different from the minimax estimator π̂R = LRλ̂ under RAPPOR

design, where LR is similar to (4.11), as noted in Remark 4.1.

Theorem 4.3. For RAPPOR design, R(PR, LR;π) < R(PR, π̃R;π) for all π and thus, the em-
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pirical estimator π̃R in (4.13) is dominated by the minimax linear unbiased estimator LRλ̂.

Proof. By Lemma 4.1 and (4.14), the difference of the two risks is

R(PR, π̃;π)−R(PR, LR;π) =
k
√
γ

(
√
γ − 1)2

+ 1− tr(LRDλL
′
R),

which is independent of π. Now, using π = πu, we get

R(PR, π̃R;π)−R(PR, LR;π) = R(PR, π̃R;πu)−R(PR, LR;πu) > 0

as in the proof of Theorem 4.2.

The preceding result shows that the RAPPOR strategy (PR, π̃R) can be improved by replacing

the empirical estimator by the linear unbiased minimax estimator π̂ = LRλ̂. As we noted earlier,

the basic RAPPOR design is inadmissible, as its TPM includes two constant rows. Deleting those

two rows and normalizing the weights we get a modified RAPPOR design that is admissible.

Thus, a better idea would be to use this modified design and the corresponding minimax estima-

tor. However, this modified RAPPOR method is worse than the minimax strategy (Pq, Lq), by

Theorem 4.2.

We compared the sample size adjusted risks, defined in (2.1), of (Pq, Lq) and (PR, LR) with that

of (PR, π̃R) for some γ and k. The results are presented in Figure 4. The solid curves represent the

relative efficiency of (PR, π̃R) compared to (Pq, Lq). They show the ratio of the risk of (Pq, Lq) to

that of (PR, π̃R). Similarly, the dashed curves compare the risks of (PR, LR) and (PR, π̃R). Thus,

they show possible efficiency gain from just replacing the RAPPOR’s estimator by the minimax

estimator under RAPPOR design, which can be obtained from (4.11). All relative efficiency

curves are always less than 1, consistent with our theoretical results. We see that the minimax

strategy is substantially better than the original RAPPOR strategy, especially for moderate to
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large γ, i.e., in moderate to low privacy paradigm. However, the difference diminishes as k gets

fairly large. Under RAPPOR design, the efficiency gain from using the corresponding minimax

estimator is for small to moderate k, depending on γ.

Figure 4: Relative efficiency comparison

5. Discussion

In this paper, we derived minimax RR designs and estimators for estimating multinational cell

probabilities under squared error loss, unbiasedness and linearity. However, we believe that unbi-

ased estimation is important, especially in presence of data perturbation. As we discussed, both

response randomization and estimation from RR data in the optimal method are easy to carry

out. Wang et al. (2016) and Ye and Barg (2018) also proposed the design and the estimator,

but from other considerations. We presented the variance of the minimax estimator under a t-

subset design, which can be estimated easily by replacing πi’s by their estimates. We also derived

minimax estimators under mixtures of t-subset designs. That yields a better estimator for the

RAPPOR design, which we hope will help to improve the method, especially in medium to low

privacy domains. We should note our results are applicable to multiple categorical variables, by

considering their cross-classification.
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Duchi et al. (2018) considered sequentially interactive RR mechanisms, where the random-

ization probabilities for a response are allowed to depend on previous randomized outputs. We

restricted our attention to only non-interactive mechanisms. Finding exact minimax methods

among interactive mechanisms is an interesting problem, which we leave for future investigation.

For a categorical variable, estimation of the cell probabilities is a basic problem, as those can be

used to derive other inferences, but perhaps not optimally. So, optimal methods under other loss

functions should be investigated.
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