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Maximum entropy extreme-value seasonal adjustment
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Summary

Some economic series in small economies exhibit meagre (i.e. non-positive) values, as well
as seasonal extremes. For example, agricultural variables in countries with a distinct growing
season may exhibit both of these features. Multiplicative seasonal adjustment typically
utilises a logarithmic transformation, but the meagre values make this impossible, while
the extremes engender huge distortions that render seasonal adjustments unacceptable. To
account for these features, we propose a new method of extreme-value adjustment based
on the maximum entropy principle, which results in replacement of the meagre values
and extremes by optimal projections that utilise information from the available time series
dynamics. This facilitates multiplicative seasonal adjustment. The method is illustrated in
the New Zealand agricultural series.
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1. Introduction

Economic time series may exhibit negligible or zero values during periods of inactivity;
such series can arise in industries that are weather-contingent, such that in certain seasons
little or no activity occurs. This behaviour can also arise in smaller economies, where activity
is reduced during certain times of the year. Moreover, non-positive values, referred to as
meagre values henceforth, can arise due to accounting constraints. Seasonal extremes are
a second type of possible feature. Both meagre values and extremes create a challenge
for multiplicative seasonal adjustment methods such as the log-additive procedures, which
rely upon log transformations, or the multiplicative procedures, which rely upon division.
Extremes exert a tremendous impact on seasonal adjustments. The topic of this paper is
extreme-value adjustment and seasonal adjustment of time series with extremes and/or meagre
values, and we focus on some examples published by Statistics New Zealand (StatsNZ).

StatsNZ, like all National Statistics Offices (NSO), produces a large number of time
series as part of its work. Many are published, but there are also time series that are used
for internal analytical purposes, or are aggregated to produce published outputs. For series
with seasonal variation, StatsNZ produces seasonally adjusted time series using the X-12-
ARIMA (X12) methodology (Findley et al. 1998) of the X-13ARIMA-SEATS software (U.S.
Census Bureau 2011). For StatsNZ, the X12 methodology typically works well in production.
The method is robust (with respect to different data structures), computationally stable and
capable of accommodating the level of volatility found in most New Zealand time series.
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Figure 1. Left panel: Apple exports series (grey) with meagre values (circle) and zero (dotted)
indicated. Right panel: Apple exports series (grey) with additive seasonal adjustment (black).

However, StatsNZ has a small number of anomalous series that X12 does not model
well. New Zealand relies heavily on agricultural production in its economy, and some of
the series exhibit meagre values. Indeed, some quarterly agricultural series have between
one and three quarters where the vast majority of the annual output occurs, with the other
quarters having negligible activity. The Apple exports series (left panel of Figure 1) has
negative values in 1988, 1990, 1991 and 1992, while the Avocado exports series (left panel of
Figure 2) has two quarters with value zero (i.e. no activity). Moreover, the smaller quarterly
values tend to occur in the same Winter quarters as these zero values. In both these cases,
the multiplicative seasonal adjustment is not possible, and additive adjustment can result
in the undesirable feature of negative seasonally adjusted values (right panel of Figure 1,
where 1998. Q2 of the seasonal adjustment is negative) or residual seasonality (right panel of
Figure 2). While the input series can have small negative values due to accounting reasons,
negative seasonally adjusted values have no economic validity, especially for those quarters
with significant input values. Even in cases where no zeros or negative values are present,
small or large extremes can have an undue influence on the dynamics of seasonally adjusted
outputs, as in the case of the Berry exports series (Figure 3).

Although for time series with zeros for some of the meagre quarters the additive
X12 method is feasible, typically the multiplicative X12 method is preferable for StatsNZ
series. This is because the substantive trend and seasonal effects manifest in a multiplicative
fashion in the non-meagre quarters. As a matter of interpretation of seasonal and nonseasonal
components, many economists believe that seasonal adjustment should be multiplicative (see
the discussion of transformations in Findley et al. (1998)). Even in cases where multiplicative
X12 can be applied, the impact of extremes can lead to unacceptable seasonal adjustments.
Resolving the impact of such effects is the subject of this paper. We briefly review some
previously explored solutions that have been shown to not provide improved outcomes, in
contrast with our proposed methodology.

For series with meagre values, one possible approach is to additively shift the data
upwards away from negatives and zeroes, by adding a small constant, and then proceeding
with the log transformation. However, this will not yield well-defined components (discussed
in Section 3.3 below), and moreover the results become contingent on the constant’s value
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Figure 2. Left panel: Avocado exports series (grey) with meagre values (circle) and zero (dotted)
indicated. Right panel: Avocado exports series (grey) with additive seasonal adjustment (black).
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Figure 3. Left panel: Berry exports series (grey) with meagre values (circle) and zero (dotted)
indicated. Right panel: Berry exports series (grey) with additive seasonal adjustment (black).

(one must remove the constant at the end of the process). Alternatively, one could replace the
meagre values with very small positive values, as this allows us to multiplicatively adjust
within the X12 framework. The replacement strategy amounts to an ad hoc method for
extreme value adjustment, and work at StatsNZ has found that the resulting adjustments are
even more unstable than those arising from an additive adjustment. Ultimately, it does not
resolve the fact that meagre values, zero or not, exert an exorbitant impact on the results of
the seasonal adjustment. (In the language of Peña (1990), these are influential observations).
The pseudo-additive decomposition appears to have some merits, but it is unclear how to
incorporate models, and the seasonal adjustment can be negative – see Findley et al. (1998).

Another solution explored at StatsNZ is to ignore the meagre values and small extremes
by collapsing the time axis, essentially redefining the sampling frequency from four quarters
per year to a say, triadic period. This procedure might seem viable, if one believes that
the meagre values do not hold meaningful information for the purposes of understanding
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trend dynamics. Also, because the series in question are often not directly published, and
moreover are providing a negligible contribution to total actual quarterly economic activity,
it may seem sensible to ignore these types of features. However, in practice, the number of
meagre values can vary by year so that the sampling frequency becomes variable; this is
also true of the Apple exports series (Figure 1), where the first quarter is initially < 1% of
the annual value but increases to over 10% of the annual for the last 3 years. Thus, in this
approach, any attempt to use standard time series models becomes impossible. Moreover,
straight omission of meagre values generates accounting difficulties for higher aggregates
of component series, if one desires that seasonally adjusted totals be equal to the sum of
the seasonally adjusted components, as many users of NSO seasonally adjusted outputs
expect.

However, one might consider replacing extreme values with predictions based upon a
fitted time series model – this is related to the collapsing strategy, but respects the structure
of the calendar, i.e. that there are four quarters per year. Our replacement procedure is for-
mulated according to the maximum entropy principle, thereby rendering the time series more
amenable to signal extraction procedures (such as seasonal adjustment) that are predicated
upon Gaussian data. Essentially, the original time series is transformed such that its entropy
increases; this is the same philosophy as using a Box–Cox transform. Alternatively, one
might consider a non-Gaussian model with a non-Gaussian signal extraction procedure, but
the modelling becomes more complex – either way, one is accounting for influential obser-
vations; see the review in McElroy (2016). Whereas it is common in the outlier literature
(see Fox 1972; Chang, Tiao & Chen 1988) to perform the replacement via the device of an
additive outlier (AO) regressor (Ljung 1993), we instead use stochastic projection formulas
because the missing value is a random variable, not a fixed quantity.

Our approach replaces the extremes by a model-based imputation, or replacement, which
takes into account the dynamics in each individual series. Specifically, extreme values are
omitted and treated as missing, being first identified via significant increases to the sample’s
Gaussian entropy arising from their imputation. Although there is information content in
these extremes, this is completely ignored by the imputation method, which is based on
treating the omissions as missing completely at random. This is done to increase the Gaussian
entropy, as is explained in Section 2.

The modified data can be log transformed, and by computing the likelihood based upon
having missing values, the model can be fitted. Seasonal adjustment can then proceed by
regular X12 applied to the transformed series, where imputations are supplied for missing
values and extremes, as well as forecasts and backcasts, utilising conditional expectation
formulas arising from the fitted model. Uncertainty can also be quantified for these estimates,
through the imputation mean squared error formulas. The key requirement is that there exist at
least d contiguous values in the modified time series, where d is the order of the differencing
polynomial for the nonstationary time series model, i.e. we cannot excise so many extremes
such that there no longer exists at least one stretch of d contiguous values.

We describe the maximum entropy principle for adjusting anomalous values in Section
2, making connections to prior literature based upon regression methods. The computational
aspects of likelihood evaluation, extreme-value adjustment, and seasonal adjustment are
discussed in Section 3, and Section 4 provides an evaluation of the methodology through
simulations. In Section 5, we apply this method on the quarterly agricultural series of price
exports for Avocado, Apple and Berry commodities at StatsNZ, covering 1988 through the
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second quarter of 2005, in each case producing a multiplicative decomposition into seasonal
and non-seasonal components. Section 6 summarises our findings.

2. Maximum entropy, missing values, and extremes

Classical projection formulas for forecasting, imputation and signal extraction are based
upon linear estimators, and are only optimal for a Gaussian process; see McElroy (2008).
The validity of these linear filtering methods is impugned when the data is non-Gaussian, and
hence it is desirable to either develop non-linear filtering techniques suitable for non-Gaussian
time series, or to first modify the data vector such that its cumulants more closely resemble
those of a Gaussian random vector. The maximum entropy principle (Jaynes 1957a,b) can
be utilised to address the second approach.

In general, the maximum entropy principle states that the analyst should seek a proba-
bility distribution of maximal entropy subject to relevant empirical constraints. For example,
the random vector of maximal entropy given a particular mean vector and covariance matrix
is the multivariate Gaussian. Moreover, entropy maximisation – subject to the constraint
that the data vector is drawn from a difference-stationary Gaussian model – is equivalent
to maximum likelihood estimation; replacing extreme values by the Gaussian projection
further maximises the entropy, as we show below.

The maximum entropy principle is typically used by specifying certain constraints on
a distribution, which may take the form of moments set equal to known quantities; having
obtained the maximising distribution, some empirical estimate of the constraint is then
substituted (Golan, Judge & Miller 1996). We apply this principle to derive the log Gaussian
likelihood as criterion function. Let X= [X1,…, XT ]� be a sample from {Xt}, and let μ=E(X)
and �=cov(X ). Conditional on these quantities, the maximum entropy distribution of X is
N(�, �) (Park & Bera 2009), and the entropy of X is

1

2
T (1+ log(2�))+ 1

2
log det�. (1)

Let M be a Gaussian model for {Xt}, which specifies some mean vector and covariance
matrix. In this paper, we consider the class of difference-stationary time series models
discussed in McElroy & Monsell (2015), which presumes the existence of a degree d unit-root
polynomial � such that Wt =�(B)Xt and {Wt} is stationary. (Here B is the backshift operator,
such that BXt =Xt−1). Bell (1984) discussed the representation of such processes in terms of
d initial values of {Xt}, which can be any contiguous d values, say XÅ = [XtÅ+1,…, XtÅ+d ]�

for some tÅ. Supposing that 0� tÅ �T −d , and that {Wt} is uncorrelated with XÅ, it follows
from Theorem 1 of McElroy & Monsell (2015) that the quadratic form X��−1X can be
factorised into two terms involving only XÅ and {Wt}.

Let W consist of Wt for t ∈{d +1,…, T }, and suppose the model M specifies a mean
vector η� for W, where � is a parameter. Because {Wt} is stationary and Gaussian under
the model, it has a spectral density of the form �2 f�, where �2 is the innovation variance
and � is a parameter. The covariance matrix of W is then described via �2��, where �� is
a Toeplitz matrix of dimension T −d (corresponding to f�). It then follows that

[X −μ]��−1[X −μ]= [XÅ −μÅ]� �−1
Å [XÅ −μÅ]+�−2[W −η�]��−1

� [W −η�], (2)

© 2019 Australian Statistical Publishing Association Inc.



T. S. MCELROY AND R. PENNY 157

where μÅ =E(XÅ) and �Å =cov[XÅ]. The factorisation results of McElroy & Monsell (2015)
also show that

log det�= log det�Å + (T −d ) log�2 + log det��. (3)

Combining (1) with (3), and dispensing with all factors that do not depend on the
parameter vector [�, �, �2], we obtain the Gaussian entropy

H (�, �2)= 1

2
(T −d )

(
log�2 + log det��

)
. (4)

Notice this does not depend on �. A related quantity, which does depend on �, is −2
times the log Gaussian likelihood, which can be expressed – utilising (2) and (3) – as

L(�, �, �2)= log det�� + (T −d ) log�2 +�−2[W −η�]��−1
� [W −η�]. (5)

This quantity is called the Gaussian divergence. Replacing the quadratic form

Q = (T −d )−1[W −η�]��−1
� [W −η�], (6)

by its expectation q(�) = (T −d )−1 tr{�W �−1
� } yields an asymptotic form of the Gaussian

divergence:

W(�, �2)= log det�� + (T −d ) log�2 + (T −d )q(�)�−2.

This function is the Kullback–Leibler divergence between two Gaussian random vectors
with the same mean, and respective covariance matrices �W and �2��. We suppose the
model M is correctly specified, so that there is some true unknown [�̃, �̃, �̃2], which we are
seeking to determine. Then �W = �̃2��̃, and we can write

q(�)= �̃2(T −d )−1 tr{��̃�
−1
� },

which equals �̃2 if �= �̃. The following result connects entropy (4) to the Gaussian divergence,
allowing us to claim that minimising the latter accomplishes entropy maximisation.

Theorem 1. Given the Gaussian model M for {Xt}, the maximum entropy distribution
has parameter vector [�̃, �̃2] obtained as the minimiser of the Kullback–Leibler divergence
W(�, �2), and the parameter estimate [�̂, �̂, �̂2] is obtained as the minimiser of the Gaussian
divergence L.

Now consider the case that some observations are extremal, and suppose μ = 0 to
simplify the discussion. Let X◦ denote moderate observations, and X@ be the block of
extremes – the notation designates the interior (◦) and boundary (@) of the data vector’s set
of values. There exists some permutation matrix � such that

X =�

[
X◦
X@

]
. (7)

Employing the notation �◦ =cov[X◦] and �@ =cov[X@], elementary results for random
vectors (Mardia, Kent & Bibby 1979) yield

X��−1X =X�
◦ �−1

◦ X◦ + [X@ − X̂@]
�
�−1

@|◦[X@ − X̂@], (8)
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where X̂@ =E[X@|X◦] and �@|◦ = cov[X@ − X̂@]. One consequence of this expression is that

X�
◦ �−1

◦ X◦ can be computed by calculating X̃
�
�−1X̃, where

X̃ =�

[
X◦
X̂@

]
.

That is, the likelihood corresponding to the regular values alone is identical to that arising
from replacing the extremes X@ by their estimate X̂@. If the extremes were omitted, the missing
value likelihood could be evaluated the same way. This observation can be advantageous
when certain algorithms are available for computing X��−1X; we only need to supply
imputations X̂@ for the missing values, and then can proceed. This is the reasoning behind
the skipping method described in Gómez, Maravall & Peña (1999), as is further discussed
in Section 3.

Ljung (1993) advocated handling missing values by inserting arbitrarily large values
followed by extreme-value adjustment based on additive outlier regression techniques. We
reverse this philosophy: treat extremes X@ as missing values (i.e., excise them) and replace
them via X̂@. If a set of r values X@ are extreme, and are replaced by X̂@, then the quadratic
form in (8) is reduced by the non-negative quantity

S@ = [X@ − X̂@]
�
�−1

@|◦[X@ − X̂@], (9)

and the Gaussian divergence gets computed as if X@ were missing. (If a series has actual
missing values as well, these can be collected in the X@ vector as well). The quantity S@ is the
difference between the Gaussian divergence with and without extreme-adjustment. In Section
3, we discuss how the Gaussian divergence can be computed for difference stationary series
with arbitrary patterns of missing values. Because S@ �0, extreme-value adjustment increases
entropy. However, we should only be concerned with statistically significant increases to
entropy – otherwise, we might replace all the entries by the sample mean. To that end,
consider the null hypothesis

H0 :M is correct.

If S@ is computed using the true parameter vector [�̃, �̃2], then under H0 it has a �2
r distribution

(Mardia, Kent & Bibby 1979), where r is the length of X@. However, in practice, we must
utilise parameter estimates, computed by maximising the Gaussian divergence based on
X◦; under H0, these are maximum likelihood estimators and hence converge in probability
as T →∞ to the true parameters. Therefore, applying Slutsky’s theorem, the statistic Ŝ@

obtained by plugging in the parameter estimates satisfies

Ŝ@
P−→S@ ∼�2

r .

Comparing Ŝ@ against the �2
r quantiles is asymptotically correctly sized, and we refer to this

procedure as our extreme-value test. The power of this test is generated by scenarios where
X@ − X̂@ is large in magnitude.
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3. Algorithms and computations

We describe how the Gaussian divergence can be evaluated when missing values are
present, how to test for extremes and adjust for them, and finally how seasonal adjustment
can be completed. Much of this material is based on McElroy & Monsell (2015).

3.1. Gaussian divergence

Let X denote the entire potential sample of size T . We know that potential extremes can
be replaced by their conditional expectations, in which case, the calculation of the Gaussian
divergence proceeds as if these were also omitted. Therefore, we let all r omitted and deleted
values be denoted X@, and the remaining m values of X are denoted X◦.

We suppose that transformations have already been applied. Any meagre values in the
original scale can be viewed as potential extremes, and hence omitted; the remaining values
are positive, and hence the logarithm is well-defined. Utilising the notation of Section 2,
we suppose the contiguous initial values XÅ are observed, which amounts to assuming the
existence of some contiguous set of d observations – otherwise, the Gaussian likelihood
need not factorise (McElroy & Monsell 2015). Let P denote a permutation matrix that
interchanges the indices {tÅ +1,…, tÅ +d} with {1, · · · , d}, leaving all other indices unaltered.
Furthermore, define the (T −d )×T dimensional differencing matrix � via

⎡
⎣ �d · · · �1 �0 0 · · ·

...
. . .

. . .
. . .

. . .
...

· · · 0 �d · · · �1 �0

⎤
⎦,

where �(B)=∑d
j=0 �jBj. Then the matrix

�=
[

[Id 0]P
�

]
,

where Id denotes a d -dimensional identity matrix, maps X to the initial values XÅ concate-
nated to the differenced values W. It is known that � is invertible, and hence by (7)

X◦ = [Im 0]�−1X = [Im 0]�−1�−1

[
XÅ
W

]
.

However, because XÅ is observed, it is featured among the entries of X◦, and hence there
exists a permutation matrix Q such that

Q[Im 0]�−1�−1 =
[

Id 0
A B

]
,

for some matrices A and B. Letting

R =
[

Id 0
−A Im−d

]
Q,

© 2019 Australian Statistical Publishing Association Inc.



160 MAXIMUM ENTROPY ADJUSTMENT

we obtain

RX◦ =
[

XÅ
BW

]
, and

�◦ =R−1

[
�Å 0
0 �2B��B�

]
R−�.

Evidently, R is an invertible transformation of the observed variables that reduces them
to initial values and a linear combination of differenced variables, and hence facilitates
factorisation of the likelihood. Taking the lower rows of R enables us to discard the initial
values:

D= [0 Im−d ]R = [−A Im−d ]Q, and

DX◦ =BW.

Finally, we can generalise the result (2) to the case of missing values:

[X −μ]��−1[X −μ]= [XÅ −μÅ]��−1
Å [XÅ −μÅ]

+�−2[W −η�]�B�[
B��B�]−1

B[W −η�],
(10)

where we can compute BW via DX◦. The mean vector η� is typically written as a linear
combination � of known regressors, and hence Bη� is easily calculated. We also have an
analogue of (3). Substituting into (5), and omitting the terms involving the initial values,
yields

L(�, �, �2)= log det
(
B��B�)+ (T −d ) log�2

+�−2[W −η�]�B�[
B��B�]−1

B[W −η�].
(11)

This Gaussian divergence can be minimised using standard algorithms, and model fit can be
checked by computation and examination of the residuals. We have used the functionality
of R (R Core Team, 2018) to do these calculations for Seasonal Autoregressive Integrated
Moving Average (SARIMA) models – without regression effects – of a general specified
order.

3.2. Extreme value adjustment

For extreme-value adjustment, one could construct the Gaussian divergence (11) for
various choices of extremes X@, and compare the entropy via Ŝ@. Note that it is not necessary
to compute Ŝ@ via the formula (9). We only have to take the difference of the two Gaussian
divergences. Clearly, there are 2T possible subsets of extremes to potentially consider, so a
practical algorithm is needed to quickly identify and process the most salient anomalies.

Once the extremes are identified through statistical tests, they are replaced by imputations
arising as best estimates of values missing completely at random, i.e., in this context, Gaussian
conditional expectations. Although the bare fact that these extremes are blotted out tells us
something – in particular, that they decrease the sample’s entropy – this information is not
utilised in the missing value imputation procedure, because that would not accomplish the
purpose of attenuating the extremes. Moreover, taking into account the fact of identification
in the imputation procedure would require a more nuanced modelling of the data process,
which is at odds with the objective of our procedure.
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We pursue a forward addition strategy, gradually adding extremes as needed so as to
significantly increase entropy. First, fit the model with no extremes to obtain the parameter
estimates. Then compute Ŝ@ based on excising each single data point in turn, based on the
same parameter estimates. (Alternatively, the model can be fitted to each such excision; while
this is preferable from the standpoint of accuracy, it is very expensive computationally, with
T maximisations to be computed.) Then rank the observations by the P-values (ignoring,
for sake of efficacy, the effects of sorting and multiple-testing).

Next, consider a sequence of �2
1 tests, which are formulated as comparing the Gaussian

divergence with the (k +1) most extreme observations excised against the k most extreme
observations excised. Beginning with k = 0, this compares deleting the most extreme ob-
servation against retaining it. If the test rejects, we excise this observation, and now take
this as a our new base model; then compare deleting the two most extreme observations
against this base model. When for some k we fail to reject, we have k excisions defining our
extreme-value adjusted time series, and we refit the model to get final parameter estimates.
At this point, residuals can be assessed for goodness-of-fit using standard tools (but with
significance ignoring the prior extreme-value adjustment).

This method can be compared with other available procedures. Our algorithm for sifting
batches of extremes is based upon the procedure of X12, which takes the Ljung (1993) AO
approach. After the initial pass through the data has obtained a regression coefficient corre-
sponding to an AO at each data point in turn, the t-statistics are sorted and compared to ad hoc
critical values. Ljung (1993) advocates using an AO regressor to account for, and ultimately
replace, an extreme value. If X@ is treated as a deterministic quantity, then X̂@ is estimated
by generalised least squares (GLS); formula (8) still holds true, and S@ is also �2

r . However,
the estimate X̂@ can be quite different in a GLS formulation, as opposed to our general
approach that allows for both fixed effects (through the mean vector) and stochastic effects.

Gómez, Maravall & Peña (1999) make the point that the parameter estimates for GLS in
Ljung (1993) rely upon the extremes. If the model fitting criterion is based upon X�

◦ �−1
◦ X◦,

rather than X��−1X, then the potential extremes have been eliminated from the calculation,
and hence won’t impact the parameter estimates. This point is also discussed in Brubacher
& Wilson (1976). Gómez, Maravall & Peña (1999) discuss the efficient computation of
X�

◦ �−1
◦ X◦, which is achieved by running a suitable algorithm – such as the Durbin-Levinson

algorithm or the Kalman filter – upon X��−1X but with X@ replaced by X̂@. In the recursive
Durbin-Levinson algorithm, the update then becomes numerically zero, indicating that the
particular step in the loop of the algorithm can be skipped – hence the term skipping method.

This skipping method yields an efficient algorithm for computing the Gaussian diver-
gence, at least in the case of stationary data. Whereas the Durbin-Levinson algorithm is
intended for stationary data, Gómez, Maravall & Peña (1999) show how the Kalman filter
can be utilised with a skipping method to compute the Gaussian divergence for nonstationary
processes. However, because of their diffuse initialisation of the Kalman filter, they take the
initial values to be at the beginning of the series – if any of the first d values are missing,
these will be treated as deterministic unknowns, as the authors discuss on page 348. Latter
missing values, for t > d , are treated as stochastic.

Missing values can also be treated in a state space approach through the alternate
initialisation of Ansley & Kohn (1985), as discussed further in Bell & Hillmer (1991). This
treatment does not require the initial values to be at the start of the series, and all missing
values can be treated properly as a mixture of deterministic and stochastic effects. In essence,
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missing values that occur on the boundary of the sample are estimated by forecasting and
backcasting, and are never treated as deterministic – therefore, to be consistent the missing
values in the interior of the sample should also be treated as stochastic quantities. This is
the philosophy behind the treatment of McElroy & Monsell (2015), which is adopted here.
Our approach is equivalent to that of Bell & Hillmer (1991), but does not require state space
algorithms, being applicable to long memory processes.

Once the extremes have been identified, we need their imputations, which can be
expressed in terms of the notation of the previous subsection. In general the Gaussian
conditional expectation is

X̂@ =E(X@)+ cov[X@, X◦]cov[X◦]−1[X◦ −EX◦].

These missing values could be in the interior of the sample, or outside the boundary,
corresponding to forecasts and backcasts.

Proposition 1. Given the Gaussian model M with true parameters [�, �, �2], the miss-
ing/omitted vector of r observations X@ is estimated via

X̂@ = [0Ir]�
−1�−1

[
XÅ

η� +��C(�)
(
W −η�

)]
,

with BW =DX◦ and

C(�)=B�[
B��B�]−1

B.

The error covariance matrix is

�@|◦ = [0Ir]�
−1�−1

[
0 0
0 �2

(
�� −��C(�)��

)]
�−��−�[0Ir]

�.

These formulas are used to replace meagre values, adjust extremes, and provide forecasts
and backcasts as needed for filtering. An alternative approach (which is featured in X-
13ARIMA-SEATS) is to replace missing values with large values and add an additive outlier
regressor – this is based on the ideas of Ljung (1993) mentioned above, and views extremes
as deterministic, rather than stochastic, aberrations.

As discussed in McElroy & Monsell (2015), filtered estimates can be obtained by
applying a linear filter �(B) =∑

j∈Z 	jBj to such an adjusted/extended series; in the case
of an infinite length filter, such as arises from model-based signal extraction, we determine
the maximal coefficient index such that all coefficients are below some threshold, such
as machine precision. For instance, if applying the filter with coefficients 	j = .9|j|, then
|j|> 175 implies 	j < 10−8. Then T is determined accordingly, generating as many forecasts
as needed. The signal extraction uncertainty can also be computed utilising �@|◦.

3.3. Seasonal adjustment

We write the untransformed data in lower case letters, reserving capital letters for
the transformed data process {Xt} with seasonal {St} and non-seasonal {At}. We seek a
decomposition of {xt} into a product of seasonal {st} and non-seasonal {at} components:

xt = stat . (12)
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Before applying a logarithm, we must handle the meagre values. A naïve approach involves
simply adding a small constant c>0 to xt , such that xt +c>0 for all t, before log transforming.
This method has serious drawbacks. If we obtain St and At from an additive decomposition
of log(xt + c), then reversing this relationship entails

xt = exp{St} exp{At}− c,

which will not be equal to exp{St}(exp{At}−c), and no multiplicative decomposition of the
form (12) is possible. For instance, setting st = exp{St} and at = xt=st yields

at = exp{At}− c exp{−St},
which indicates that if the seasonal adjustment is adequate in the log domain, and c is non-
negligible, then there will be some remaining seasonal oscillations in at . This is unsatisfactory.
(This discussion also leaves aside the issue of the selection of c, which is not unique and
will have an impact on the signal extraction estimates in the log domain.)

Our approach avoids these obstacles. The observed data is modified by excising meagre
values and extremes, taking a log transform of the other values. By minimising the Gaussian
divergence and searching over different sets of extreme values, as described in the previous
subsection, we ultimately produce an extreme-value adjusted {X̃ t}. If working with the X12
methodology, seasonal adjustments are produced by the application of a fixed X-11 filter
�(B), as described in Ladiray & Quenneville (2001). The X-11 filter is obtained by linearising
the X-11 algorithm, through removing the facets of outlier adjustment. Extending the sample
by forecasts and backcasts, we compute St via

St =�(B)X̃ t .

Subtracting, we obtain At = X̃ t − Ŝ t . Exponentiating, we obtain

x̃t = exp{St} exp{At}, (13)

for each time t. Note that x̃t equals xt for most times t, but differs if t corresponds to
a meagre value, identified extreme, or forecast/backcast. Although it seems natural to set
st = exp{St} and at = exp{At}, this has the drawback that (12) would be violated for any t
such that x̃t �=xt . However, if we assign the discrepancy to the seasonal or non-seasonal, we
can ensure that (12) holds for all t. For the agricultural series studied in this paper, meagre
values are associated with certain seasons of low productivity (due to weather patterns in
New Zealand), and hence are naturally associated with the seasonal. Therefore, instead of
st = exp St , we should set at = exp At and make the definition

st = xt=at . (14)

Note this division is well-defined, because the non-seasonal is non-zero. Now for non-excised
values, we have st = x̃t=at = exp{St}, but in general st = exp{St}(xt=x̂t). So if the value is
meagre, and equals zero, then st =0 as well; or if the meagre value is negative, then xt=x̂t

must be negative, and st < 0 as well. So st will have the same meagre behaviour as the
original xt , but looks like a regular seasonal at non-meagre time points.

A ramification of multiplicative adjustment for series with large seasonal amplitude is
that the annualised series will differ greatly from the annualised seasonal adjustment; this
is not an issue of extreme values per se, but a result of seasonality St with large variability.
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With ⊕ designating summation over four quarters to yield an annualised series,

⊕x̃t =⊕ exp{At}+⊕ exp{At}(exp{St}−1).

If St has a large amplitude, then exp{St} − 1 will differ substantially from zero, and the
annualised (extreme-value adjusted) data ⊕x̃t can have a substantial discrepancy from the
annualised seasonal adjustment ⊕ exp{At}. Moreover, the asymmetry in exp{St}−1 will tend
to render the annualised seasonal adjustment smaller than the annualised data; one could
rectify this, if it is a concern, by raising the level of At via benchmarking. However, such
a procedure would tend to disrupt the multiplicative relation of components.

3.4. Procedure summary

The entire procedure can be summarised in terms of 9 steps: (1) Excise, (2) Transform,
(3) Specify, (4) Initial Fit, (5) Identify Extremes, (6) Revised Fit, (7) Impute, (8) Filter, (9)
Finalise. In the first step, all meagre values are excised. Moreover, if there are small positive
values or large extremes that the practitioner has identified and wishes to be imputed, these can
be excised at this stage. In Step 2 a logarithmic transformation is applied. Next, the third step
requires a specification of the SARIMA model, meaning the order of differencing – as well
as Autoregressive (AR) and Moving Average (MA) orders – for seasonal and non-seasonal
portions. Unfortunately, the usual tools of model identification (such as autocorrelation and
partial autocorrelation plots) cannot be used because of the missing values, and we instead
utilise the automatic modelling strategy of X12, i.e., a variety of models can be specified,
which are each fitted and the list of viable contenders narrowed to those having adequate
residuals, and the final model being selected according to the Akaike Information Criterion
(AIC) or a model comparison test statistic – see Findley et al. (1998). As Step 4 involves
the actual fitting of the specified model (using a likelihood that allows for missing values,
as in (11)), in practice we must repeat the third and fourth steps for each specified model.

For any given fitted model, in Step 5 we identify the extremes using the strategy outlined
in Section 3.2. Then in the sixth step we revise the initial fit, taking the identified extremes
into account. One would then examine residuals again, to verify that the model still fits well
with the imputations (beyond those imposed by the meagre values, in Step 1) taken into
account. If time allows, Steps 3 through 6 would be repeated for each postulated model, with
a final AIC comparison to arrive at a final model (and collection of identified extremes). One
subtlety is that when making such comparisons, the number of identified extremes can be
different for various models, and this needs to be accounted for in the calculation of AIC. It
follows from the reasoning in Section 2 that the cost of fallaciously identifying a data point
as an extreme is the same – in terms of the degrees of freedom of the �2 model comparison
test statistic – as that incurred by over-parametrising, and hence we should add 2 points to
AIC for each identified extreme. So long as the differencing operator is the same for the
models being considered, we can compare their AIC values in this way. Alternatively, we
can determine the best model after Step 4 (before the extremes are identified), and only run
Steps 5 and 6 for this specification.

With the final specified model in hand, we compute imputations and projections (back-
casts and forecasts) in Step 7. Having extreme-value adjusted and extended the series, we
apply linear filters in Step 8, obtaining trend, seasonal, and irregular components along
with mean squared errors. Step 9 applies the final routines of Section 3.3, undoing the log
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transformation and outputting the components (with uncertainty measures) in the original
scale.

4. Simulation study

In order to evaluate the proposed methodology, we conducted a short simulation study.
The first task was to generate time series data resembling observed meagre series, with a
facility for generating a greater incidence of anomalies through tuning parameters. The second
task was to develop criteria by which the extreme value seasonal adjustment methodology
would be deemed successful.

To generate simulations, we adopted one of the SARIMA models later utilised in our
empirical studies, and passed heavy-tailed innovations through the ARMA polynomials. Our
model process {Xt} was the quarterly SARIMA(3,1,0)(0,1,1), with {Wt} given by

(1−0.037B −0.046B2 −0.046B3)Wt = (1−0.055B4)�t ,

with innovation scale exp{0.247}. The innovation scale was equal to the standard deviation
when the innovations are Gaussian, but we also generated student t innovations with 10,
5, and 2 degrees of freedom. Then we defined a left-censored process xt = 1{Xt>
} exp{Xt},
where 
 is a threshold chosen to be −2.

Each simulation was recentred and rescaled before exponentiation, to ensure the data
was not dominated by one or two values. The left-censoring ensured that any suitably small
values (less than e−2) were set to zero. Such synthetic data retained the features of NZ
agricultural data, while also having a non-negligible incidence of zero values. Note that
the degree of freedom is related to the innovations’ marginal tail index, which governs the
magnitude of extremes rather than their ubiquity.

Generating such series of length T = 40, 60, 80, we applied our methodology with
�=0.01, 0.05, 0.10. We expected the method to correctly identify anomalies, although these
were actually defined in terms of the Gaussian likelihood in this paper, so that each simulation
could have a different number of extremes. Nevertheless, we expected more extremes with
a lower degree of freedom in the t innovations, and by increasing � we should have been
able to increase our detection. Table 1 reports the proportion of extremes detected (given by
the number of imputations in each simulation, divided by sample size and the total number
1,000 of replications) in each case, which is roughly increasing in � and stable in T . The
proportion does not increase with lower degrees of freedom, because this parameter only
impacts the magnitude of extremes.

While the anomaly count is mainly a check on the overall soundness of the method,
actual performance should be assessed via adequacy of seasonal adjustment. Many measures
of adequacy appear in the literature (see McElroy 2012 for an overview), but we focused
on the lag four sample autocorrelation of the differenced adjusted time series, and deter-
mined the statistical significance by using the Bartlett formula assuming a fitted MA(3)
process is truth. This means our significance levels were higher than what a white noise
hypothesis would generate. Table 1 indicates a very low incidence of inadequacy, according
to this metric, the only problems occurring when the simulations are extremely heavy-
tailed (two degrees of freedom corresponds to infinite variance). Note that by letting the
degrees of freedom tend to ∞, the innovation distribution will more closely approximate the
Gaussian.
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Table 1. Detection of extremes and seasonal adjustment quality measures for four simulated pro-
cesses. Three sample sizes (T =40, 60, 80) were considered, four degrees of freedom (dof) for data
processes, and extreme-value adjustment thresholds determined by �=0.01, 0.05, 0.10. The propor-
tion of extremes counts the number of identified extremes divided by sample size, averaged over all
1, 000 simulations. SA Inadequacy gives the number of series (out of 1, 000) for which the lag four
sample autocorrelation was significantly different from zero.

Process Proportion extremes SA inadequacy

0.01 0.05 0.10 0.01 0.05 0.10

dof 2
T =40 0.0343 0.0712 0.1325 0 0 0
T =60 0.0261 0.0693 0.1281 0 2 0
T =80 0.0231 0.0683 0.1261 4 0 5

dof 5
T =40 0.0273 0.0659 0.1340 0 0 0
T =60 0.0201 0.0679 0.1345 0 0 0
T =80 0.0167 0.0690 0.1345 0 0 0

dof 10
T =40 0.0258 0.0635 0.1353 0 0 0
T =60 0.0183 0.0651 0.1798 0 0 0
T =80 0.0143 0.0674 0.1345 0 0 0

dof ∞
T =40 0.0317 0.0590 0.1277 0 0 0
T =60 0.0176 0.0877 0.1824 0 0 0
T =80 0.0134 0.0665 0.1366 0 0 0

Given that the synthetic data appears to replicate the observed series’ main features,
one could propose modelling the NZ data via the left-censoring mechanism described above.
However, even if the tail index and left-censoring threshold 
 could be accurately estimated,
seasonal adjustment would then proceed via nonlinear algorithms, which typically requires
greater computational resources as well as additional human judgment0. Supposing that
one imputed a value for exp{Xt} when Xt � 
, the resulting adjusted series would still have
extremes – only the censoring of meagre values has been accounted for. Non-Gaussian signal
extraction methods would be required for further analysis. In a sense, our simple Gaussian
model is a conscious mis-specification – which avoids complex modelling and attendant
nonlinear signal extraction – that we hope is an adequate approximation to the true data
process.

5. New Zealand agricultural data

We now apply the paper’s method to three agricultural time series from New Zealand,
each of which seems to demand multiplicative seasonal adjustment, but also has some
extremely low values. These series are constant price exports for commodities: Avocado,
Apple, and Berry, for the period of 1988 through the second quarter of 2005.

5.1. Avocado

We first consider the New Zealand Avocado series. A quarterly SARIMA(3,1,0)(0,1,1)
model was identified and fitted using the procedure outlined in Section 3.4. In particular,
various orders of SARIMA model were attempted in Steps 3 and 4, with the above specifi-
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cation chosen on the basis of adequate residual diagnostics; all subsequent steps were then
applied with this particular specification. The differenced series {Wt} followed the model

(1−0.017B −0.046B2 −0.009B3)Wt = (1−0.141B4)�t ,

with innovation variance exp{0.219}, which reflects the initial fit of Step 4. The lag 24
Ljung Box statistic has P-value 0.377, and the sign test had P-value 0.093. The model
could be simplified, as some of the coefficients are quite small. As there were two zero
values (at 1989.Q3 and 2000.Q2), these were automatically omitted, and the extreme-value
procedure with �=0.05 was applied to the logged data. In addition, extremes were detected
at 1989.Q2, 1996.Q3, and 1997.Q3. Whereas the latter two correspond to small positive
values in the original data scale, the extreme at 1989.Q2 is large relative to Q2 values in
nearby years. Having imputed replacements for these anomalies, the resulting extreme-value
adjusted series (left panel of Figure 4) was seasonally adjusted via the X12 method, using a
3×5 moving average for the seasonal component and a Henderson 9-term moving average
for the trend. In exponential scale, the final results are given in the right panel of Figure 4.

The resulting seasonally adjusted series passes through the centre of the meagre series.
This can be compared to the right panel of Figure 2, where the seasonal adjustment has a much
higher level. Uncertainty is naturally greater at time points corresponding to imputations, as
well as at the sample boundaries. The seasonal component is computed from the imputed
series in the log domain; in the original scale, the seasonal is obtained by exponentiating
and adjusting for meagre values, as given by (14). The seasonal adjustment was adequate
according to standard diagnostics (McElroy 2012).

We also examined the seasonal adjustment revisions for the Avocado series. We begin
by withholding five years of data from the end of the sample, and continue to add one
quarter at a time. However, in order to enforce consistency with past analyses, we do not
allow previously identified extremes to become non-extremes as additional data is added
(although previously identified non-extremes can be rendered as an extreme as data is added,
and moreover the imputations themselves can change). Actually, this just reflects a choice
that harmonises with practices at Stats NZ, resembling the hard-coding of outlier effects
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Figure 4. Left panel: log scale of Avocado exports (grey), with imputed values as black dots, and
with X12 seasonal adjustment (black). Right panel: data in original scale (grey), with exponential of
the X12 seasonal adjustment (black). Confidence intervals are shaded.
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Figure 5. Left panel: revision tentacle plot for the seasonal adjustment (log scale) of Avocado exports
(black) based on �=0.01. Left panel: revision tentacle plot for the seasonal adjustment (log scale)
of Avocado exports (black) based on �=0.10.
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Figure 6. Left panel: revision tentacle plot for the seasonal adjustment growth rates (log scale)
of Avocado exports (black) based on � = 0.01. Left panel: revision tentacle plot for the seasonal
adjustment growth rates (log scale) of Avocado exports (black) based on �=0.10.

that can be enforced in X12; while normally Stats NZ allows the outlier identification to
change with additional data, these changes will usually cause revisions over and above
those caused by the impact of forecast extensions. For presentation of results, we wanted to
focus on the effects upon seasonally adjused outputs due to the addition of new (meagre or
non-meagre) data. (We have also examined the case where extreme identification is allowed
to change as new data is added, resulting in greater revisions in general, as well as a greater
prevalence of revisions in the earlier portions of the series.) As each quarter is added, the
model parameters are re-estimated, providing another way in which the resulting seasonal
adjustments can change as data is added.

Figure 5 provides revision tentacle plots, i.e., an entire seasonal adjustment trajectory
is plotted for all available quarters, and when a new quarter is added the revised seasonal
adjustment is overlaid. Values that are heavily revised will appear as tentacles coming out
from the plot. We see that the revisions are not substantial at the right hand end of the left and
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right panels of Figure 5, as the tentacles are small, and that there is little change to seasonally
adjusted values in the earlier (left hand end) portion of the series. The left panel focuses on
�=0.01, in which case we are being fairly demanding in our criterion for extreme behaviour,
resulting in less extremes being identified; as a result, the seasonal adjustments will tend
to revise more, as they are impacted more greatly by influential values. Conversely, in the
right panel we have set � to 0.10, and hence more extremes are identified, and the resulting
seasonal adjustment is more stable. Similar results are evident for seasonally adjusted growth
rates (i.e., applying differencing 1−B to the seasonally adjusted series) in Figure 6.

5.2. Apple

We next consider the New Zealand Apple series. A quarterly SARIMA(1,1,1)(1,1,1)
model was identified and fitted using the procedure of Section 3.4. The differenced series
{Wt} followed the model

(1+0.441B)(1−0.373B4)Wt = (1+0.409B)(1−0.572B4)�t ,

with innovation variance exp{−0.534}. The lag 24 Ljung Box statistic has P-value 0.962,
and the sign test had P-value 0.5. There were four small negative values, which are meagre
in absolute terms, which were automatically omitted, and then the sequential extreme-value
testing procedure with �=0.05 was applied to the logged data. In addition, extreme values
were identified at 1990.Q4, 1995.Q4, and 1996.Q1; these are all abnormally small positive
values (in the original scale). Having imputed replacements for these, the resulting extreme-
value adjusted series (left panel of Figure 7) was seasonally adjusted via the X12 method,
using the same moving averages as for Avocado exports previously. In exponential scale,
the final results are given in the right panel of Figure 7. These can be compared to the
right panel of Figure 1, where the seasonal adjustment has a higher level overall as well as
negative values. The entropy-based adjustment was deemed adequate according to standard
diagnostics.
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Figure 7. Left panel: log scale of Apple exports (grey), with imputed values as black dots, and with
X12 seasonal adjustment (black). Right panel: data in original scale (grey), with exponential of the
X12 seasonal adjustment (black). Confidence intervals are shaded.
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In the right panel of Figure 7 we see that the third quarter value for 2003 was a bit higher
than was usual for the seasonal pattern, but was not identified as an extreme – examining
the left panel of Figure 7, this becomes more clear. This type of effect, although located
in the seasons more naturally associated with seasonality (third quarter), is anomalous with
respect to the regular calendrical pattern, and hence is typically associated with the irregular
component, and not the seasonal, e.g., having an unusually cold winter constitutes an effect
located in the irregular, not the seasonal.

5.3. Berry

Finally, we consider the New Zealand Berry series. A quarterly SARIMA(3,1,0)(0,1,1)
model was identified and fitted using the procedure of Section 3.4. The differenced series
{Wt} followed the model

(1+0.056B +0.018B2 +0.216B3)Wt = (1+0.309B4)�t ,

with innovation variance exp{−1.640}. The lag 24 Ljung Box statistic has P-value 0.931,
and the sign test had P-value 0.093. This series was positive, so no initial omissions were
inserted, but the sequential extreme-value testing procedure with � = 0.05 detected five
anomalies: three large extremes at 1989.Q3, 1992.Q3, and 2003.Q3, and two extremes at
1990.Q3 and 2000.Q3 corresponding to abnormally small positive values (in the original
scale). Having imputed replacements for these, the resulting extreme-value adjusted se-
ries (left panel of Figure 8) was seasonally adjusted via the X12 method, using the same
moving averages as for two previous seasonal adjustment. In exponential scale, the final
results are given in the right panel of Figure 8, and the seasonal adjustment deemed ade-
quate according to standard diagnostics. This plot can be compared to the right panel of
Figure 3, where the seasonal adjustment has a higher level overall as well as apparent residual
seasonality in the years before and after 2000. Although this series does not have meagre
values, the seasonal adjustment is greatly improved by the entropy method for extreme-value
adjustment.
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Figure 8. Left panel: log scale of Berry exports (grey), with imputed values as black dots, and with
X12 seasonal adjustment (black). Right panel: data in original scale (grey), with exponential of the
X12 seasonal adjustment (black). Confidence intervals are shaded.
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There is a substantial discrepancy between the annualised Berry exports and its annu-
alised seasonal adjustment (this is also present, to a lesser extent, with the Avocado and Apple
exports), as seen in the right panel of Figure 8. This could be altered through benchmarking,
as alluded to in Section 3.3.

6. Conclusion

In this paper, we considered the problem of multiplicative seasonal adjustment for time
series wherein negligible values may be present, possibly in addition to large extremes. This
problem has been motivated by meagre series produced by StatsNZ. We demonstrated that
straightforward log transformations do not offer a feasible solution, and instead advocated
a maximum entropy approach whereby extremes and meagre values are replaced by their
Gaussian conditional expectations. The algorithms, including computation of the Gaussian
likelihood and calculation of imputed values, have been fully discussed. Both the fitted
model and the imputed data are determined concurrently, and X12 seasonal adjustments
with uncertainty can be computed. This results in a multiplicative seasonal adjustment where
we have assigned the meagre values to the seasonal component.

This approach is similar in spirit to the method of X12, which tests sequentially the
placement of an AO at each time point in the sample, although the new method treats
missing values and extremes as random variables rather than as deterministic quantities. For
any extreme-value adjustment procedure a decision must be rendered about which values
are extremes, and how they are to be adjusted. We examined this through the lens of
entropy maximisation, and utilised quadratic statistics to sequentially test for collections of
extremes.

To see the impact of the extreme-value adjustment upon the resulting seasonal adjust-
ments, one can adjust the critical values of the extreme test statistic S@. A larger � increases
the number of identified extremes, rendering the imputed series more regular, and hence
providing a smoother seasonal adjustment. This behaviour has been observed in simulation
and on agricultural yield data. It also has an impact on revisions to seasonal adjustments,
with lower values of � involving less extreme-value adjustment of the series, with a greater
possibility for revision when new data is obtained.

Ultimately, we hope that identifying and correcting extremes will improve seasonal
adjustment. The philosophy of filtering is motivated by the attempt to elicit latent dynamics
in a time series, which are defined through recurring behaviour (e.g., seasonal and cyclical
movements) or long-term patterns (e.g., trends). Extreme values and anomalies fall outside
the scope of these latent dynamics, and therefore should be omitted or attenuated before
utilising linear filters. Failure to do so will create the danger that a single extreme value has
an undue and spurious impact upon extracted latent dynamics.

An alternative approach involves taking the synthetic process described in Section
4 as the basis for modelling extremes (and the left-censoring process generating meagre
values). One could also adopt a mechanistic model of the accounting process that yields
meagre values. While being of potential academic interest, such efforts would require non-
Gaussian models, ultimately resulting in non-linear signal extraction filters. Such non-linear
filters would achieve much the same effect as excision and imputation of the extremes (cf.
Trimbur 2010), though with the attractive feature of shrinking extremes (soft thresholding).
For example, filtering based upon an absolute loss (instead of the usual squared loss, which
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gives rise to linear filters) results in signal extraction estimates that are more robust to outliers
(Yamada & Jin 2013).

While we believe such efforts have merit, for production purposes it is preferable to
use a methodology that is agnostic about the mechanism that generates extreme values
and meagre values. It is essential to have a method that can be applied using fast linear
algorithms. With tens of thousands of series to process, the reality at any NSO is that
human analysts will not have time to examine each time series in detail. With the automatic
modelling capabilities of X-12-ARIMA and TRAMO-SEATS, the modelling, extreme-value
adjustment, and seasonal adjustment of time series data must be, is now, and will continue
to be performed via automaton.

Appendix
Appendix A

Proof of Theorem 1. We first show that maximisation of H (�, �2) subject to the constraint
�2 =q(�) is identical to minimisation of W (�, �2). Defining the Lagrangian to be

J (�, �2, �)=2 H (�, �2)−�(q(�)−�2),

we find that the gradient is

∇�J (�, �2, �)=∇� log det�� −�∇�q(�),

∇�2 J (�, �2, �)= (T −d )�−2 +�, and

∇�J (�, �2, �)=�2 −q(�).

Setting this to zero, we find that �=−T�−2, �2 = q(�), and � therefore optimises D(�) =
log det�� + (T −d ) log q(�). The Hessian of J is given by

∇∇�J (�, �2, �)=
⎡
⎣∇�∇�

� log det�� −�∇�∇�
� q(�) 0 −∇�q(�)

0 −(T −d )�−4 1
−∇�

� q(�) 1 0

⎤
⎦.

At a critical point, the upper left block is

∇�∇�
� log det�� + (T −d )∇�∇�

� q(�)�−2,

denoted A. By results on nested matrices, it follows that the eigenvalues of the Lagrangian’s
Hessian are given by the eigenvalues of A, as well as the negative value −(T −d )�−4, and
a final eigenvalue equal to the Schur complement:

− [−∇�
� q(�), 1

] [
A−1 0

0 −�4=(T −d )

][−∇�q(�)
1

]
=�4=(T −d )−∇�

� q(�)A−1∇�q(�).

Below, we show that this is positive, and conclude that the Lagrangian is maximised with
respect to �2. It is known that the Hessian of Kullback–Leibler divergence is positive definite,
and the gradient of W (�, �2) is
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∇�W (�, �2)=∇� log det�� + (T −d )∇�q(�)�−2, and

∇�2 W (�, �2)= (T −d )
(
�−2 −q(�)�−4

)
.

Setting to zero, we find that a critical point must satisfy �2 = q(�), and plugging into the
first equation, we must optimise D(�). The Hessian of W (�, �2) evaluated at a critical point
is

∇∇�W (�, �2)=
[

A −(T −d )∇�q(�)�−4

−(T −d )∇�
� q(�)�−4 T�−4

]
.

The eigenvalues of the Hessian consist of the positive eigenvalues of A and the Schur
complement

(T −d )�−4 − (T −d )2�−8∇�
� q(�)A−1∇�q(�),

which must be positive; hence we conclude that ∇�
� q(�)A−1∇�q(�)<�4=(T −d ). In summary,

constrained maximisation of H (�, �2) and minimisation of W (�, �2) have the same critical
points, namely �2 =q(�) for � minimising D(�); these critical points must be minimisers of
Kullback–Leibler divergence and maximisers of the Gaussian entropy. The function D(�) is
just W(�, q(�)), the concentration of Kullback–Leibler divergence with respect to innovation
variance.

For the second part of the theorem, we subsitute some estimate of q(�) to obtain an
empirical entropy. Utilising Q (6) as such an estimate – which introduces the parameter
� through the mean vector η� – yields the Gaussian divergence L. The maximum entropy

principle indicates that the minimisers [�̂, �̂, �̂2] are maximum entropy estimators.

Proof of Proposition 1. Using the notation of subsection 3.1, we have

E(X@)= [0 Ir]�
−1�−1

[
μÅ
η�

]
,

cov[X@, X◦]= [0 Ir]�
−1�−1

[
�Å 0
0 �2��

]
�−��−�[Im, 0]�

= [0 Ir]�
−1�−1

[
�Å 0
0 �2��

][
Id 0
A B

]�
Q−�, and

cov[X@, X◦]cov[X◦]−1 = [0 Ir]�
−1�−1

[
Id 0
0 ��C(�)

]
R.

Substituting the expression for RX◦ and simplifying yields the conditional expectation for-
mula, noting that μÅ cancels out. The projection error is

X@ − X̂@ =0 Ir]�
−1�−1

[
0[

IT−d −��C(�)
]

(W −η�)

]
,

and computing the covariance yields the expression for �@|◦.
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