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Summary: We investigate the collinearity of vector time series in the frequency domain, by ex-
amining the rank of the spectral density matrix at a given frequency of interest. Rank reduction
corresponds to collinearity at the given frequency. When the time series is nonstationary and
has been differenced to stationarity, collinearity corresponds to co-integration at a particular
frequency. We examine rank through the Schur complements of the spectral density matrix,
testing for rank reduction via assessing the positivity of these Schur complements, which are
obtained from a nonparametric estimator of the spectral density. New asymptotic results for
the test statistics are derived under the fixed bandwidth ratio paradigm; they diverge under
the alternative, but under the null hypothesis of collinearity the test statistics converge to a
non-standard limiting distribution. Subsampling is used to obtain the limiting null quantiles.
A simulation study and an empirical illustration for 6-variate time series data are provided.

Keywords: trend co-integration, seasonal co-integration, Schur complement, spectral density
rank, fixed-b asymptotics, subsampling.
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1. INTRODUCTION

The problem we study is testing for the collinearity of vector time series, i.e., whether the
multivariate spectral density of a vector time series (that has been transformed to stationarity) has
reduced rank at given frequencies of interest, such as trend or seasonal frequencies. As discussed
in Stock and Watson (1988), trend co-integration in an unobserved components framework
corresponds to a reduced rank trend innovation covariance matrix, i.e., collinearity of the trend
component’s innovations. (Similarly, seasonal co-integration in such a framework corresponds
to a reduced rank seasonal innovation covariance matrix.) Therefore, it is plausible to estimate
the multivariate spectral density at co-integrating frequencies, and test whether the matrix is
reduced rank. We propose to adopt a nonparametric approach to this problem, allowing for
general frequencies in the spectral density, and we focus on determining not only the rank but
also the configuration of nonzero Schur complements (as discussed further below).
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2 T. S. McElroy and A. Jach

To frame our work in terms of the relevant literature, this paper is related to the seasonal
co-integration tests of Cubadda (2001) and Ahn, Cho and Seong (2004), although these papers
are developed in the context of a vector autoregression. Busetti (2006) extended the common
trends test statistics of Nyblom and Harvey (2000, 2001) to the seasonal case, using an un-
observed components framework. In contrast to these papers, our methods are nonparametric,
not requiring a specification of the process aside from a differencing polynomial. Hence our
work is more closely related to Bierens (1997) and Shintani (2001), who study the eigenvalue
structure of certain nonparametric statistics. However, neither of these works addresses seasonal
co-integration (Bierens 1997 examines trend co-integration with a seasonal drift, but not seasonal
co-integration), which is central to our own research objectives.

We propose to estimate the multivariate spectral density via tapered sample autocovariances,
utilizing a fixed bandwidth ratio asymptotic theory; the invertible case has already been studied by
Phillips, Sun and Jin (2006) (hereafter, PSJ). Our focus is on the noninvertible case, wherein the
asymptotic theory can be quite different. Moreover, in order to study the exact rank configuration
of the spectral density matrix, we will require asymptotics for determinants of submatrices.
Our new results show how the limiting distribution depends on the type of kernel that is used.
Another contribution of the paper is a nuanced development of collinearity through the generalized
Cholesky decomposition, and its connection to frequency-specific co-integration effects. These
facets are combined to yield a nonparametric test of co-integration.

In order to understand the econometric context, consider (as a specialized example) an m-
variate time series {Xt} that is composed of latent processes (Harvey, 1989) such as trend,
seasonal, business cycle, and irregular. The trend could be a random walk or an integrated
walk, or a more general integrated process, and if the innovation sequence driving the trend has
dimension less than m (i.e., this is a white noise sequence with covariance matrix of less than
full rank) then co-integration at the trend frequency is present. Similarly, nonstationary latent
processes are typically formulated for the seasonal component, and innovations of reduced rank
result in co-integration at some or all of the seasonal frequencies. (Seasonal frequencies are of
the form 2π j/p where there are p seasons, for 1 ≤ j ≤ p.) McElroy (2017) discusses the presence
of seasonal co-integration in retail and construction data, and other literature includes Koopman,
Ooms and Hindrayanto (2012). If the data are differenced to stationarity by applying both trend
and seasonal unit root differencing polynomials, the resulting stationary series {Xt } will have
spectral density f that has reduced rank at frequency zero and/or the seasonal frequencies.

To see the difficulty in detecting collinearity, suppose we wish to test for co-integration at
some frequency λ via studying det f (λ). (Though f(λ) can be complex, the matrix is always
Hermitian and hence its determinant is real and non-negative.) The null hypothesis of reduced
rank corresponds to det f (λ) = 0. The estimators f̂ considered by PSJ satisfy

det f̂ (λ)
D−→ det f (λ) · det�, (1.1)

where� is a stochastic Hermitian matrix depending on bandwidth fraction (defined below). Thus,
under the null hypothesis the natural test statistic det f̂ (λ) converges to zero in probability. Clearly,
a different rate of normalization is needed to ensure that det f̂ (λ) converges to a nondegenerate
distribution—such a normalization and limit theory is provided by our work.

The identification of collinearity is of intrinsic interest, as it indicates dynamic co-movements
of series at particular frequencies. Furthermore, collinearity typically implies that a more parsimo-
nious model can be used without loss of information—this is especially important for moderate-
to high-dimensional data, where the parameter dimension is large unless suitable restrictions are
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Testing collinearity 3

employed. However, the misspecification of collinearity has a deleterious impact on forecasting
and signal extraction (discussed in Section 4 below), and hence it is vital to avoid wrongly en-
forcing spurious co-integration constraints. In this paper, the null hypothesis corresponds to such
constraints being valid, and hence low p-values warrant a less parsimonious modelling of the
process.

Given that one is interested in detecting co-integration, we would like to estimate the co-
integrating vector and determine the structure of eigenvalues, as well as to obtain the statistical
significance of results. If det f (λ) = 0, we know only that the rank of f(λ) is less than m. While
there are some available tests in the econometric literature to determine the rank of f(λ), for
applications it is useful to know the exact rank structure, i.e., the configuration of nonzero
eigenvalues. McElroy (2017) discusses a parametrization of covariance matrices in terms of a
sequence of Schur decompositions associated with the generalized Cholesky decomposition. The
successive Schur complements, which are unordered scalars, can be positive or zero, and the
number of positive-valued Schur complements is equal to the rank. Knowing not just how many
but which Schur complements are zero facilitates applications to taxonomy and signal extraction.
(Whereas a reordering of the series will alter the values of the Schur complements, the number
of such that are zero remains unchanged under permutation.)

With these motivations in mind, the paper proceeds to first articulate a general discussion
of co-integration and rank configuration in Section 2, followed by the statistical methodology
and asymptotic results in Section 3. The treatment of the Schur complement and the Cholesky
decomposition involves complex matrices, and yields novel algorithms for computation. The
limit distributions are nonpivotal, and are estimated via subsampling (Politis et al., 1999) in
our simulations and applications (Section 4). Proofs are in the Appendix of the Supporting
Information.

2. CO-INTEGRATION AND RANK CONFIGURATION

2.1. Non-invertibility arising from co-integration

2.1.1. VAR illustrations. Johansen (1988) provides an analysis of co-integration (Engle and
Granger, 1987) in the context of a vector autoregression (VAR). The starting point is a VAR(1)
model for the observed process, with a decomposition of the autoregressive operator into unit
and stable portions. A nonstationary VAR(1) process is given by Xt = �Xt − 1 + εt for {εt} i.i.d.
with m-dimensional covariance matrix �. Following Gómez (2016, Section 5.7), we suppose m
− r of the eigenvalues of � equal one, so that � = � − Im can be written as α β ′, for m ×
r matrices α and β that have rank r. (Here Im denotes an m-dimensional identity matrix.) Such
a situation is described as a rank r co-integrated VAR(1); if the rank is m, then the VAR(1) is
actually stationary, and we say that it is a stable VAR(1).

PROPOSITION 2.1. Suppose that the m-variate process {Xt} is a co-integrated VAR(1) process
with coefficient matrix � such that �− Im = α β ′ for rank r matrices α and β. Then Zt =
β ′Xt is a stable VAR(1) process, and Xt = Xt −Xt−1 is stationary with infinite moving average
representation �(B)εt, with

�(B) = Im + α (Ir − [Ir + β ′ α]B
)−1
β ′ B
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4 T. S. McElroy and A. Jach

satisfying β ′�(1) = 0. Also,

Im −�B = (Im −�∗ B) (Im − U B),

with stable �∗ = (α + β (β ′ β)−1)β ′ and U = β⊥ (β ′
⊥ β⊥)−1

β ′
⊥, where the columns of β⊥ span

the null space of β ′.

The columns of β are therefore the co-integrating vectors. It follows from Proposition 2.1 that
�(1) = Im − α (β ′ α)−1

β ′, and hence f(0) (the spectral density of {Xt } at frequency zero) has rank
m − r. Hence, this simple form of trend co-integration implies noninvertibility of the differenced
time series; Proposition 2.1 furnishes a particular case of the Granger representation theorem
(Johansen, 1995), whereby the moving average representation ofXt is singular at frequency zero.
However, if we utilize the reduced rank (nonscalar) differencing operator Im − U B instead of 1
− B, we obtain a stable VAR(1) process with coefficient matrix �*.

A similar argument can be developed for the case of eigenvalues equal to negative one, or
for complex unit-magnitude eigenvalues. In the latter case, we have the following extension of
the frequency-zero results: if � has rank r with q eigenvalues equal to eiω, then there must be q
eigenvalues equal to e−iω as well, so that 2q ≤ m − r. Suppose that (eiω, v) is an eigen-pair of �;
then conjugating�v = eiω v yields�v = e−iω v, so that (e−iω, v) is also an eigen-pair. Hence�
− eiωIm and�− e−iω Im both have rank at most m − q. Their product is�2 − 2 cos(ω)�+ Im,
designated by �, and (λ, v) is an eigen-pair of � if and only if (λ2 − 2 cos(ω) λ+ 1, v) is an
eigen-pair of �. Hence � has 2q eigenvalues equal to zero, and therefore the matrix has rank at
most m − 2q; we suppose that q = (m − r)/2, where r is the rank of �. Finally, we suppose that
� = α β ′ for m × r matrices α and β that have rank r.

PROPOSITION 2.2. Suppose that the m-variate process {Xt} is a co-integrated VAR(1) process
with rank r coefficient matrix � having q eigenvalues equal to eiω, for some ω ∈ (0, π ) and
for q = (m − r)/2. Also suppose that � = �2 − 2 cos(ω)�+ Im = α β ′ for rank r matrices α
and β. The Zt = β ′Xt is a stable VARMA(2,1) process, and Xt = Xt − 2 cos(ω)Xt−1 +Xt−2 is
stationary with infinite moving average representation �(B)εt, with

�(B) =
(
Im + α (Iq − 2 cos(ω) Iq B + (Iq − β ′ α)B2)

−1
β ′ B2

)
(Im + (�− 2 cos(ω) Im)B)

satisfying β ′�(e±iω) = 0. Also, there exists a matrix differencing operator D(B) = Im −
2 cos(ω)U B + U B2, where U = β⊥ (β ′

⊥ β⊥)−1
β ′

⊥ (the columns of β⊥ span the null space
of β ′), such that Yt = D(B)Xt is a stationary VARMA(2,1) process satisfying

�∗(B)Yt = �∗(B)εt ,

where

�∗(B) = Im − 2 cos(ω)β (β ′ β)−1
β ′ B + (β (β ′ β)−1

β ′ −�)B2

�∗(B) = Im + (�− 2 cos(ω) Im)B.

Hence f(ω) has rank r = m − 2q, indicating that application of the scalar differencing operator
1 − 2 cos(ω)B + B2 reduces the process to stationarity, but also overdifferences at frequency
ω, in the sense that the process is noninvertible at that frequency. So co-integration in a VAR(1)
implies noninvertibility in the differenced process, although it is possible to utilize a nonscalar
differencing operator D(B) to yield an invertible VARMA(2,1) process.
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Testing collinearity 5

2.1.2. Latent process illustration. The VAR formulations yield spectra for the differenced
processes with collinearity at a single frequency. For illustrations of processes with more than
one collinear frequency, consider a latent stochastic process structure. Suppose that the data
process {Xt} can be written as the sum of nonstationary latent processes, each of which can be
differenced to stationarity via some scalar polynomial δ(�)(B) of multiplicity q� and unit root
frequency ω�. In the case that ω� = 0, δ(�)(B) = (1 − B)q� , whereas δ(�)(B) = (1 + B)q� for ω�
= π . In the case that ω� ∈ (0, π ), eiω� is complex, and we define

δ(�)(B) = (1 − eiω�B)(1 − e−iω�B) = (1 − 2 cos(ω�)B + B2).

Also, one of the latent components may be a stationary process, which will be denominated as a
transient. Supposing these polynomials to be distinct (so that the latent components have distinct
dynamics), the scalar differencing polynomial δ(B) = ∏p

�=1 δ
(�)(B) reduces the data process to

stationarity, i.e., Xt = δ(B)Xt is stationary. Hence we have the representation

Xt =
p∑
�=1

S
(�)
t + S(0)

t ,

where S(�)
t = δ(�)(B)S(�)

t is stationary for each 1 ≤ �≤ p, and {S(0)
t } is the transient. Let the reduced

polynomials δ(− �)(B) = δ(B)/δ(�)(B) be defined. Then applying δ(B) to the above structural
equation yields

Xt =
p∑
�=1

δ(−�)(B) S(�)
t + δ(B) S(0)

t .

Suppose each stationary latent process S(�)
t has singularities in its spectral density matrix, such

that it can be represented as�(�) times some C(�)
t , a stationary process of reduced dimension with

spectral density matrix invertible at all frequencies. This yields a latent dynamic factor model
representation of {Xt }. Suppose each process {C�t } for 0 ≤ �≤ p is stationary with spectral density
f(�). Then

f (λ) =
p∑
�=1

|δ(−�)(e−iλ)|2�(�) f (�)(λ)�(�)′ + |δ(e−iλ)|2�(0) f (0)(λ)�(0)′,

and f (ωk) = |δ(−k)(e−iωk )|2�(k) f (k)(ωk)�(k)′ for 1 ≤ k ≤ p. Thus, f has reduced rank at frequency
ωk if �(k) is reduced rank. Note that if �(0) is full rank, then the spectrum of {Xt } is nonsingular
except at most a finite number of frequencies.

2.2. Rank configuration via generalized Cholesky decomposition

In this paper, we suppose that the practitioner has several values of λ in mind, and will test for
collinearity separately at each frequency. The previous examples give some contexts where a time
series may be co-integrated at a frequency λ. In the co-integrated VAR examples, one would take
either λ= 0 or λ=ω; more generally, ifXt = δ(B)Xt is obtained by differencing, then we would
take λ such that δ(e−iλ) = 0. If the data is stationary, we may determine frequencies λ of interest
by an initial exploratory analysis based on the autocovariance generating function—details are
discussed in the Supporting Information.

We now consider the spectral density matrix f of {Xt } at a frequency λ. We denote this matrix
f(λ) by �, noting that although it can have complex entries, it is non-negative-definite (spd); it
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6 T. S. McElroy and A. Jach

can be decomposed into the form

� = LDL∗,

where L is unit lower-triangular (with complex entries), and D is diagonal with non-negative
entries. Here * denotes the conjugate transpose. The case that D is invertible corresponds to the
regular Cholesky decomposition, but when � is noninvertible, then some of the entries of D will
be zero, and the corresponding columns of L are indeterminate. Writing L(j) for the jth column
of L and dj for the jth diagonal entry of D, we have

� =
m∑
j=1

dj L(j )L∗(j )

for a matrix of dimension m. In some cases we may wish to emphasize that dj is the jth Schur
complement of a particular �, in which case we write dj(�). Let J denote the subset of {1, 2,
···, m} corresponding to nonzero dj. We emphasize that J depends on the ordering of the time
series—the interpretation of the entries of D and L, and their dependence on the ordering of
elements in Xt, is discussed in McElroy (2017). However, rank(�) = |J| does not depend on the
ordering of the series, and we can always determine a new rank configuration after applying a
permutation of the series—see the Supporting Information for further details.

In the context of co-integration testing, where it is already known via exploratory analysis that
each series requires δ(B) differencing to be rendered stationary, we can safely assume that d1 >

0 if λ satisfies δ(e−iλ) = 0 (see Supporting Information). Nevertheless, for stationary series that
are tested for collinearity it is possible that d1 = 0, so we treat this most general case below. So
the spectral density can be written

� =
∑
j∈J
dj L(j )L∗(j ), (2.1)

and J is called the rank configuration of �. In order to compute the generalized Cholesky
decomposition, a recursive algorithm is typically employed, where the later rows of L and entries
of D are successively computed. Placing a j subscript on the matrices to denote their dimension,
where 1 ≤ j ≤ m − 1, in the regular Cholesky decomposition of the matrix

�j+1 =
[
�j σ j
σ ∗
j sj+1

]
,

we have

�j+1 = D−1
j L−∗

j σ j dj+1 = sj+1 − �∗j+1Dj �j+1,

where [�′j+1, 1] is the last row vector of Lj + 1. Here −* is the inverse of the conjugate transpose.
Because LjDj�j+1 = σ j , we see that (for j > 0)

dj+1 = sj+1 − σ ∗
j �

−1
j σ j = det�j+1

det�j
(2.2)

by a well-known matrix identity (cf., Axelsson, 1996, p.93) extended to the complex case. In other
words, the various Schur complements dj can each be represented as a ratio of (real) determinants.
(When j = 0, in lieu of (2.2) we write d1 = s1.)

The generalized Cholesky decomposition replaces D−1
j by its generalized inverse D�j , defined

as the diagonal matrix consisting of entries d�j , which is either equal to d−1
j or is zero if dj = 0.
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Testing collinearity 7

The new algorithm is then

�j+1 = D�j L−∗
j σ j dj+1 = sj+1 − �∗j+1Dj �j+1.

The net effect is that the resulting matrix Lm will have lower triangular entries equal to zero in
any column corresponding to a zero Schur complement. From (2.1), we see that these particular
entries of Lm are indeterminate, in the sense that the decomposition of �m should result in
rectangular matrices Lm with columns omitted that belong to Jc. Alternatively, we can still write
Lm as a square, so long as Dm is square with appropriate entries given by zeroes; then the irrelevant
columns of L can be given any value, as they will be multiplied by zero—we choose arbitrarily
to set such columns to have zero entries (except for the unit entry, corresponding to the diagonal
of Lm). The following result gives the formula for the Schur complements in terms of ratios
of determinants. We use the notation �j(K) to denote the submatrix of �j where only rows and
columns of indices belonging to K are retained. Let Jj = J∩{1, 2, . . . , j}, and J̃j+1 = Jj ∪ {j + 1}
(which can differ from Jj + 1).

PROPOSITION 2.3. For j ≥ 1 the matrix �j(Jj) is positive-definite (pd), and

dj+1 = det�j+1(J̃j+1)

det�j (Jj )
. (2.3)

As a result of Proposition 2.3, we can compute the diagonal entries of �m by taking ratios of
determinants of appropriate submatrices.

3. SPECTRAL DENSITY RANK TESTING

3.1. Testing procedure

Focusing on a frequency λ of interest, we wish to estimate the true rank configuration J (which
depends on the ordering of the series) based on the nonparametric estimate f̂ (λ). A rank configu-
ration J will be estimated, as discussed below, by testing sequentially whether each dj is positive,
for 1 ≤ j ≤ m. We will test each Schur complement dj individually; however, its distribution
depends on whether Schur complements of lower index are zero. The test statistics are d̂1 = �̂1

and (for j > 0)

d̂j+1 = det �̂j+1(J̃j+1)

det �̂j (Jj )
, (3.1)

where �̂j is the estimated spectral density matrix at frequency λ, corresponding to the first j time
series. For any such subseries spectral density f, the corresponding lag h autocovariance �(h) is
defined via the inverse Fourier Transform

�(h) = 1

2π

∫ π

−π
f (λ)eiλh dλ.

The sample autocovariance function (acf) is defined from a size T sample of the differenced time
series {Xt } of mean μ via

�̂(h) = T −1
T−h∑
t=1

(
Xt+h − μ̂) (Xt − μ̂)′,
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8 T. S. McElroy and A. Jach

where h ≥ 0 and μ̂ is the vector sample mean. Then given a kernel �, which is an even function
of domain [−1, 1], we set �b(x) = �(x/b) for bandwidth fraction b, and define the tapered acf
spectral density estimator as

f̂ (λ) =
∑
|h|<T

�b(h/T ) �̂(h)e−iλh = T −1
T∑

t,�=1

�b((t − �)/T ) (Xt − μ̂) (X� − μ̂)∗ e−iλ(t−�).

(3.2)

The bandwidth is bT. Note that the kernel is scalar, so that each component spectrum is tapered
similarly. A fairly standard assumption is that the kernel is twice continuously differentiable,
although this can be relaxed to a piecewise requirement, allowing us to include the Bartlett
kernel, truncation kernel, and flat-top kernels. (McElroy and Politis (2014) treats the scalar case.)

Because the denominator of d̂j+1 in (3.1) corresponds to a pd matrix, the theory of PSJ
can be applied; the numerator, however, tends to zero if j + 1 �∈ J (this corresponds to the null
hypothesis), otherwise tending to a positive random variable. That is, if dj + 1 > 0 then the spectral
densities corresponding to subseries Jj and J̃j+1 are both invertible at λ, and hence each has a
spectral factorization of the form �(e−iλ) · �(eiλ)′. The key result for the tapered acf spectral
density estimator is

f̂ (λ)
D−→ �(e−iλ) ·� ·�(eiλ)

′
. (3.3)

This is proved in PSJ using results in Chan and Terrin (1995), or alternatively by using the
linear method of Phillips and Solo (1992). The meaning of this weak convergence of stochastic
matrices is that the vec operator applied to f̂ (λ) satisfies a joint weak convergence to the vec
of the right-hand side above. Hence, continuous functions of the various matrix components
can be applied to the convergence; in particular, we can apply the determinant function to the
convergence, obtaining (1.1). In summary, when dj + 1 > 0 it can be shown that d̂j+1 converges
weakly to a positive random variable, given as the ratio of determinants of certain stochastic
matrices—details are provided below.

When dj + 1 = 0, we know that �j+1(J̃j+1) has a number (given by the cardinality of Jj) of
positive Schur complements and a final Schur complement equal to zero; in particular, the rank
equals the cardinality of Jj. The spectral density corresponding to the subseries J̃j+1 has rank
equal to the cardinality of Jj, and so the spectral factorization yields a �(B) of reduced rank.
Further analysis (details in the theorem below) indicates that T det �̂j+1(J̃j+1) converges weakly
to a nondegenerate distribution. Therefore, to test dj + 1 = 0 (for j ≥ 0) the test statistic

T d̂j+1 (3.4)

is proposed; when dj + 1 > 0, we know that d̂j+1 = OP (1) (and is not oP(1)), indicating that the
test is consistent. (If the kernel � is not positive-definite, then d̂j+1 can take negative values;
nevertheless, we are interested only in the upper one-sided alternative that dj + 1 > 0.) Given
J⊂{1, 2, . . . , m}, we wish to determine J in a sequential manner, analogously to the work of
Johansen (1988, 1995). For any 0 ≤ j ≤ m − 1 we will determine whether some j+1 ∈ J, given
that we already have determined Jj as the outcome of previous tests. That is, we have already
determined whether or not each k for 1 ≤ k ≤ j is in J or not. So we compute d̂j+1 via (3.1) and
test the null hypothesis that j+1 ∈ J via the test statistic (3.4). If the null is rejected, then Jj + 1 =
Jj∪{j+ 1}, but otherwise Jj + 1 = Jj.
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Testing collinearity 9

The key issue, then, is to estimate the limiting distribution under the hypothesis that dj + 1 = 0.
Because the limit is nonpivotal (it depends on the Wold decomposition of the data process) in such
a way that the limiting quantiles cannot be directly computed, we propose to utilize subsampling
methodology. A straightforward extension of Theorem 3.2.1 of Politis et al. (1999)—stated
generally below—will provide estimates of the test statistic’s quantiles. Consider a test statistic
θ̂T , which for null and alternative hypotheses H0 and Ha satisfies

ASSUMPTION 3.1. τT θ̂T
D−→ W0 under H0 and θ̂T

D−→ Wa under Ha, where W0 and Wa are
continuous random variables with cdfs F0 and Fa, respectively.

Let F
−1
0 and F

−1
a be the right-tailed quantile functions of W0 and Wa, respectively. We denote

the subsampling rate by n (as opposed to the usual notation b, which is reserved for the bandwidth
fraction discussed above). The subsampling distribution estimator for the test statistic is defined
via

LT,n(x|τ·) = 1

T − n+ 1

T−n+1∑
i=1

1{τn θ̂n,i≤x},

where the dependence on the rate τ n is explicit in the notation. Here θ̂n,i denotes the evaluation
of the test statistic on the subsample {Xi, . . . , Xi+n−1}. Note that the bandwidth for the spectral
density estimator based on such a subsample is bn, since the same bandwidth fraction is applied.
The subsampling quantiles are denoted L−1

T ,n(t |τ·), and are given by the tth largest-order statistic
of {τn θ̂n,i} (for 1 ≤ i ≤ T − n + 1). As discussed in Chapter 8 of Politis et al. (1999),

L−1
T ,n(t |τ·) = τn · L−1

T ,n(t |1). (3.5)

It is shown below that the subsampling distribution estimator LT, n(x|τ ·) estimates F0(x) under
H0, whereas the subsampling distribution estimator LT, b(x|1) estimates Fa(x) under Ha.

PROPOSITION 3.1. Let {Xt } be a strictly stationary time series that is strong mixing. Assume
Assumption 3.1, as well as τ n/τ T → 0, n/T → 0, and n → ∞ as T → ∞. Then

LT,n(x|τ·) P−→ F0(x) if H0 is true

LT,n(x|1)
P−→ Fa(x) if Ha is true

as T → ∞. Also, as T → ∞
P[τT θ̂T ≥ LT,n(1 − α|τ·)−1] → α

when H0 is true, and converges in probability to one when Ha is true so long as Wa is positive
with probability one.

Therefore, we can construct an upper one-sided subsampling critical region of asymptotic size
α via

[L−1
T ,n(1 − α|τ·),∞).

This general discussion applies immediately to the collinearity test statistic of this paper, letting
τ T = T and θ̂T = d̂j+1, though it remains to derive conditions under which Assumption 3.1 holds.

The entire statistical procedure amounts to a sequence of tests, whose calculation depends on
the outcome of previous tests. This is not a multiple testing problem (the null hypotheses are
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10 T. S. McElroy and A. Jach

all different), but is rather a sequential testing problem, and there may be a concern that the
random outcome of a prior test is not accounted for in the distribution theory for the current
test. Chen and Fang (2018) indicate—in the related context of testing for rank, as opposed to
the structure of positive Schur complements—that sequential testing ignores type I errors from
previous steps and may have poor power for close alternatives. We treat the outcome of a test of
dj = 0 as deterministic in each stage, towards the end of approximating the distribution of the test
statistic for the hypothesis dj + 1 = 0. However, the subsampling methodology is conducted by
applying the entire sequential testing procedure to each subsample, and hence the type I errors
from previous tests (on a given subsample) are incorporated in subsequent tests. This is akin to
the bootstrap procedure recommended in Chen and Fang (2018) for handling sequential rank
tests.

Below, we povide the asymptotic theory for the null and alternative cases. It follows from this
theory that the test statistic (3.4) grows at order T, indicating the test is consistent. However, as this
is a nonparametric procedure, the test statistic has not been designed so as to maximize its power
under particular parametric alternatives (cf. the procedure of Johansen, 1988, 1995). Instead,
our procedure is designed so as to be broadly applicable to many types of processes—such as
co-integrated VAR processes and structural time series—and hence may be useful in contexts
where the practitioner is unsure about the correct parametric specification.

3.2. Asymptotic theory

Below we describe the limit distribution of the test statistic T d̂j+1, after giving some preliminary
results. The null hypothesis is that dj + 1 = 0, such that�j+1(J̃j+1) has a number of positive Schur
complements and a final Schur complement equal to zero. Fix λ and set f equal to �j+1(J̃j+1),
which in turn equals � �∗. (Set � equal to �(e−iλ), to simplify notation.) When j > 0, by
partitioning� into�� and�� among the first Jj series and the last (j + 1)th series, we can write

f =
[
�� �

∗
� �� �

∗
�

�� �
∗
� �� �

∗
�

]
, (3.6)

and obtain the following result.

PROPOSITION 3.2. Given the partition (3.6) of f = �j+1(J̃j+1) when j > 0, and defining

v = [
�� �

∗
�

]−1
�� �

∗
� (3.7)

and w* = [v*, −1], the last Schur complement can be written

dj+1 = �� �∗
� −�� �∗

�

[
�� �

∗
�

]−1
�� �

∗
� = w∗ f w.

Under the null hypothesis, �∗
� v = �∗

� .

Note that because the expression for dj + 1 in Proposition 3.2 is derived algebraically, it also
holds true for the estimators:

d̂j+1 = ŵ∗ f̂ ŵ.

Also, the term �� �
∗
� occurring in (3.7) is the spectral density of the first Jj series; denote this

spectrum by g, and denote the cross-spectrum of the (j + 1)th series with the first Jj series by
k. So g = �� �∗

� and k = �� �∗
� , and v = g−1 k∗. The corresponding estimator is v̂ = ĝ−1 k̂∗.
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Testing collinearity 11

Next, define the discrete Fourier transform (DFT) process for any given series {Wt} via

dsW (λ) = T −1/2
[T s]∑
t=1

Wte
−iλt (3.8)

for s ∈ [0, 1] and λ ∈ [− π , π ]. Under fairly broad conditions, the DFT process satisfies a
functional central limit theorem; sufficient conditions are given in PSJ. We provide a concrete
scenario in which this result is obtained.

THEOREM 3.1. Suppose that {Wt} is a strictly stationary process whose kth-order cumulants
exist and are summable for all k ≥ 1. Also suppose that for some δ > 0 the jth component of the
DFT (3.8) satisfies

E[|RdsWj (λ)|2+δ] = O(1) E[|IdsWj (λ)|2+δ] = O(1)

uniformly in λ and s. Then the DFT satisfies a functional central limit theorem for each λ:

dW (λ)
D−→ �(e−iλ) (BR − iBI ) , (3.9)

where BR and BI are independent vector Brownian motions with covariance matrix

Cov[BR(s), BR(t)] = Cov[BI (s), BI (t)] = min{s, t} Im/2
when λ ∈ (0, π ), and when λ = 0, π they have structure BI ≡ 0 and

Cov[BR(s), BR(t)] = min{s, t} Im.
It is possible to establish limit theorems such as Theorem 3.1 using other assumptions, such

as assuming that {Wt} is a linear process, but the cumulant conditions are sufficient for our
purposes. Our main result below requires that such a functional limit theorem holds, and provides
the asymptotic theory for d̂j+1 supposing a wide class of kernels. We assume that� is piecewise-
smooth and continuous, with possible kinks at a finite collection of point xk. A kink is defined by
where the left-hand �̇−(xk) and right-hand �̇+(xk) derivatives do not coincide. Let K denote the
number of such kinks, and observe that [0, 1] is thereby partitioned into open intervals C0, C1,
. . . , CK, where C0 = [0, x1), C1 = (x1, x2), and so forth, with CK = (xK, 1]. In the case that x1

= 0 (e.g., with the Bartlett kernel), C0 is omitted, with a similar convention for CK when xK = 1
(e.g., for the truncation kernel).

Let B denote a complex vector Brownian motion satisfying B = BR − iBI, with BR and BI as
defined in Theorem 3.1. To handle the effect of the sample mean, we introduce a Brownian bridge
as B(r) = B(r) − rB(1) when λ = 0, but B(r) = B(r) when λ �= 0. Furthermore, we have the
following modifications of the kernel featured in the limit: �

b
(r, s) equals �b(r − s) if λ = 0,

and equals

�b(r − s) −
∫ 1

0
�b(x − s) dx −

∫ 1

0
�b(x − r) dx +

∫ 1

0

∫ 1

0
�b(x − y) dxdy

if λ �= 0. Also, �b(r, s) equals �b(r − s) if λ �= 0, and equals

�b(r − s) −
∫ 1

0
�b(x − s) dx · 1[0,1](r)

if λ �= 0, where 1[0, 1](r) denotes the indicator function. Similarly, let �̇b(r, s) be defined by simply
substituting �̇b for �b in the above formulas. Suppose the J̃j+1 variables are denoted by {Xt },
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12 T. S. McElroy and A. Jach

where Xt = μ+�(B) εt for white noise {εt} of covariance matrix equal to the identity. Then
the Beveridge–Nelson factorization yields �(B) = �(e−iλ) + (1 − eiλB)�(B), where

�(B) = �(B) −�(e−iλ)
1 − eiλB = −

∑
j≥1

�je
−iλj

(
j−1∑
k=0

Bkeiλk

)
.

This filter �(B) involves complex coefficients when λ �= 0, π . Set Zt (λ) = e−iλt �(B)εt , which
is a complex-valued stationary process. Let Z∞(λ) be an independent copy of Z0(λ) = �(B)ε0.

THEOREM 3.2. LetWt = Xt − μ, and suppose that {Wt} has DFT process dsW (λ) satisfying a
functional central limit theorem (3.9). Let f denote the spectral density of the components of the
process with indices in J̃j+1, and evaluated at λ. For j ≥ 0, if dj + 1 > 0 then

d̂j+1
D−→ dj+1

[
�(e−iλ)��(eiλ)

′]
,

i.e., the last Schur complement of the stochastic matrix �(e−iλ)��(eiλ)
′
, where

� = −
K∑
k=0

∫
|r−s|∈Ck

�̈b(r − s)B(r)B(s)∗ dr ds

+
K∑
k=1

(
�̇−
b (xk) − �̇+

b (xk)
) ∫ 1−xkb

0
[B(r)B(r + xkb)∗ + B(r + xkb)B(r)∗] dr

+
∫ 1

0
�̇b(1 − r) [B(1)B(r)∗ + B(r)B(1)∗] dr +�b(0)B(1)B(1)∗.

If dj + 1 = 0 and j > 0, then

T d̂j+1
D−→ w∗Qw − w∗ R�∗

�

[
�� ��

∗
�

]−1
�� R

∗w,

where

Q = −2 �̇+
b (0) Cov[Z0(λ)] + [Z∞(λ), Z0(λ)]

[
�
b
(1, 1) −�

b
(1, 0)

−�
b
(0, 1) �

b
(0, 0)

] [
Z∞(λ)∗

Z0(λ)∗

]

R = [Z∞(λ), Z0(λ)]

[ ∫ 1
0 �̇b(1, s)B(s)∗ ds +�b(1, 1)B(1)∗

− ∫ 1
0 �̇b(0, s)B(s)∗ ds −�b(0, 1)B(1)∗

]
.

Also, if d1 = 0 then T d̂1
D−→ Q.

REMARK 3.1. The alternative hypothesis case of Theorem 3.2 generalizes the results of PSJ to
non-smooth kernels. As in that work, the choice of kernel has no impact on rate of convergence,
but does influence the distribution of the limiting random variable. The null hypothesis case is
novel, and has a very different rate of convergence. It is shown in the proof that the limiting
distribution is continuous. In either case, the limit distribution could potentially have positive
probability on negative values, depending on the kernel that is utilized.

From Theorems 3.1 and 3.2 it is immediate that Assumption 3.1 holds, and therefore Proposi-
tion 3.1 can be applied.
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Testing collinearity 13

COROLLARY 3.1. Suppose {Wt} is strictly stationary and strong mixing, such that the assump-
tions of Theorem 3.1 hold. If n is chosen such that n/T + 1/n → 0 as T → ∞, then the conclusions
of Proposition 3.1 hold, as applied with θ̂T = d̂j+1 and τ T = T.

4. APPLICATIONS

Throughout this section we consider co-integration testing for series that all require some δ(B)
differencing to be rendered stationary, and with a λ satisfying δ(e−iλ) = 0. From the discussion
in the Supporting Information, we can without loss of generality take d1 > 0.

4.1. Simulation studies

Consider a bivariate (m = 2) process {Xt} involving latent components for trend {μt}, seasonality
{ξ t}, and irregular {ιt}

Xt = μt + ξt + ιt ,
where the vector white noise irregular has a covariance matrix�ι. The trend component satisfies

(1 − B)μt = εμt ,
for a vector white noise process {εμt } of covariance matrix�μ. The seasonal component, with the
seasonal period p (without the loss of generality we assume that p is even), is given as

ξt =
p/2∑
j=1

ξ
(j )
t ,

where the so-called atomic seasonal processes {ξ (j )
t } are defined through

δ(j )(B)︷ ︸︸ ︷
(1 − 2 cos(2πj/p)B + B2) ξ (j )

t = ε(j )
t , 1 ≤ j ≤ p/2 − 1,

δ(p/2)(B)︷ ︸︸ ︷
(1 + B) ξ (p/2)

t = ε(p/2)
t ,

for vector white noise processes {ε(j )
t }, 1 ≤ j ≤ p/2, with covariance matrices �(j). Vector white

noise processes driving the trend, seasonal, and irregular components are independent. The
application of the operator U (B) = ∏p/2

j=1 δ
(j )(B) to {ξ t} reduces it to stationarity. We apply our

test to the differenced data {Xt }, which has the form

Xt = (1 − B)U (B)Xt

= U (B)εμt +
p/2∑
j=1

(1 − B)
∏
k �=j
δ(k)(B)ε(j )

t + (1 − B)U (B)ιt ,

and whose spectral density (with z = e−iλ) is given by

f (λ) = |U (z)|2�μ +
p/2∑
j=1

|(1 − z)
∏
k �=j
δ(k)(z)|2�(j ) + |(1 − z)U (z)|2�ι.
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14 T. S. McElroy and A. Jach

In the first phase, we perform size and power studies involving trend and irregular. Trend
co-integration (frequency λ = 0) occurs when �μ has reduced rank, while �ι is of full rank.
We compare our test with the test of Nyblom and Harvey (2000, Section 4), which is applied to
un-differenced data. We reiterate that our procedure also yields a rank configuration (not just the
matrix rank), which is something that available parametric tests cannot do.

In the second phase, we examine the three-component model. Seasonal co-integration (at λj)
takes place when one of the covariance matrices�(j) has reduced rank, while the other covariance
matrices are of full rank. We focus on p = 4 (quarterly data), leading to two atomic seasonal
processes with operators δ(1)(B) = (1 + B2) (frequency λ1 = π /2, the fundamental frequency)
and δ(2)(B) = 1 + B (frequency λ2 = π ). We take �(1) of reduced rank, while keeping all the
other covariance matrices of full rank. We compare our test with the test of Busetti (2006), which
is closely related to the work of Nyblom and Harvey (2000).

All vector white noise processes are generated in the R package MASS from a mean-zero,
multivariate normal distribution. We consider sample sizes T ∈ {1,000, 3,000, 5,000} (after
discarding the initial 300 observations) and the number of replicates is R = 1,000. The empirical
size and power refer to the proportion of rejections of the null hypothesis (trend or seasonal co-
integration) in R replicates. The nominal size of the test is ∈ {0.01, 0.05, 0.10}. In the estimation
of the second Schur complement (of the spectral density matrix at the relevant frequency), we use
the fixed-b parameter ∈ {0.1, 0.3, 0.5} and two kernels, Bartlett and Parzen. In the subsampling,
we consider subsample size chosen adaptively according to the methodology outlined in Götze
and Rackauskas (2001) and Bickel and Sakov (2008), which is designed to improve the test’s
size in finite-sample. Namely, among the candidate subsample sizes n of the form nk = �qkT�
for k = 1, 2, . . . and 0 < q < 1, we calculate the Kolmogorov–Smirnov distance between two
consecutive subsampling distribution functions, for n1 and n2, for n2 and n3, and so on. We focus
on the pair that minimizes this distance, and choose the smaller of the two values of n as the
optimal one. In our study q = 0.75 and we consider block sizes n that constitute approximately
3–20% of the sample size T.

Although the competing tests of Nyblom and Harvey (2000) for trend co-integration and of
Busetti (2006) for seasonal co-integration are applied to {Xt}, in the latter case one can make
adjustments for stochastic trend, serial correlation and unattended unit roots (which we did). This
involves pre-filtering the data with (1 − B)(1 + B) and employing a Newey–West kernel with m
= �T0.25� (see Section 5 of Busetti (2006) for details).

For a generic 2 × 2 spectral density matrix f(λ) with coherence κ21(λ) =
f21(λ)/(

√
f11(λ)

√
f22(λ)), κ∗

21(λ) = κ12(λ), we have the following generalized Cholesky decom-
position :

f (λ) =
[

f11(λ)
√
f11(λ)

√
f22(λ)κ12(λ)√

f11(λ)
√
f22(λ)κ21(λ) f22(λ)

]

=

L︷ ︸︸ ︷[
1 0√

f22(λ)√
f11(λ)

κ21(λ) 1

] D︷ ︸︸ ︷[
f11(λ) 0

0 f22(λ)(1 − κ12(λ)κ21(λ))

] L∗︷ ︸︸ ︷[
1

√
f22(λ)√
f11(λ)

κ12(λ)
0 1

]
,

and hence the second Schur complement of f(λ) is d2 = f22(λ)(1 − κ12(λ)κ21(λ)).
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Testing collinearity 15

Likewise, for a generic 2 × 2 covariance matrix �, with variances σ 2
1 , σ 2

2 and correlation
coefficient ρ, we have the following (generalized) Cholesky decomposition:

� =
[
σ 2

1 σ1σ2ρ

σ1σ2ρ σ 2
2

]
=

L︷ ︸︸ ︷[
1 0
σ2
σ1
ρ 1

] D︷ ︸︸ ︷[
σ 2

1 0
0 σ 2

2 (1 − ρ2)

] L∗︷ ︸︸ ︷[
1 σ2
σ1
ρ

0 1

]
,

and hence the second Schur complement of � is d2 = σ 2
2 (1 − ρ2).

4.1.1. Trend and irregular. We set

�ι =
[

1 0
0 1

]
�μ = qμ

[
1 ρμ

ρμ 1

]
,

where qμ is defined as the signal-to-noise ratio. We consider qμ ∈ {1, 3, 5}. When ρμ equals 1,
the white noise process {εμt } is collinear, and {Xt} is trend co-integrated; otherwise, �μ is of full
rank. Hence in the size study we put ρμ = 1, and when examining the power we set ρμ ∈ {0.99,
0.98, . . . , 0.95}.

4.1.2. Trend, seasonal, and irregular. When p = 4, we set

�ι =
[

1 0
0 1

]
�μ = qμ

[
1 0
0 1

]
�(1) = q(1)

[
1 ρ(1)

ρ(1) 1

]
�(2) = q(2)

[
1 0
0 1

]
.

We set the signal-to-noise ratios equal to qμ = q(2) = 1 and q(1) ∈ {1, 3, 5}. In the size study we
set ρ(1) = 1, and in the power study ρ(1) ∈ {0.99, 0.98, . . . , 0.95}.

Before assessing the finite-sample performance of the subsampling test, we examine large-
sample distributions of d̂2 and of T d̂2 by simulating 1,000 replicates of the bivariate process
for sample sizes T = 1,000, 1,500, . . . , 10,000, under the null and alternative hypotheses.
When the data is generated under the null, d̂2 has a degenerate limit, but the limit of T d̂2 is
random (convergence for the Bartlett-based statistic is faster than for the Parzen-based statistic).
When the simulated data falls under the alternative hypothesis, d̂2 has a non-degenerate limiting
distribution, and T d̂2 diverges. These simulations corroborate in finite samples the asymptotic
theory established above.

In addition, we perform simulations with four time series (m = 4), manipulating the spectral
density matrix in such a way that the second and third time series can be co-integrated (trend
or seasonal) or not. All the other parameters are set as in the bivariate case. We use only one
sample size, T = 1,000, one fixed-b ratio (b = 0.3), and begin with J = {1}. Focusing on a given
frequency, we start the recursive procedure by testing H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 when
j+1 = 2 with J1 = {1} and J̃2 = {1, 2}. If we reject the null hypothesis (at a 5% level), we obtain
J2 = {1, 2} and J̃3 = {1, 2, 3} in the next step, and test H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 when
j+1 = 3. If on this occasion the series are collinear (we fail to reject the null), then J3 remains
the same as J2, and J̃4 becomes {1, 2, 4}. The last test is H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 for
j+1 = 4.

4.1.3. Summary of the simulation results. In general, small size and power distortions can be
observed in the subsampling test results. A small value of the fixed-b ratio parameter should not
be used. This is consistent with the recommendation of PSJ, according to which one should not
use a large exponent when exponentiating kernels (a small bandwidth ratio b corresponds to a
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16 T. S. McElroy and A. Jach

large exponent). The value of 0.3 offers an acceptable trade-off between size and power. The use
of the Bartlett kernel causes the test to be slightly oversized (Tables C1 and C7 of the Supporting
Information), especially in the three-component model. The performance of the test improves
with increasing sample size and increasing signal-to-noise ratio, but large values of the sample
size and signal-to-noise ratio are needed to obtain empirical rates that are close to the nominal
levels. When the Parzen kernel is utilized, the test is somewhat conservative (Tables C2 and C8
of the Supporting Information). The test of Nyblom and Harvey (2000) has good size properties
(cf. Table C3 of the Supporting Information); recall that this is a parametric test whose power is
maximized against the homogeneous alternatives considered in this paper. Similarly, the test of
Busetti (2006) also has good size properties (cf. Table C9 of the Supporting Information).

With regard to the empirical power, the subsampling test with the Bartlett kernel (Tables C4
and C10 of the Supporting Information) is more powerful than the one with the Parzen kernel
(Tables C5 and C11 of the Supporting Information), which is to be expected considering that
the former has a somewhat inflated size. The power of both tests increases with decreasing
correlation, increasing sample size, and increasing signal-to-noise ratio. The test of Nyblom and
Harvey (2000) has excellent power properties (cf. Table C6 of the Supporting Information). The
same is true for the test of Busetti (2006)—see Table C12.

The properties of the subsampling test pertaining to the 4-variate case are in good agreement
with the bivariate results just discussed. The results for the trend and irregular model are in Table
C13 for the Bartlett kernel (empirical size and power) and in Table C14 for the Parzen kernel
(empirical size and power). For the model with all three components, the respective results are in
Tables C15 and C16 of the Supporting Information.

Our nonparametric test has been compared with competing procedures, which essentially test
whether min jdj = 0; in contrast, our test examines whether each dj is zero. In the case of a bivariate
process (wherein d1 = 0 is ruled out) the procedures are equivalent, and for the trend–irregular
case the Nyblom and Harvey (2000) method is superior in terms of size and power, as is the
Busetti (2006) method for the trend–seasonal–irregular case. However, when the dimension is
greater than two, our method yields additional results on rank configuration; we remark that it is
important to have a large sample available and to avoid low bandwidth. For all the methods, a
low signal content (relative to the noise) implies the need for a larger sample to obtain adequate
size and power.

4.2. Immigration data

The data under consideration is daily, 6-variate New Zealand immigration data recorded between
September 1, 1997, and July 31, 2012. The first, third, and fifth series pertain to arrivals, while
the second, fourth, and sixth series measure departures. The first and second series count the
category of a temporary visit, while the third and fourth series count visitors (short term), and
the last two series measure permanent and long-term visits. All data were log-transformed, so
that seasonal amplitude is not dependent on trend level. To difference the data to stationarity we
consider the following differencing polynomials: (1 − B) for the trend and 1 − 2cos (2π · 1/7)B
+ B2, 1 − 2cos (2π · 2/7)B + B2, 1 − 2cos (2π · 3/7)B + B2 for each harmonic of the weekly
seasonality. The product of these polynomials leads to the operator 1 − B7 with which we filter
the data. The data and the differenced data (5,441 observations) are shown in Figures 1 and 2,
respectively, while the sample acf of the latter can be found in Figure 3.

The frequencies of interest are: 0, 2π · 1/7, 2π · 2/7, 2π · 3/7, and we also include 2π /365,
which corresponds to the annual seasonality, though in this case collinearity does not imply
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Figure 1. Six-variate (log-transformed) New Zealand immigration data.

co-integration. (Annual seasonality is arguably a stationary effect in the data, as evidence of the
autocorrelation plot indicates a decay across annual lags towards zero.) At each frequency and
for the initial J = {1}, the subsampling test is applied recursively to test H0 : dj + 1 = 0 versus
H1 : dj + 1 > 0 starting with the index sets J1 = {1} and J̃2 = {1, 2} for j+1 = 2 and then
modifying the sets accordingly, depending on whether the null is rejected or not (at a 5% level).
We use 0.3 for the fixed-b ratio, the adaptive rule to choose the subsample size (with q = 0.9
instead of q = 0.75, i.e., a finer grid of candidate block sizes than in Section 4.1), and the two
kernels employed previously.

The p-values (recall the discussion at the end of Section 3.1, regarding multiple testing) of
the subsampling test are given in Table 1 (top half for the Bartlett kernel and bottom half for
Parzen), together with the corresponding rank configurations. Bartlett-based p-values indicate that
there are two common trends, as well as weekly seasonal co-integration effects: the first weekly
seasonal is driven by a single process, whereas the second and third weekly seasonals have ranks
two and three, respectively. There is also evidence of collinearity at the annual frequency (the
rank is five). Results for the Parzen kernel tend to yield lower ranks, which is consistent with
the simulation results (too few rejections of the null hypothesis). Again, should the six series be
reordered then we cannot expect the rank configurations J to remain unchanged, although the
cardinality of J would be unaltered (because matrix rank is invariant to permutation).

We also applied the methods of Nyblom and Harvey (2000) (frequency 0) and Busetti (2006)
(frequencies 2π · 1/7, 2π · 2/7, and 2π · 3/7) to test the null hypothesis that the number of common
components is 5 versus the alternative hypothesis that the number of common components is 6
(i.e., the time series are not co-integrated). For Nyblom and Harvey’s test, the data was pre-
filtered with 1 + B + . . . + B6 to remove seasonality, while for Busetti’s test we applied the
polynomials (1 − B)�k �=j (1 − 2 cos(2π · k/7)B + B2) for each j = 1, 2, 3. The test statistics
were 0.0307 for trend co-integration (the 5% critical value is 0.042) and 0.1250, 0.2695, and
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Figure 2. New Zealand immigration data, log-transformed and differenced via 1 − B7.
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Figure 3. Sample acf of the differenced (via 1 − B7) log-transformed New Zealand immigration data.

0.6842 for seasonal co-integration at the three weekly frequencies, respectively (the 5% critical
value is 0.157). Hence there is evidence that the six time series are not seasonally co-integrated
at the second and third weekly frequencies. The discrepancy in the results between our method
(which yield rank configuration) and the parametric methods (which yields the overall rank) may
be due to the departure of the immigration data from an exact structural model.
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Testing collinearity 19

Table 1. New Zealand immigration results.

λ\j+1 2 3 4 5 6 J

Bartlett kernel
0 0.6108 0.2246 0.1908 0.0296 0.1331 {1, 5}
2π · 1/365 � 0.0329 0.2913 � 0.0065 {1, 2, 3, 5, 6}
2π · 1/7 0.2499 0.1901 0.2407 0.3176 0.4882 {1}
2π · 2/7 0.1342 0.3110 0.0770 0.2669 0.0082 {1, 6}
2π · 3/7 0.0486 0.0216 0.2277 0.2208 0.4120 {1, 2, 3}

Parzen kernel
0 1.0000 1.0000 1.0000 1.0000 0.8756 {1}
2π · 1/365 1.0000 0.9894 1.0000 1.0000 0.0099 {1, 6}
2π · 1/7 1.0000 0.7634 0.9673 0.9969 0.9886 {1}
2π · 2/7 0.2160 0.9543 0.4268 0.8842 0.0119 {1, 6}
2π · 3/7 0.1013 0.7414 0.6231 0.3605 0.6575 {1}

Note: p-values of the subsampling test H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 are displayed for the New Zealand
immigration data (log-transformed and differenced via 1 − B7), along with the final rank configuration J, using fixed-b
ratio 0.3, subsample size n selected adaptively, and nominal size 5%. The � marks a p-value less than 0.0001.

Ultimately, we care about the rank configurations in order to achieve particular applications—
the correct identification of collinearity, or co-integration, is extremely important for such appli-
cations as forecasting and signal extraction. In other work with the immigration data, the authors
found that mis-specification of the rank configuration of any component can cause leakage of the
signal during extraction. In essence, a component that is not co-integrated, but is wrongly identi-
fied as such, will be insufficiently suppressed if it is featured as noise in an extraction problem.
For instance: if we desire to extract the trend and we indicate that the third weekly seasonal has
rank 1 (as indicated by the Parzen kernel) when actually the rank is 3 (as indicated by the Bartlett
kernel), then there may be insufficient suppression of dynamics at frequency 6π /7, with the result
that these oscillatory effects are found in the extracted trend. In such an application, the results
from the Bartlett kernel would be preferred, given its superior size and power performance.
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Gómez, V. (2016). Multivariate Time Series with Linear State Space Structure. Springer, New York, NY.
Götze, F. and A. Rackauskas (2001). Adaptive choice of bootstrap sample sizes. In van der Aad, V., G.

Mathisca de and K. Chris (Eds.), State of the Art in Probability and Statistics, IMS Lecture Notes
Monograph Series, 36, 286–309. Cambridge University Press, Cambridge.

Harvey, A. (1989). Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge University
Press, Cambridge.

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control
12, 231–54.

Johansen, S. (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive Models. Oxford
University Press, Oxford.

Koopman, S.J., M. Ooms and I. Hindrayanto (2012). A multivariate periodic unobserved components time
series analysis for sectoral U.S. employment. In Bell, W., S. Holan and T. McElroy (Eds.), Economic
Time Series: Modeling and Seasonality. Chapman and Hall, New York, NY.

McElroy, T. (2017). Multivariate seasonal adjustment, economic identities, and seasonal taxonomy. Journal
of Business and Economics Statistics 35, 511–25.

McElroy, T. and D. Politis (2014). Spectral density and spectral distribution inference for long memory time
series via fixed-b asymptotics. Journal of Econometrics 182, 211–25.

Nyblom, J. and A. Harvey (2000). Tests of common stochastic trends. Econometric Theory 16, 176–99.
Nyblom, J. and A. Harvey (2001). Testing against smooth stochastic trends. Journal of Applied Econometrics

16, 415–29.
Phillips, P. C. and V. Solo (1992). Asymptotics for linear processes. Annals of Statistics 20, 971–1001.
Phillips, P. C., Y. Sun and S. Jin (2006). Spectral density estimation and robust hypothesis testing using

steep origin kernels without truncation. International Economic Review 47, 837–94.
Politis, D., J. Romano and M. Wolf (1999). Subsampling. Spinger, New York, NY.
Shintani, M. (2001). A simple cointegrating rank test without vector autoregression. Journal of Econometrics

105, 337–62.
Stock, J. H. and M. W. Watson (1988). Testing for common trends. Journal of the American Statistical

Association 83, 1097–107.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online appendix of this article at the
publisher’s website:

Online Appendix
Replication Package

Co-editor Michael Jansson handled this manuscript.

C© 2019 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article-abstract/doi/10.1093/ectj/uty002/5303850 by C

ensus Bureau Library, Tucker M
cElroy on 10 M

ay 2019



Testing collinearity a1

APPENDIX A: SUPPLEMENTARY RESULTS

A.1. Determining collinear frequencies from exploratory analysis

In some cases we may want a method to identify frequenciesλwhere collinearity may be occurring, as it is too
expensive to apply collinearity testing for all λ ∈ [0, π ]. We here describe an algorithm for determining such
λ from the autocovariance sequence—in empirical applications, sample autocovariances (possibly tapered)
could be used instead. Let the autocovariance generating function be denotedG(z) = ∑

h∈Z �(h) zh, so that
f(λ) = G(e−iλ). Hence, f(λ) is reduced rank if and only if det f (λ) = 0, which holds if and only if detG(z)
has a root z = e−iλ. If the autocovariances truncate at some lag q, then g(z) = det[zq G(z)] is a degree 2qm
polynomial. If working with the tapered sample autocovariances �b(h/T ) �̂(h), then q = �bT�. Now

zq G(z) =
2q∑
k=0

�(k − q) zk = �(−q)

(
2q∑
k=0

�(−q)−1 �(k − q) zk
)

= �(−q)

(
I −

2q∑
k=1

Ak z
k

)
,

where Ak = −�(−q)−1 �(k − q) for 1 ≤ k ≤ 2q. The companion matrix corresponding to these coefficient
matrices is

A =

⎡⎢⎢⎢⎣
A1 . . . A2q−1 A2q

Im . . . 0 0
...

...
...

...
0 . . . Im 0

⎤⎥⎥⎥⎦ ,

and its 2qm eigenvalues are the reciprocals of the roots of

det[I −
2q∑
k=1

Ak z
k] = − det�(q) g(z).

In other words, we obtain the roots of detG(z) from the reciprocal eigenvalues of A, and check whether any
of the roots lie on the unit circle. If they do, we take λ equal to the angular portion.

A.2. Permuting series and rank configuration

A rank configuration J(�) can be determined from � by computing the generalized complex Cholesky
decomposition � = LDL∗. A permutation � applied to the series yields a new spectral density matrix
���′, and we can obtain a new decomposition of the form L̃ D̃ L̃∗. The new rank configuration J̃ can
be different from J, but |J̃ | = |J | because they are both equal to the rank of �, which is unaffected by
permutation. We provide an example with m = 3. With the entries of L denoted by �ij, we find that

� =
⎡⎣ d1 �21 d1 �31 d1

�21 d1 �2
21 d1 + d2 �21 �31 d1 + �32 d2

�31 d1 �21 �31 d1 + �32 d2 �
2
31 d1 + �2

32 d2 + d3

⎤⎦ .
C© 2019 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article-abstract/doi/10.1093/ectj/uty002/5303850 by C

ensus Bureau Library, Tucker M
cElroy on 10 M

ay 2019



a2 T. S. McElroy and A. Jach

Suppose that � swaps the first two series, leaving the third series in place. Then we can solve for the
components of the new Cholesky decomposition in terms of d1, d2, d3, �21, �31, and �32:

d̃1 = �2
21 d1 + d2

�̃21 = �21 d1

�2
21 d1 + d2

d̃2 = d1 d2

�2
21 d1 + d2

�̃31 = �21 �31 d1 + �32 d2

�2
21 d1 + d2

�̃32 = �31 − �21 �32

d̃3 = d3.

Hence, if d1 = 0 (and d2, d3 > 0) then d̃2 = 0, and the rank configuration J = {2, 3} gets transformed to
J̃ = {1, 3}. However, if instead only d2 equals zero, then d̃2 = 0 and J = {1, 3} is left unchanged by the
permutation.

In summary, rank configuration can be altered by permutation, but rank is not. In applications, an ordering
of series is selected according to convenience, and thereafter the corresponding rank configuration can be
determined.

A.3. Discussion of d1 = 0

It can happen that d1 = 0 for some λ, but this indicates that the spectral density for the first series {X(1)
t }

is zero at frequency λ, and this is typically an indication of over-differencing. As this implies that the first
series is noninvertible, and hence cannot be forecasted, it is preferable to avoid differencing that causes such
a situation. If the data has not been differenced (i.e., it is stationary to begin with), then we can test for d1 = 0
and proceed to d2, etc. If all the series require δ(B) differencing to be rendered stationary, then d1 > 0 for all
λ such that δ(e−iλ) = 0, which is proved as follows. Because e−iλ is a root, we can write δ(B) = δ̃(B) η(B)
with η(B) given (cf. Section 2.1.2) as follows:

η(B) =
⎧⎨⎩

(1 − eiλ B) (1 − e−iλ B) if λ ∈ (0, π )
1 − B if λ = 0
1 + B if λ = π.

If d1 = 0 at λ, then f11(λ) = 0 and there exists a real-valued function g(ω) that is positive, and such that

f11(ω) = g(ω) |η(e−iω)|2.
Therefore δ̃(B)X(1)

t is stationary with spectral density g, which contradicts the assumption that δ(B) is the
minimal differencing polynomial for the first series. Thus we must have d1 > 0.

APPENDIX B: PROOFS OF RESULTS

Proof of Proposition 2.1. The result is essentially known (Gómez, 2016), but we provide some additional
details. The r-dimensional process {Zt} satisfies

Zt = β ′Xt = β ′�Xt−1 + β ′ εt = (Ir + β ′ α)Zt−1 + β ′ εt . (B.1)

This has the form of a VAR(1) of coefficient matrix Ir + β ′ α driven by white noise of variance β ′� β. We
show that Ir + β ′ α is stable, i.e., has all eigenvalues less than one in magnitude. First, observe that there
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Testing collinearity a3

exists an m × (m − r)-dimensional matrix β⊥ whose columns span the null space of β, so that β ′ β⊥ = 0.
By assumption, m − r eigenvalues of� equal one, and r eigenvalues have magnitude less than one. Clearly,
(θ , w) is an eigen-pair of β ′ α if and only if (θ + 1, w) is an eigen-pair of Ir + β ′ α, which holds if and only
if (θ + 1, αw) is an eigen-pair of � (because � = Im + α β ′). Since β ′ α is full rank, θ �= 0. On the other
hand, θ + 1 is an eigenvalue of � only if either |θ + 1| < 1 or θ + 1 = 1, but this latter is impossible,
because θ �= 0. Hence the eigenvalues of Ir + β ′ α have magnitude less than one, and {Zt} is stationary.

For the differences, we have

Xt = �Xt−1 −Xt−1 + εt = �Xt−1 + εt = α Zt−1 + εt .
We already know that {Zt} is stationary, and hence so is {Xt }. Using the representation (B.1), we have

Zt = (Ir − [Ir + β ′ α]B)−1
β ′ εt

Xt =
(
Im + α (Ir − [Ir + β ′ α]B)−1

β ′B
)
εt .

This derives the stated formula for �(B), and

β ′�(B) = (Ir − IrB) (Ir − [Ir + β ′ α]B)−1
β ′,

so that β ′�(1) = 0. Hence the spectral density of {Xt }, namely �(e−iλ)��(eiλ)′, has rank m − r at
frequency λ = 0. Next, letting V = β (β ′ β)−1

β ′, we see that U V = 0, and both U and V are idempotent.
Moreover, �U = 0, and U + V = Im. Hence (Im − U B)(Im − V B) = Im − ImB, and

Im −�B = Im − Im B −�B = (Im − U B)(Im − V B) −� (Im − U B)B

= [Im − (V +�)B] (Im − U B).

Setting �* = V + � yields the stated factorization. To prove that it is stable, observe that (λ, v) is an
eigen-pair of �* if and only if either λ = 0 with v in the range space of β⊥, or (λ, v) is an eigen-pair of �
with v in the range space of β. In the latter case, either |λ| < 1 or λ = 1; but (1, v) is an eigen-pair of � if
and only if (0, v) is an eigen-pair of �, which holds if and only if v is in the range space of β⊥. Therefore
|λ| < 1. �
Proof of Proposition 2.2. The r-dimensional process {Zt} satisfies

Zt = β ′�Xt−1 + β ′ εt

= β ′�2Xt−2 + β ′�εt−1 + β ′ εt

= β ′ (α β ′ + 2 cos(ω)�− Im
)
Xt−2 + β ′�εt−1 + β ′ εt

= (β ′ α − Ir )Zt−2 + 2 cos(ω)β ′(Xt−1 − εt−1) + β ′�εt−1 + β ′ εt

= 2 cos(ω)Zt−1 + (β ′ α − Ir )Zt−2 + (β ′�− 2 cos(ω)β ′) εt−1 + β ′ εt .

This is re-expressed as

(Ir − 2 cos(ω) Ir B + (Ir − β ′ α)B2)Zt = β ′ (Im + (�− 2 cos(ω) Im)B) εt .

Next, the matrix polynomial Ir − 2 cos(ω) Ir B + (Ir − β ′ α)B2 is stable if and only if the matrix

A =
[

2 cos(ω) Ir β ′ α − Ir
Ir 0

]
has eigenvalues of magnitude less than one. If (λ, v) is an eigen-pair of A, and v has component vectors
v1 and v2, then v1 = λ v2 and 2 cos(ω) v1 + (β ′ α − Ir ) v2 = λ v1, which implies that (λ2 − 2 cos(ω) λ+
1) v2 = β ′ α v2, indicating that (λ2 − 2 cos(ω) λ+ 1, v2) is an eigen-pair of β ′ α. As argued in the proof of
Proposition 2.1, we can show that (θ , w) is an eigen-pair of β ′ α if and only if (θ , αw) is an eigen-pair of
�, which holds if and only if (φ, αw) is an eigen-pair of �, such that θ = φ2 − 2 cos(ω)φ + 1. Thus, any
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a4 T. S. McElroy and A. Jach

eigenvalue λ of A is an eigenvalue of�; hence either |λ|< 1 or λ= e±iω, but in this case we would have the
corresponding eigenvalue θ of β ′ α equal to zero, and this matrix is full rank. Hence A is stable. This means
that {Zt} has a stable VARMA(2,1) representation.

Next, for the differences we have

Xt = Xt − 2 cos(ω)Xt−1 +Xt−2

= �2Xt−2 +�εt−1 + εt − 2 cos(ω) (�Xt−2 + εt−1) +Xt−2

= �Xt−2 + (�− 2 cos(ω) Im) εt−1 + εt ,
and �Xt−2 = α Zt−2, so that {Xt } is stationary. Putting this together with the VARMA(2,1) representation
for {Zt} yields Xt = �(B) εt as stated. It follows that

β ′�(B) = (Ir − 2 cos(ω) Ir B + Ir B2)
(
Ir − 2 cos(ω) Ir B + (Ir − β ′ α)B2

)−1

β ′ (Im + (�− 2 cos(ω) Im)B),

so that β ′�(e±iω) = 0, and the spectral density has rank m − q at frequencies ±ω. For the factorization, let
U and V be defined as in the proof of Proposition 2.1, and observe that

(Im − U e−iω B)(Im − V e−iω B) = (Im − V e−iω B)(Im − U e−iω B) = Im − Im e−iω B,
and the same result holds for eiω as well. Also, the differencing operator D(B) = (Im − U e−iω B)(Im −
U eiω B), so that�∗(B)D(B) = δ(B) −�B2, where δ(B) = Im (1 − 2 cos(ω)B + B2). Finally, Im + (�−
2 cos(ω) Im)B times Im −�B equals δ(B) −�B2, or in other words �∗(B) (Im −�B) = �∗(B)D(B).
Hence the process {Yt} satisfies

�∗(B)Yt = �∗(B)D(B)Xt = �∗(B) (Im −�B)Xt = �∗(B) εt .

To show that �*(B) is stable, it suffices to determine the eigenvalues of the matrix

C =
[

2 cos(ω)V �− V
Im 0

]
.

We find that an eigen-pair (λ, x) of C must satisfy λ2x2 = 2 cos(ω) λV x2 + (�− V ) x2, where x consists
of components x1 and x2. Because x2 must belong to either the range of β⊥ or the range of β, we find in the
former case that λ = 0 (since V β⊥ = �β⊥ = 0). In the latter case, we have x2 = β y for some y, and find
that (λ2 − 2 cos(ω) λ+ 1, β y) is an eigen-pair of �. This implies that (λ, β y) is an eigen-pair of �, so
either |λ| < 1 or λ = e±iω. The latter case entails a zero eigenvalue of�, which is full rank, so we conclude
that C is stable. Hence �*(B) is invertible, and {Yt} is a VARM(2,1) process. �

Proof of Proposition 2.3. For any j ≥ 1 the matrix �j(Jj) can be represented as H �j K ′, where H is a
selection matrix with rows given by unit vectors ek such that k ∈ Jj. In other words, H looks like an identity
matrix with rows corresponding to indices in J cj removed. From (2.2) we obtain

�j (Jj ) =
∑
k∈Jj

dk (HL(k)) (HL(k))∗.

Now each vector HL(k) is given by L(k) with components removed corresponding to indices in J cj , and
hence the square matrix L̃ with columns given by each HL(k) for k ∈ Jj is unit lower triangular. Thus,
�j (Jj ) = L̃ D̃ L̃∗, where D̃ is diagonal consisting of dk with k ∈ Jj; hence �j(Jj) is Hermitian pd. Next, for
the j = 1 case we have J1 = {1} by assumption, and direct calculation yields det�2({1, 2})/ det�1({1}) =
(d1 d2)/d1 = d2. For the general case of (2.4), consider the matrix

�j+1(J̃j+1) =
[
�j (Jj ) σ j (Jj )
σ ∗
j (Jj ) sj+1

]
= H �j+1H

′,
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Testing collinearity a5

where the selection matrix H consists of unit vectors ek such that k ∈ J̃j+1. Again using (2.2), it is clear
that �j+1(J̃j+1) is Hermitian non-negative definite, with Schur complements dk for k ∈ J̃j+1; the last Schur
complement dj + 1 may possibly be zero, but the others are all positive. Using the matrix identity of Axelsson
(1996, p.93),

det�j+1(J̃j+1) = det�j (Jj ) · (sj+1 − σ ∗
j (Jj )�j (Jj )

−1 σ j (Jj )
)
.

Hence, sj+1 − σ ∗
j (Jj )�j (Jj )

−1 σ j (Jj ) is equal to the ratio of determinants stated in (2.4), and is also by
definition the Schur complement of �j(Jj) in �j+1(J̃j+1), which must in turn be equal to the final dk in the
generalized Cholesky decomposition of �j+1(J̃j+1), namely dj + 1. �

Proof of Proposition 3.1. To prove the convergences, we can apply Theorem 3.2.1 of Politis, Romano,
and Wolf (1999) to either the H0 or Ha cases, noting that LT, n(x|1) is the subsampling distribution estimator
corresponding to θ̂T (with no normalizing rate). The consistency of the test is proved by using (3.9):

P [ τT θ̂T ≥ L−1
T ,n(1 − α|τ·)|Ha]

= P[̂θT ≥ (τn/τT )L−1
T ,n(1 − α|1)|Ha]

≈ P[Wa ≥ (τn/τT )F
−1
a (α)] → 1,

so long as Wa is non-negative, and τ n/τ T → 0. �

Proof of Proposition 3.2. The first formula for dj + 1 follows from application of (2.3) to (3.10), and this
equals w*fw by direct calculation. Because �∗ w is a vector of length

√
w∗ f w = √

dj+1, which equals
zero under the null hypothesis, we have �∗ w = 0 and hence �� = v∗�� under the null hypothesis. �

Proof of Theorem 3.1. We will prove a joint weak convergence for the cosine and sine transforms, defined
as the real and imaginary parts respectively of dsW (λ), where Wt = Xt − μ. First we focus on the case that
λ �= 0, π . Let η and τ be real vectors, and consider weak convergence of the scalar process

η′ R[dsW (λ)] + τ ′ I[dsW (λ)] = T −1/2
[T s]∑
t=1

(
η′Wt cos(λt) − τ ′Wt sin(λt)

)
.

To do so, we consider the finite-dimensional distributions; for any n, and any real scalars ν1, . . . , νn, consider
the convergence of

n∑
k=1

νk
(
η′ R[dskW (λ)] + τ ′ I[dskW (λ)]

)
. (B.2)

Proceeding by the method of cumulants, we know that the mean is zero, and the variance is∑n

k1,k2=1 νk1νk2 Cov
(
η′ R[d

sk1
W (λ)] + τ ′ I[d

sk2
W (λ)], η′ R[d

sk2
W (λ)] + τ ′ I[d

sk2
W (λ)]

)
= ∑n

k1,k2=1 νk1νk2 Cov
(
η′ R[d

sk1
W (λ)], η′ R[d

sk2
W (λ)]

)
+∑n

k1,k2=1 νk1νk2 Cov
(
η′ R[d

sk1
W (λ)], τ ′ I[d

sk2
W (λ)]

)
+∑n

k1,k2=1 νk1νk2 Cov
(
τ ′ I[d

sk1
W (λ)], η′ R[d

sk2
W (λ)]

)
+∑n

k1,k2=1 νk1νk2 Cov
(
τ ′ I[d

sk1
W (λ)], τ ′ I[d

sk2
W (λ)]

)
.

Each of these covariances involves a sum of [T sk1 ] random variables with a sum of [T sk2 ] random variables,
so that when k1 �= k2 the number of summands differs. However, using stationarity it is possible to reduce

C© 2019 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article-abstract/doi/10.1093/ectj/uty002/5303850 by C

ensus Bureau Library, Tucker M
cElroy on 10 M

ay 2019



a6 T. S. McElroy and A. Jach

the calculation to covariances of sums with an equal number of summands. As an intermediary result, for
random variables {Ut} and {Vt} that are jointly weakly stationary we have

Cov

(
N+L∑
t=1

Ut,

N+L∑
t=1

Vt

)
= Cov

(
N∑
t=1

Ut,

N∑
t=1

Vt

)
+ Cov

(
N+L∑
t=N+1

Ut,

N+L∑
t=N+1

Vt

)

+ Cov

(
N∑
t=1

Ut,

N+L∑
t=N+1

Vt

)
+ Cov

(
N+L∑
t=N+1

Ut,

N∑
t=1

Vt

)

= −Cov

(
N∑
t=1

Ut,

N∑
t=1

Vt

)
+ Cov

(
L∑
t=1

Ut,

L∑
t=1

Vt

)

+ Cov

(
N∑
t=1

Ut,

N+L∑
t=1

Vt

)
+ Cov

(
N+L∑
t=1

Ut,

N∑
t=1

Vt

)
,

which implies

Cov

(
N∑
t=1

Ut,

N+L∑
t=1

Vt

)
+ Cov

(
N+L∑
t=1

Ut,

N∑
t=1

Vt

)
(B.3)

= Cov

(
N+L∑
t=1

Ut,

N+L∑
t=1

Vt

)
+ Cov

(
N∑
t=1

Ut,

N∑
t=1

Vt

)
− Cov

(
L∑
t=1

Ut,

L∑
t=1

Vt

)
.

Letting As and Bs denote either of the terms η′ R[dsW (λ)] and τ ′ I[dsW (λ)], we see from (B.3) that

n∑
k1,k2=1

νk1νk2 Cov (Ask1 , Bsk2 )

=
n∑
k=1

ν2
k Cov (Ask , Bsk ) +

∑
k1<k2

νk1νk2

[
Cov (Ask1 , Bsk2 ) + Cov (Ask2 , Bsk1 )

]

=
n∑
k=1

ν2
k Cov (Ask , Bsk ) +

∑
k1<k2

νk1νk2

[
Cov (Ask2 , Bsk2 ) + Cov (Ask1 , Bsk1 ) − Cov

(
Ask2 −sk1 , Bsk2 −sk1

)]
.

To analyse the covariance of sums with an equal number of summands, we present some preliminary results:
for any sk, it follows from results in Brillinger (2001) that (suppressing sk and λ in the notation for the DFT)

Cov
(
η′ dW , η′ dW

) =
n∑

h1,h2=1

ηh1ηh2 Cov
(
dWh1

, dWh2

)
= O(T −1) + sk η′ f (λ) η. (B.4)

However, the covariance of the DFT with itself (without conjugation) is just O(T−1). From (B.4), it follows
that

Cov
(
η′ R[dW ], η′ R[dW ]

) = O(T −1) + sk η′ f (λ) η/2

Cov
(
τ ′ I[dW ], τ ′ I[dW ]

) = O(T −1) + sk τ ′ f (λ) τ/2

Cov
(
η′ R[dW ], τ ′ I[dW ]

) = O(T −1) + sk i
4

(
η′ f (λ) τ − τ ′ f (λ) η

)
.
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Testing collinearity a7

Applying these results in turn to the four terms of the variance of (B.2), in conjunction with (B.3) yields
that the variance is

O(T −1) +
(

n∑
k=1

ν2
k sk + 2

∑
k1<k2

νk1νk2sk1

) [
η′ f (λ) η + τ ′ f (λ) τ + i(η′ f (λ) τ − τ ′ f (λ) η)

]
/2.

The expression in parentheses is the variance of
∑n

k=1 νkB(sk), where B is a standard Brownian motion.
Moreover, the variance of

η′ R[�
n∑
k=1

νk(BR(sk) − iBI (sk))] + τ ′ I[�
n∑
k=1

νk(BR(sk) − iBI (sk))]

equals the asymptotic variance; this is because the variance equals

n∑
k1,k2=1

νk1νk2

(
η′ R� + τ ′ I�

)
Cov[BR(sk1 ), BR(sk2 )]

(
η′ R� + τ ′ I�

)′
+

n∑
k1,k2=1

νk1νk2

(
τ ′ R� − η′ I�

)
Cov[BI (sk1 ), BI (sk2 )]

(
τ ′ R� − η′ I�

)′
= 1

2

n∑
k1,k2=1

νk1νk2

(
n∑
k=1

ν2
k sk + 2

∑
k1<k2

νk1νk2sk1

) [
η′ R�R� ′ η + τ ′ I� I� ′ τ + 2 η′ R� I� ′ τ

]

+1

2

n∑
k1,k2=1

νk1νk2

(
n∑
k=1

ν2
k sk + 2

∑
k1<k2

νk1νk2sk1

) [
τ ′ R�R� ′ τ + η′ I� I� ′ η − 2 η′ I�R� ′ τ

]
,

and f satisfies

f = � �∗ = (
R�R� ′ + I� I� ′)+ i (I�R� ′ − R� I� ′) ,

thereby implying that

η′ f η = η′ (R�R� ′ + I� I� ′) η
τ ′ f τ = τ ′ (R�R� ′ + I� I� ′) τ

η′ f τ − τ ′ f η = 2i
(
η′ I�R� ′ τ − η′ R� I� ′ τ

)
.

Hence, the first and second cumulants of dsW converge jointly to those of�(BR(s) − iBI(s)). The summability
conditions on cumulants, together with results from Brillinger (2001), ensure that higher-order cumulants
tend to zero. Next, by substituting a linearly interpolated process for the DFT, as in the proof of Theorem 1
of McElroy and Politis (2014), we can establish tightness via Problem 4.11 of Karatzas and Shreve (1991)
and the uniform integrability condition. This completes the case λ ∈ (0, π ). If λ = 0, π , the imaginary part
of the DFT is zero, and the DFT equals its real part. This entails that

Cov
(
η′ R[dW ], η′ R[dW ]

) = O(T −1) + sk η′ f (λ) η,

and hence the limiting variance of (B.2) is

O(T −1) +
(

n∑
k=1

ν2
k sk + 2

∑
k1<k2

νk1νk2sk1

) [
η′ f (λ) η

]
.

This is the limiting variance of η′�
∑n

k=1 νkBR(sk), using the fact that � and f are real-valued when λ= 0,
π . This completes the proof. �

The following two lemmas follow immediately from summation by parts.
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a8 T. S. McElroy and A. Jach

LEMMA 0.1. Given complex sequences y0, y1, . . . and x0, x1, . . . and a function A(h) for h ∈ Z,

T∑
�,t=1

A(t − �) [yt − yt−1] x∗
� = ∑T

�=1

∑T−1
t=1 [A(t − �) − A(t + 1 − �)] yt x∗

�

+∑T

�=1 A(T − �) yT x∗
� −∑T

�=1 A(1 − �) y0 x
∗
� .

LEMMA 0.2. Given complex sequences y0, y1, . . . and x0, x1, . . . and a symmetric function A(h) for h ∈ Z,

T∑
t,�=1

A(t − �) [yt − yt−1] [x� − x�−1]∗ =
T−1∑
t,�=1

[2A(t − �) − A(t + 1 − �) − A(t − 1 − �)] yt x∗
�

+
T−1∑
t=1

[A(t) − A(t − 1)] [y0 x
∗
t + yt x∗

0 ]

+
T−1∑
t=1

[A(t − T ) − A(t + 1 − T )] [yT x
∗
t + yt x∗

T ]

+ A(0) [y0 x
∗
0 + yT x∗

T ] − A(T − 1) [y0 x
∗
T + yT x∗

0 ].

Proof of Theorem 3.2. Letting Yt = Xt − μ̂, we obtain Yt = (μ− μ̂) +�(B)εt , and therefore if λ �= 0

dsY (λ) = −(μ̂− μ) T −1/2
[T s]∑
t=1

e−iλt +�(e−iλ) dsε (λ) + T −1/2
(
Z[T s](λ) − Z0(λ)

)
.

In the first term, the DFT is O(T−1/2) because the sum of complex exponentials is bounded for all T, whereas
μ̂− μ = OP (T −1/2). The second term is bounded in probability because dsε (λ) = OP (1). The third term is
OP(T−1/2), because Z[Ts](λ) = OP(1) for all T. Under Ha, �(e−iλ) is full rank and the second term is leading.
Under H0, �(e−iλ) is reduced rank, such that the second and third terms are leading. Either way, the first
term, which is OP(T−1), is negligible. On the other hand, if λ = 0 we have the expansion

dsY (0) = �(1) dsε (0) + T −1/2

(
Z[T s](0) − Z0(0) − [T s]

T
[ZT (0) − Z0(0)]

)
with dsε (0) = T −1/2

∑[T s]
t=1 (εt − ε). Evidently, the sample mean has been incorporated into the two terms.

Therefore, no matter the value of λ we have

dsY (λ) = OP (T −1) +�(e−iλ) dsε̃ (λ) + ds
Z̃

(λ), (B.5)

where dsε̃ (λ) equals either dsε (λ) or dsε (0) depending on whether λ �= 0 or λ = 0. Similarly, we define
Z̃t = Zt (λ) − Zt−1(λ), where Zt (λ) equals either Zt(λ) or Zt(0) − tT−1ZT(0) depending on whether λ �= 0
or λ = 0. Next, using Yte−iλt = T 1/2 (dt/TY (λ) − d (t−1)/T

Y (λ)) and applying Lemma 0.2 to the expression for
the spectral density estimator (3.6), we obtain

f̂ (λ) = T −1
T∑

t,�=1

�b

(
t − �
T

)
Yt Y

′
� e

−iλ(t−�) (B.6)

=
T−1∑
t,�=1

 2
�b

(
t − �
T

)
d
t/T

Y (λ) d�/TY (λ)
∗

+
T−1∑
t=1

 1
�b

(
t − T
T

) (
d1
Y (λ) d�/TY (λ)

∗ + dt/TY (λ) d1
Y (λ)

∗)+�b(0) d1
Y (λ) d1

Y (λ)
∗
.
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Testing collinearity a9

Here  2
�b

(x) = 2�b(x) −�b(x − 1/T ) −�b(x + 1/T ) and  1
�b

(x) = �b(x) −�b(x + 1/T ). Observe
that this expression for f̂ depends on {Yt} only through the DFT dsY (λ), and we can denote it via f̂Y,Y (λ) for
short. Applying (B.5) to each term (and suppressing λ in the notation) yields

f̂Y,Y = OP (T −1) +� f̂ε̃,ε̃�∗ + f̂Z̃,ε̃ �∗ +� f̂ε̃,Z̃ + f̂Z̃,Z̃, (B.7)

where f̂ε̃,ε̃ and so forth are obtained by swapping in the DFTs of ε̃ and/or Z̃ for Y. When Ha holds, only the
second term of (B.7) is pertinent, the others being of lower order. We proceed to analyse this case first by
applying (B.6), replacing dY by dε̃ .

Suppose that x is a kink point in � (which means that bx is a kink of �b). If t and � are such that (t −
�)/T = x, then

 2
�b

(
t − �
T

)
= [
�b(x) −�b(x + T −1)

]+ [
�b(x) −�b(x − T −1)

]
≈ −T −1 �̇+

b (x) + T −1 �̇−
b (x)

 1
�b

(
t − �
T

)
= [
�b(x) −�b(x + T −1)

] ≈ −T −1 �̇+
b (x).

Now with t = � + Tx for � = 1, 2, . . . , [T(1 − x)], we see that for each 1 ≤ t ≤ T there exists a series
of � values such that (t − �)/T = x, when Tx is an integer. Hence the double sum over 1 ≤ t, � ≤ T in
the expansion for f̂ε̃,ε̃ can be broken down into ranges of values falling in the intervals of smoothness Ck,
plus the expressions at the kinks. Because  1

�b
(x) = −T −1 �̇b(x) and  2

�b
(x) = −T −2 �̈b(x) uniformly

in x belonging to a region of smoothness Ck, we can apply Theorem 3.1 to find that the first term in the
expansion of f̂ε̃,ε̃ converges weakly to the first two terms of� stated in Theorem 3.2. The second term in the
expansion of f̂ε̃,ε̃ involves only a single summation over 1 ≤ t ≤ T − 1, and so there are only a finite number
of indices t for which (t − T)/T equals a given kink—hence the kink contribution is negligible. Again using
Theorem 3.1, this second term converges weakly to the third term of� stated in Theorem 3.2. The last term
of � follows at once from the third term of f̂ε̃,ε̃ . This establishes the weak convergence of f̂ to � ��∗.
Furthermore, using (B.7) we find (when j > 0) that

ĝ = OP (T −1) +�� f̂ε̃,ε̃ �∗
�

k̂ = OP (T −1) +�� f̂ε̃,ε̃ �∗
� .

Therefore

v̂ = ĝ−1 k̂
D−→ [

�� ��
∗
�

]−1
�� ��

∗
� ,

and using d̂j+1 = ŵ∗ f̂ ŵ the stated result now follows. When j = 0, d̂1
D−→ �� ��

∗
� , where �� denotes

the first row of �. Now we consider the case that dj + 1 = 0, where j > 0. The expressions for ĝ and k̂ are
now

ĝ = OP (T −1) +�� f̂ε̃,ε̃ �∗
� +�� f̂ε̃,Z̃ [I 0]′ + [I 0] f̂Z̃,ε̃ �

∗
� + [I 0] f̂Z̃,Z̃ [I 0]′

k̂ = OP (T −1) +�� f̂ε̃,ε̃ �∗
� +�� f̂ε̃,Z̃ [I 0]′ + [0 I ] f̂Z̃,ε̃ �

∗
� + [0 I ] f̂Z̃,Z̃ [I 0]′
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a10 T. S. McElroy and A. Jach

and it follows that

v̂ = ĝ−1 [I 0] f̂Y,Y [0 I ]′ (B.8)

= OP (T −1) + ĝ−1
([
�� f̂ε̃,ε̃ + [I 0] f̂Z̃,ε̃

]
�∗
� + [

�� f̂ε̃,Z̃ + [I 0] f̂Z̃,Z̃
]

[0 I ]′
)

= ĝ−1
([
�� f̂ε̃,ε̃ + [I 0] f̂Z̃,ε̃

]
�∗
� v + [

�� f̂ε̃,Z̃ + [I 0] f̂Z̃,Z̃
]

[0 I ]′
)

= ĝ−1
([̂
g −�� f̂ε̃,Z̃ [I 0]′ − [I 0] f̂Z̃,Z̃ [I 0]′

]
v + [

�� f̂ε̃,Z̃ + [I 0] f̂Z̃,Z̃
]

[0 I ]′
)

= v − ĝ−1
[
�� f̂ε̃,Z̃ + [I 0] f̂Z̃,Z̃

]
w,

because w = [I 0]′ v − [0 I ]′. Set B = �� f̂ε̃,Z̃ + [I 0] f̂Z̃,Z̃ , so that

v̂ − v = OP (T −1) − ĝ−1 B w. (B.9)

Hence ŵ = w + [I 0]′ [̂v − v] = OP (T −1) + w − [I 0]′ ĝ−1 B w, so that by (B.7)

T d̂j+1 = oP (1) + T w∗ f̂Z̃,Z̃ w − T w∗ B∗ ĝ−1 B w,

using the null hypothesis and [I 0] f̂ w = OP (T −1) + B w. Because g is pd, we can apply the Ha case above

to obtain ĝ
D−→ �� ��

∗
� . Therefore the limit of d̂j+1 is determined by the terms f̂Z̃,Z̃ and f̂ε̃,Z̃ , which we

describe next. Then we claim the following two convergences hold:

T f̂Z̃,Z̃
D−→ Q (B.10)

T 1/2 f̂Z̃,ε̃
D−→ R, (B.11)

where the limits Q and R are given in the statement of the theorem. To establish (B.10), first take the case
that λ �= 0. Suppressing λ in the notation for Zt(λ), we apply Lemma 0.2 to obtain

T f̂Z̃,Z̃ =
T−1∑
t,�=1

 2
�b

(
t − �
T

)
Zt Z

∗
�

−
T−1∑
t=1

 1
�b

(
t − 1

T

) (
Zt Z

∗
0 + Z0 Z

∗
t

)+
T−1∑
t=1

 1
�b

(
t − T
T

) (
ZT Z

∗
t + Zt Z∗

T

)
+ �b(0)

(
Z0 Z

∗
0 + ZT Z∗

T

)−�b(1 − T −1)
(
Z0 Z

∗
T + ZT Z∗

0

)
.

The second and third terms are OP(T−1/2), because {Zt} is stationary. The sum of the fourth and fifth terms
converge in probability to

�b(0)
(
Z0 Z

∗
0 + Z∞ Z∗

∞
)−�b(1)

(
Z0 Z

∗
∞ + Z∞ Z∗

0

)
,

using the fact that ZT
P−→ Z∞. This limit is independent of Z0, using the representation of Zt(λ). The

first term of T f̂Z̃,Z̃ is (T − 1)
∑

|h|<T−1 
2
�b

(h/(T − 1)) �̂Z(h), where the sample autocovariance based on

sample size T − 1 is �̂Z(h) = (T − 1)−1 ∑T−1−|h|
t=1 Zt Z

∗
t+h. Now if x is a kink point of� and h/(T − 1) = x,

then the corresponding contribution to the double sum is approximately −[�̇−
b (x) − �̇+

b (x)] �̂((T − 1)x).
This has mean and variance both tending to zero as T → ∞, so long as x �= 0. In an interval of smoothness
Ck, the contribution is approximately

− T −1
∑

|h/T |∈Ck
�̈b(h/T ) �̂Z(h),
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Testing collinearity a11

which has mean of order T−1 and vanishing variance (because the acf of {Zt} is summable). The final case
occurs when there is a kink at x = 0, in which case we have the asymptotic contribution

− [�̇−
b (0) − �̇+

b (0)]�(0) = −2 �̇+
b (0) Cov(Z).

Note that this quantity is zero if the taper is smooth at zero, but is nonzero in the case of a Bartlett taper
(�̇+

b (0) = −1/b). Hence we obtain (B.10) when �
b
(r, s) is given by �b(r − s). Next, if λ = 0 we need to

modify the above calculations with the inclusion of T−1(ZT(0) − Z0(0)). Again writing Zt for Zt(0), to the
expression for T f̂Z̃,Z̃ are added the terms

−T −1
∑T

t,�=1�b
(
t−�
T

)
(Zt − Zt−1) (ZT − Z0)∗

−T −1
∑T

t,�=1�b
(
t−�
T

)
(ZT − Z0) (Z� − Z�−1)∗

+T −2
∑T

t,�=1�b
(
t−�
T

)
(ZT − Z0) (ZT − Z0)∗.

Whereas the third term converges to∫ 1

0

∫ 1

0
�b(r − s) drds (Z∞ − Z0) (Z∞ − Z0)∗,

to the first term (the second term is the transpose) we apply Lemma 0.1, obtaining

−T −1

(
T∑
�=1

T−1∑
t=1

 1
�b

(
t − �
T

)
Zt +

T∑
�=1

[
�b

(
T − �
T

)
ZT −�b

(
1 − �
T

)
Z0

])
(ZT − Z0)∗

= OP (T −1/2) +
(∫ 1

0
�b(x) dx Z0 −

∫ 1

0
�b(1 − x) dx Z∞

)
(Z∞ − Z0)∗.

Adding these limit results to the λ �= 0 limit, and simplifying, yields (B.10). To prove (B.11), we first
consider λ �= 0. Applying Lemma 0.1,

T f̂Z̃,ε̃ =
T∑
�=1

T−1∑
t=1

 1
�b

(
t − �
T

)
Zt ε

′
�e
iλ� +

T∑
�=1

�b

(
T − �
T

)
ZT ε

′
�e
iλ� −

T∑
�=1

�b

(
1 − �
T

)
Z0 ε

′
�e
iλ�.

(B.12)

Whereas (following previous arguments to handle kinks) the first term is OP(1), the second term multiplied
by T−1/2 is (by Lemma 0.1)

ZT

(
−
T−1∑
�=1

 1
�b

(
T − �− 1

T

)
d�/Tε

∗ +�b(0) d1
ε

∗
)

P−→ Z∞

(∫ 1

0
�̇b(1 − r)B(r)∗ dx +�b(0)B(1)∗

)
.

The third term multiplied by T−1/2 is

Z0

(
−
T−1∑
�=1

 1
�b

(
�− 1

T

)
d�/Tε

∗ −�b
(
T − 1

T

)
d1
ε

∗
)

P−→ Z0

(∫ 1

0
�̇b(r)B(r)∗ dx −�b(1)B(1)∗

)
.

Combining these two expressions, and simplifying, yields (B.11) when �b = �b. When λ = 0, the expres-
sions involving εt are modified by the sample mean, and the limits of dt/Tε are that of a Brownian bridge B.

C© 2019 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article-abstract/doi/10.1093/ectj/uty002/5303850 by C

ensus Bureau Library, Tucker M
cElroy on 10 M

ay 2019



a12 T. S. McElroy and A. Jach

Also, we modify the difference of Zt(0) by subtracting T−1(ZT(0) − Z0(0)), so that from (B.12) we subtract

T −1 (ZT − Z0)
T∑
t=1

T∑
�=1

�b

(
t − �
T

)
ε ′
�e
iλ�

= T −1/2 (ZT − Z0)

(
T∑
t=1

T−1∑
�=1

 1
�b

(
t − �
T

)
d�/Tε

∗ +
T∑
t=1

�b

(
T − t
T

)
d1
ε

∗
)
,

via Lemma 0.1. Here the DFT of ε is centred by its sample mean, and hence will converge to a Brownian
bridge process. The first term in parentheses is both OPT (the second term is zero, because d1

ε = 0), and
hence multiplying the whole expression by T−1/2 yields a convergence in probability to

(Z∞ − Z0)

(∫ 1

0

∫ 1

0
�̇b(r − s)B∗(r) dr ds

)
.

In the case that � is only piecewise-smooth, the above integrals of �̇ are interpreted as the sum over the
smooth regions Ck where the derivatives are defined. (The kinks, however, will not contribute to the integral.)

Combining and simplifying the limiting random variables yields (B.11). We conclude that T 1/2B
D−→ �� R

∗,
which proves the theorem. Finally, letting c* = w*[Z∞, Z0] we find that the limit can be written

− 2 �̇+
b (0)w∗Cov(Z)w + c∗

([
�
b
(1, 1) −�

b
(1, 0)

−�
b
(0, 1) �

b
(0, 0)

]
− A�∗

�

[
�� ��

∗
�

]−1
�� A

∗
)
c

with

A =
[ ∫ 1

0 �̇b(1, s)B(s)∗ ds +�b(1, 1)B(1)∗

− ∫ 1
0 �̇b(0, s)B(s)∗ ds −�b(0, 1)B(1)∗

]
.

Because c has a continuous distribution (as Z∞ and Z0 are independent and continuous) and � has a
continuous distribution, the limit distribution does not have point masses. Finally, when j = 0 we have � =
0 under H0, and hence (B.7) reduces to

f̂Y,Y = OP (T −1) + f̂Z̃,Z̃ .

Therefore by (B.10), T f̂YY
D−→ Q. �
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Testing collinearity a13

Table C1. Trend and irregular size (Bartlett).

Nominal level

Average 0.01 0.05 0.10
T qμ ρμ b test stat. Empirical size

1000 1 1 0.1 43.154 0.024 0.087 0.210
1000 1 1 0.3 16.629 0.020 0.075 0.135
1000 1 1 0.5 10.861 0.018 0.071 0.137
1000 3 1 0.1 43.636 0.005 0.026 0.066
1000 3 1 0.3 16.692 0.008 0.057 0.102
1000 3 1 0.5 10.901 0.012 0.061 0.104
1000 5 1 0.1 43.446 0.003 0.018 0.046
1000 5 1 0.3 16.570 0.006 0.046 0.093
1000 5 1 0.5 10.771 0.010 0.046 0.099
3000 1 1 0.1 43.485 0.012 0.062 0.117
3000 1 1 0.3 16.643 0.013 0.061 0.110
3000 1 1 0.5 10.847 0.012 0.061 0.108
5000 1 1 0.1 43.841 0.018 0.069 0.135
5000 1 1 0.3 16.873 0.017 0.073 0.127
5000 1 1 0.5 11.026 0.015 0.067 0.126

Note: trend and irregular case, empirical size of the subsampling test (R = 1000 replicates, Bartlett taper, subsample size
n selected adaptively) and the average test statistic.

Table C2. Trend and irregular size (Parzen).

Nominal level
Average 0.01 0.05 0.10

T qμ ρμ b test stat. Empirical size

1000 1 1 0.1 6.229 0 0 0
1000 1 1 0.3 3.778 0.005 0.029 0.057
1000 1 1 0.5 3.175 0.008 0.036 0.081
1000 3 1 0.1 6.120 0 0 0
1000 3 1 0.3 3.752 0.006 0.026 0.060
1000 3 1 0.5 3.175 0.008 0.048 0.084
1000 5 1 0.1 6.157 0 0 0
1000 5 1 0.3 3.755 0.006 0.031 0.057
1000 5 1 0.5 3.157 0.009 0.038 0.074
3000 1 1 0.1 4.725 0.003 0.010 0.018
3000 1 1 0.3 3.649 0.005 0.037 0.086
3000 1 1 0.5 3.122 0.005 0.036 0.094
5000 1 1 0.1 4.136 0.005 0.017 0.029
5000 1 1 0.3 3.401 0.009 0.034 0.064
5000 1 1 0.5 2.944 0.009 0.034 0.072

Note: trend and irregular case, empirical size of the subsampling test (R = 1000 replicates, Parzen taper, subsample size
n selected adaptively) and the average test statistic.
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a14 T. S. McElroy and A. Jach

Table C3. Trend and irregular size (Nyblom–Harvey).

Nominal level

Average 0.01 0.05 0.10
T qμ ρμ test stat. Empirical size

1000 1 1 0.086 0.012 0.057 0.111
1000 3 1 0.086 0.014 0.045 0.096
1000 5 1 0.083 0.007 0.047 0.090
3000 1 1 0.086 0.009 0.052 0.112
3000 3 1 0.087 0.013 0.050 0.097
3000 5 1 0.092 0.013 0.060 0.105
5000 1 1 0.086 0.013 0.046 0.101
5000 3 1 0.087 0.010 0.053 0.107
5000 5 1 0.089 0.014 0.060 0.113

Note: trend and irregular case, empirical size of Nyblom and Harvey (2000) test (R = 1000 replicates) and the average
test statistic.

Table C4. Trend and irregular power (Bartlett).

Nominal level

Average 0.01 0.05 0.10
T qμ ρμ b test stat Empirical power

1000 1 0.95 0.1 122.221 0.998 1 1
1000 1 0.95 0.3 74.201 0.892 0.974 0.990
1000 1 0.95 0.5 52.794 0.722 0.898 0.949
1000 1 0.97 0.1 92.404 0.986 0.997 0.999
1000 1 0.97 0.3 52.582 0.785 0.919 0.960
1000 1 0.97 0.5 36.632 0.593 0.820 0.901
1000 1 0.99 0.1 59.907 0.567 0.847 0.938
1000 1 0.99 0.3 28.890 0.361 0.633 0.772
1000 1 0.99 0.5 19.724 0.250 0.461 0.633
1000 3 0.95 0.1 288.933 1 1 1
1000 3 0.95 0.3 190.011 0.963 0.985 0.994
1000 3 0.95 0.5 138.365 0.886 0.954 0.985
1000 3 0.97 0.1 188.673 0.998 1 1
1000 3 0.97 0.3 120.725 0.954 0.986 0.993
1000 3 0.97 0.5 85.931 0.850 0.949 0.981
1000 3 0.99 0.1 94.335 0.928 0.972 0.994
1000 3 0.99 0.3 52.543 0.766 0.909 0.946
1000 3 0.99 0.5 36.687 0.577 0.789 0.890
1000 5 0.95 0.1 453.318 1 1 1
1000 5 0.95 0.3 307.936 0.965 0.984 0.997
1000 5 0.95 0.5 218.452 0.911 0.964 0.987
1000 5 0.97 0.1 291.420 1 1 1
1000 5 0.97 0.3 193.402 0.963 0.989 0.994
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Testing collinearity a15

Table C4. Continued

Nominal level

Average 0.01 0.05 0.10
T qμ ρμ b test stat Empirical power

1000 5 0.97 0.5 138.581 0.898 0.967 0.985
1000 5 0.99 0.1 128.346 0.990 1 1
1000 5 0.99 0.3 77.095 0.879 0.954 0.980
1000 5 0.99 0.5 54.726 0.727 0.879 0.944
3000 1 0.95 0.1 288.835 1 1 1
3000 1 0.95 0.3 193.449 0.958 0.981 0.991
3000 1 0.95 0.5 139.641 0.885 0.954 0.973
3000 1 0.97 0.1 193.665 0.999 0.999 1
3000 1 0.97 0.3 126.137 0.962 0.985 0.993
3000 1 0.97 0.5 89.447 0.866 0.949 0.971
3000 1 0.99 0.1 94.450 0.986 0.997 0.999
3000 1 0.99 0.3 53.341 0.784 0.938 0.974
3000 1 0.99 0.5 37.593 0.581 0.821 0.907
5000 1 0.95 0.1 445.503 0.999 1 1
5000 1 0.95 0.3 298.338 0.963 0.980 0.991
5000 1 0.95 0.5 217.649 0.907 0.962 0.982
5000 1 0.97 0.1 294.690 1 1 1
5000 1 0.97 0.3 194.816 0.963 0.984 0.993
5000 1 0.97 0.5 139.974 0.906 0.962 0.980
5000 1 0.99 0.1 128.608 0.998 1 1
5000 1 0.99 0.3 77.434 0.915 0.970 0.991
5000 1 0.99 0.5 54.160 0.755 0.909 0.955

Note: trend and irregular case, empirical power of the subsampling test (R = 1000 replicates, Bartlett taper, subsample
size n selected adaptively) and the average test statistic.

Table C5. Trend and irregular power (Parzen).

Nominal level

Average 0.01 0.05 0.10
T qμ ρμ b test stat. Empirical power

1000 1 0.95 0.1 92.619 0.882 0.936 0.958
1000 1 0.95 0.3 69.306 0.876 0.943 0.966
1000 1 0.95 0.5 52.266 0.720 0.830 0.881
1000 1 0.97 0.1 57.447 0.508 0.632 0.712
1000 1 0.97 0.3 42.722 0.703 0.854 0.907
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Table C5. Continued

Nominal level

Average 0.01 0.05 0.10
T qμ ρμ b test stat. Empirical power

1000 1 0.97 0.5 32.062 0.586 0.734 0.818
1000 1 0.99 0.1 23.842 0.012 0.031 0.044
1000 1 0.99 0.3 16.837 0.266 0.497 0.618
1000 1 0.99 0.5 12.861 0.239 0.431 0.540
1000 3 0.95 0.1 260.907 0.998 0.999 1
1000 3 0.95 0.3 191.049 0.969 0.988 0.993
1000 3 0.95 0.5 137.103 0.871 0.922 0.943
1000 3 0.97 0.1 161.799 0.976 0.986 0.995
1000 3 0.97 0.3 119.704 0.929 0.969 0.986
1000 3 0.97 0.5 89.079 0.830 0.910 0.938
1000 3 0.99 0.1 57.284 0.511 0.640 0.702
1000 3 0.99 0.3 40.973 0.691 0.850 0.906
1000 3 0.99 0.5 30.713 0.566 0.731 0.805
1000 5 0.95 0.1 434.482 1 1 1
1000 5 0.95 0.3 320.242 0.980 0.992 0.996
1000 5 0.95 0.5 237.973 0.879 0.935 0.963
1000 5 0.97 0.1 261.015 0.994 0.998 0.999
1000 5 0.97 0.3 199.236 0.975 0.987 0.994
1000 5 0.97 0.5 148.289 0.863 0.922 0.954
1000 5 0.99 0.1 93.948 0.866 0.918 0.943
1000 5 0.99 0.3 69.527 0.849 0.918 0.946
1000 5 0.99 0.5 51.133 0.708 0.825 0.871
3000 1 0.95 0.1 261.394 1 1 1
3000 1 0.95 0.3 194.977 0.969 0.985 0.989
3000 1 0.95 0.5 145.746 0.843 0.908 0.935
3000 1 0.97 0.1 159.875 1 1 1
3000 1 0.97 0.3 124.32 0.968 0.986 0.991
3000 1 0.97 0.5 94.059 0.850 0.920 0.940
3000 1 0.99 0.1 57.109 0.919 0.980 0.992
3000 1 0.99 0.3 43.714 0.799 0.910 0.943
3000 1 0.99 0.5 32.984 0.632 0.783 0.846
5000 1 0.95 0.1 440.744 1 1 1
5000 1 0.95 0.3 338.476 0.975 0.983 0.989
5000 1 0.95 0.5 254.120 0.889 0.943 0.958
5000 1 0.97 0.1 261.587 1 1 1
5000 1 0.97 0.3 193.668 0.975 0.986 0.991
5000 1 0.97 0.5 142.806 0.877 0.931 0.949
5000 1 0.99 0.1 91.108 0.999 1 1
5000 1 0.99 0.3 68.700 0.929 0.974 0.983
5000 1 0.99 0.5 51.315 0.737 0.874 0.914

Note: trend and irregular case, empirical power of the subsampling test (R = 1000 replicates, Parzen taper, subsample
size n selected adaptively) and the average test statistic.
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Testing collinearity a17

Table C6. Trend and irregular power (Nyblom–Harvey).

Nominal level

Average 0.01 0.05 0.10
T qμ ρμ test stat. Empirical power

1000 1 0.95 8.646 1 1 1
1000 1 0.97 8.442 1 1 1
1000 1 0.99 6.404 0.998 1 1
1000 3 0.95 9.746 1 1 1
1000 3 0.97 9.589 1 1 1
1000 3 0.99 8.355 1 1 1
1000 5 0.95 9.963 1 1 1
1000 5 0.97 9.865 1 1 1
1000 5 0.99 9.098 1 1 1
3000 1 0.95 29.920 1 1 1
3000 1 0.97 27.764 1 1 1
3000 1 0.99 25.679 1 1 1
3000 3 0.95 30.212 1 1 1
3000 3 0.97 30.820 1 1 1
3000 3 0.99 28.174 1 1 1
3000 5 0.95 31.505 1 1 1
3000 5 0.97 30.933 1 1 1
3000 5 0.99 29.338 1 1 1
5000 1 0.95 50.829 1 1 1
5000 1 0.97 47.935 1 1 1
5000 1 0.99 45.281 1 1 1
5000 3 0.95 51.815 1 1 1
5000 3 0.97 49.786 1 1 1
5000 3 0.99 49.473 1 1 1
5000 5 0.95 50.558 1 1 1
5000 5 0.97 51.790 1 1 1
5000 5 0.99 50.584 1 1 1

Note: trend and irregular case, empirical power of Nyblom and Harvey (2000) test (R = 1000 replicates) and the average
test statistic.
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Table C7. Trend, seasonal, and irregular size (Bartlett).

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) b test stat. Empirical size

1000 1 1 0.1 507.145 0.272 0.585 0.786
1000 1 1 0.3 199.855 0.035 0.122 0.226
1000 1 1 0.5 134.539 0.026 0.083 0.166
1000 3 1 0.1 517.047 0.027 0.145 0.320
1000 3 1 0.3 200.572 0.013 0.066 0.142
1000 3 1 0.5 134.428 0.013 0.060 0.119
1000 5 1 0.1 523.195 0.014 0.077 0.183
1000 5 1 0.3 203.850 0.015 0.064 0.135
1000 5 1 0.5 137.107 0.013 0.066 0.130
3000 1 1 0.1 517.816 0.046 0.178 0.344
3000 1 1 0.3 200.544 0.012 0.057 0.131
3000 1 1 0.5 134.063 0.006 0.046 0.114
5000 1 1 0.1 520.216 0.022 0.094 0.207
5000 1 1 0.3 200.723 0.011 0.054 0.108
5000 1 1 0.5 134.347 0.012 0.047 0.099

Note: trend, seasonal, and irregular case, empirical size of the subsampling test (R = 1000 replicates, Bartlett taper,
subsample size n selected adaptively) and the average test statistic.

Table C8. Trend, seasonal, and irregular size (Parzen).

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) b test stat. Empirical size

1000 1 1 0.1 116.435 0 0 0
1000 1 1 0.3 50.701 0 0 0.002
1000 1 1 0.5 42.988 0.003 0.02 0.036
1000 3 1 0.1 119.039 0 0 0
1000 3 1 0.3 51.777 0 0.001 0.002
1000 3 1 0.5 44.036 0.004 0.014 0.035
1000 5 1 0.1 116.375 0 0 0
1000 5 1 0.3 49.594 0 0 0.002
1000 5 1 0.5 41.747 0 0.01 0.027
3000 1 1 0.1 70.465 0 0 0
3000 1 1 0.3 46.126 0.007 0.025 0.052
3000 1 1 0.5 41.666 0.010 0.037 0.080
5000 1 1 0.1 62.783 0 0 0.002
5000 1 1 0.3 46.909 0.006 0.037 0.078
5000 1 1 0.5 43.193 0.006 0.054 0.103

Note: trend, seasonal, and irregular case, empirical size of the subsampling test (R = 1000 replicates, Parzen taper,
subsample size n selected adaptively) and the average test statistic.
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Table C9. Trend, seasonal, and irregular size (Busetti).

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) test stat. Empirical size

1000 1 1 0.256 0.012 0.056 0.107
1000 3 1 0.255 0.008 0.054 0.110
1000 5 1 0.259 0.013 0.053 0.117
3000 1 1 0.256 0.017 0.058 0.120
3000 3 1 0.257 0.016 0.058 0.113
3000 5 1 0.259 0.010 0.052 0.109
5000 1 1 0.262 0.016 0.055 0.125
5000 3 1 0.258 0.009 0.064 0.112
5000 5 1 0.262 0.018 0.071 0.123

Note: trend, seasonal, and irregular case, empirical size of Busetti (2006) test (R = 1000 replicates) and the average test
statistic.

Table C10. Trend, seasonal, and irregular power (Bartlett).

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) b test stat. Empirical power

1000 1 0.95 0.1 844.529 0.997 0.999 0.999
1000 1 0.95 0.3 507.585 0.945 0.990 0.996
1000 1 0.95 0.5 409.646 0.873 0.956 0.975
1000 1 0.97 0.1 712.689 0.977 0.996 1
1000 1 0.97 0.3 386.815 0.821 0.945 0.978
1000 1 0.97 0.5 301.339 0.698 0.852 0.914
1000 1 0.99 0.1 578.401 0.713 0.915 0.976
1000 1 0.99 0.3 265.030 0.329 0.621 0.781
1000 1 0.99 0.5 191.936 0.245 0.499 0.639
1000 3 0.95 0.1 1595.570 1 1 1
1000 3 0.95 0.3 1177.967 0.997 1 1
1000 3 0.95 0.5 999.805 0.984 0.994 0.996
1000 3 0.97 0.1 1155.152 0.998 1 1
1000 3 0.97 0.3 778.467 0.989 0.998 1
1000 3 0.97 0.5 643.060 0.950 0.987 0.996
1000 3 0.99 0.1 729.369 0.821 0.952 0.989
1000 3 0.99 0.3 391.694 0.740 0.901 0.946
1000 3 0.99 0.5 303.333 0.633 0.819 0.897

C© 2019 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article-abstract/doi/10.1093/ectj/uty002/5303850 by C

ensus Bureau Library, Tucker M
cElroy on 10 M

ay 2019



a20 T. S. McElroy and A. Jach

Table C10. Continued

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) b test stat. Empirical power

1000 5 0.95 0.1 2297.171 1 1 1
1000 5 0.95 0.3 1776.290 0.999 1 1
1000 5 0.95 0.5 1517.357 0.989 0.997 0.998
1000 5 0.97 0.1 1601.939 1 1 1
1000 5 0.97 0.3 1154.964 0.997 1 1
1000 5 0.97 0.5 981.672 0.982 0.995 0.999
1000 5 0.99 0.1 886.094 0.955 0.996 1
1000 5 0.99 0.3 530.615 0.919 0.978 0.995
1000 5 0.99 0.5 430.819 0.843 0.949 0.969
3000 1 0.95 0.1 1570.029 1 1 1
3000 1 0.95 0.3 1133.445 0.996 1 1
3000 1 0.95 0.5 957.164 0.971 0.987 0.991
3000 1 0.97 0.1 1166.588 1 1 1
3000 1 0.97 0.3 787.718 0.991 0.999 0.999
3000 1 0.97 0.5 655.850 0.959 0.987 0.991
3000 1 0.99 0.1 739.682 0.974 0.992 0.998
3000 1 0.99 0.3 401.767 0.800 0.936 0.973
3000 1 0.99 0.5 315.983 0.645 0.841 0.923
5000 1 0.95 0.1 2309.570 1 1 1
5000 1 0.95 0.3 1792.660 1 1 1
5000 1 0.95 0.5 1549.784 0.984 0.997 1
5000 1 0.97 0.1 1611.832 1 1 1
5000 1 0.97 0.3 1189.512 0.999 1 1
5000 1 0.97 0.5 1016.570 0.986 0.997 0.999
5000 1 0.99 0.1 892.700 0.995 1 1
5000 1 0.99 0.3 530.795 0.942 0.985 0.994
5000 1 0.99 0.5 426.782 0.846 0.953 0.977

Note: trend, seasonal, and irregular case, empirical power of the subsampling test (R = 1000 replicates, Bartlett taper,
subsample size n selected adaptively) and the average test statistic.

Table C11. Trend, seasonal, and irregular power (Parzen).

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) b test stat. Empirical power

1000 1 0.95 0.1 486.997 0.078 0.162 0.217
1000 1 0.95 0.3 380.945 0.736 0.865 0.910
1000 1 0.95 0.5 338.612 0.779 0.879 0.919
1000 1 0.97 0.1 333.833 0.002 0.004 0.004
1000 1 0.97 0.3 248.039 0.396 0.575 0.675
1000 1 0.97 0.5 219.768 0.523 0.713 0.792
1000 1 0.99 0.1 193.195 0 0 0
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Testing collinearity a21

Table C11. Continued

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) b test stat. Empirical power

1000 1 0.99 0.3 120.420 0.026 0.073 0.114
1000 1 0.99 0.5 106.101 0.109 0.253 0.362
1000 3 0.95 0.1 1221.469 0.916 0.958 0.970
1000 3 0.95 0.3 1044.155 0.979 0.992 0.995
1000 3 0.95 0.5 936.247 0.962 0.983 0.991
1000 3 0.97 0.1 784.278 0.414 0.567 0.664
1000 3 0.97 0.3 646.214 0.922 0.962 0.976
1000 3 0.97 0.5 571.558 0.907 0.950 0.976
1000 3 0.99 0.1 341.196 0.001 0.001 0.001
1000 3 0.99 0.3 257.347 0.393 0.564 0.648
1000 3 0.99 0.5 229.678 0.521 0.704 0.776
1000 5 0.95 0.1 1949.538 0.998 1 1
1000 5 0.95 0.3 1685.357 0.998 1 1
1000 5 0.95 0.5 1504.030 0.986 0.997 0.998
1000 5 0.97 0.1 1229.433 0.895 0.946 0.969
1000 5 0.97 0.3 1033.793 0.979 0.995 0.997
1000 5 0.97 0.5 920.610 0.960 0.984 0.994
1000 5 0.99 0.1 497.009 0.004 0.015 0.040
1000 5 0.99 0.3 394.153 0.704 0.826 0.879
1000 5 0.99 0.5 353.321 0.753 0.850 0.900
3000 1 0.95 0.1 1181.823 0.997 1 1
3000 1 0.95 0.3 1043.287 0.996 1 1
3000 1 0.95 0.5 936.829 0.984 0.997 0.998
3000 1 0.97 0.1 748.234 0.904 0.949 0.962
3000 1 0.97 0.3 645.084 0.988 0.996 0.998
3000 1 0.97 0.5 569.218 0.960 0.988 0.993
3000 1 0.99 0.1 302.595 0.027 0.061 0.081
3000 1 0.99 0.3 252.463 0.649 0.840 0.920
3000 1 0.99 0.5 227.233 0.625 0.795 0.878
5000 1 0.95 0.1 1878.759 1 1 1
5000 1 0.95 0.3 1685.618 1 1 1
5000 1 0.95 0.5 1506.755 0.99 0.995 0.997
5000 1 0.97 0.1 1184.723 1 1 1
5000 1 0.97 0.3 1062.522 0.998 1 1
5000 1 0.97 0.5 965.024 0.988 0.997 0.999
5000 1 0.99 0.1 441.559 0.853 0.951 0.967
5000 1 0.99 0.3 387.050 0.907 0.969 0.984
5000 1 0.99 0.5 349.111 0.833 0.936 0.969

Note: trend, seasonal, and irregular case, empirical power of the subsampling test (R = 1000 replicates, Parzen taper,
subsample size n selected adaptively) and the average test statistic.
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a22 T. S. McElroy and A. Jach

Table C12. Trend, seasonal, and irregular power (Busetti).

Nominal level

Average 0.01 0.05 0.10
T q(1) ρ(1) test stat. Empirical power

1000 1 0.95 6.358 0.998 1 1
1000 1 0.97 6.117 0.999 1 1
1000 1 0.99 4.967 0.981 0.997 0.998
1000 3 0.95 6.704 1 1 1
1000 3 0.97 6.848 1 1 1
1000 3 0.99 5.933 0.998 0.999 1
1000 5 0.95 6.827 1 1 1
1000 5 0.97 6.895 1 1 1
1000 5 0.99 6.585 0.999 0.999 1
3000 1 0.95 15.981 1 1 1
3000 1 0.97 15.494 1 1 1
3000 1 0.99 14.449 1 1 1
3000 3 0.95 16.304 1 1 1
3000 3 0.97 15.686 1 1 1
3000 3 0.99 15.937 1 1 1
3000 5 0.95 16.597 1 1 1
3000 5 0.97 15.812 1 1 1
3000 5 0.99 16.663 1 1 1
5000 1 0.95 24.238 1 1 1
5000 1 0.97 24.046 1 1 1
5000 1 0.99 22.996 1 1 1
5000 3 0.95 24.997 1 1 1
5000 3 0.97 24.242 1 1 1
5000 3 0.99 24.301 1 1 1
5000 5 0.95 24.927 1 1 1
5000 5 0.97 25.080 1 1 1
5000 5 0.99 24.252 1 1 1

Note: trend, seasonal, and irregular case, empirical power of Busetti (2006) test (R = 1000 replicates) and the average
test statistic.
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Testing collinearity a23

Table C13. Trend and irregular size/power (Bartlett).

Average

T qμ ρμ b j+1 test stat.
Empirical
size/power

1000 1 0.95 0.3 2 598.406 0.993
1000 1 0.95 0.3 3 64.256 0.945
1000 1 0.95 0.3 4 428.462 0.989
1000 1 0.97 0.3 2 603.895 0.988
1000 1 0.97 0.3 3 45.128 0.898
1000 1 0.97 0.3 4 431.411 0.987
1000 1 0.99 0.3 2 616.232 0.993
1000 1 0.99 0.3 3 26.832 0.581
1000 1 0.99 0.3 4 459.297 0.987
1000 1 1 0.3 2 595.783 0.991
1000 1 1 0.3 3 17.435 0.077
1000 1 1 0.3 4 512.357 0.987
1000 3 0.95 0.3 2 1815.703 0.990
1000 3 0.95 0.3 3 162.368 0.983
1000 3 0.95 0.3 4 1251.024 0.991
1000 3 0.97 0.3 2 1806.621 0.988
1000 3 0.97 0.3 3 107.909 0.976
1000 3 0.97 0.3 4 1224.213 0.990
1000 3 0.99 0.3 2 1832.353 0.992
1000 3 0.99 0.3 3 50.356 0.889
1000 3 0.99 0.3 4 1342.165 0.990
1000 3 1 0.3 2 1737.463 0.985
1000 3 1 0.3 3 23.601 0.059
1000 3 1 0.3 4 1473.580 0.989
1000 5 0.95 0.3 2 2989.559 0.988
1000 5 0.95 0.3 3 273.518 0.984
1000 5 0.95 0.3 4 2017.171 0.993
1000 5 0.97 0.3 2 2996.955 0.988
1000 5 0.97 0.3 3 169.112 0.989
1000 5 0.97 0.3 4 2007.379 0.991
1000 5 0.99 0.3 2 2922.443 0.983
1000 5 0.99 0.3 3 77.428 0.938
1000 5 0.99 0.3 4 2177.390 0.989
1000 5 1 0.3 2 2994.401 0.991
1000 5 1 0.3 3 25.495 0.047
1000 5 1 0.3 4 2454.164 0.991

Note: trend and irregular case, proportion of rejections of H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 in the subsampling test
at a 5% nominal level (R = 1000 replicates of 4-variate time series, Bartlett taper, subsample size n selected adaptively)
and the average test statistic.
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Table C14. Trend and irregular size/power (Parzen).

Average

T qμ ρμ b j+1 test stat.
Empirical
size/power

1000 1 0.95 0.3 2 662.834 0.993
1000 1 0.95 0.3 3 57.509 0.909
1000 1 0.95 0.3 4 433.41 0.972
1000 1 0.97 0.3 2 674.793 0.996
1000 1 0.97 0.3 3 37.098 0.803
1000 1 0.97 0.3 4 473.165 0.962
1000 1 0.99 0.3 2 636.274 0.984
1000 1 0.99 0.3 3 16.501 0.440
1000 1 0.99 0.3 4 488.768 0.974
1000 1 1 0.3 2 656.764 0.985
1000 1 1 0.3 3 5.866 0.030
1000 1 1 0.3 4 535.262 0.981
1000 3 0.95 0.3 2 1957.244 0.984
1000 3 0.95 0.3 3 166.894 0.980
1000 3 0.95 0.3 4 1333.822 0.971
1000 3 0.97 0.3 2 2021.529 0.984
1000 3 0.97 0.3 3 105.361 0.933
1000 3 0.97 0.3 4 1286.798 0.971
1000 3 0.99 0.3 2 2043.859 0.985
1000 3 0.99 0.3 3 41.738 0.793
1000 3 0.99 0.3 4 1353.229 0.951
1000 3 1 0.3 2 1993.391 0.985
1000 3 1 0.3 3 10.234 0.031
1000 3 1 0.3 4 1612.487 0.972
1000 5 0.95 0.3 2 3273.152 0.986
1000 5 0.95 0.3 3 285.903 0.991
1000 5 0.95 0.3 4 2186.997 0.968
1000 5 0.97 0.3 2 3253.737 0.982
1000 5 0.97 0.3 3 178.159 0.976
1000 5 0.97 0.3 4 2180.046 0.966
1000 5 0.99 0.3 2 3233.297 0.984
1000 5 0.99 0.3 3 68.911 0.895
1000 5 0.99 0.3 4 2258.041 0.966
1000 5 1 0.3 2 3228.706 0.981
1000 5 1 0.3 3 14.976 0.026
1000 5 1 0.3 4 2844.034 0.979

Note: trend and irregular case, proportion of rejections of H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 in the subsampling test
at a 5% nominal level (R = 1000 replicates of 4-variate time series, Parzen taper, subsample size n selected adaptively)
and the average test statistic.
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Testing collinearity a25

Table C15. Trend, seasonal, and irregular size/power (Bartlett).

Average

T q(1) ρ(1) b j+1 test stat.
Empirical
size/power

1000 1 0.95 0.3 2 3431.320 1
1000 1 0.95 0.3 3 447.375 0.981
1000 1 0.95 0.3 4 2450.678 1
1000 1 0.97 0.3 2 3354.192 1
1000 1 0.97 0.3 3 349.027 0.939
1000 1 0.97 0.3 4 2514.043 1
1000 1 0.99 0.3 2 3383.906 1
1000 1 0.99 0.3 3 245.551 0.616
1000 1 0.99 0.3 4 2640.491 0.999
1000 1 1 0.3 2 3276.443 1
1000 1 1 0.3 3 192.328 0.169
1000 1 1 0.3 4 2763.396 1
1000 3 0.95 0.3 2 9977.77 1
1000 3 0.95 0.3 3 955.626 0.999
1000 3 0.95 0.3 4 6794.931 0.999
1000 3 0.97 0.3 2 9995.539 1
1000 3 0.97 0.3 3 666.103 0.996
1000 3 0.97 0.3 4 6884.675 1
1000 3 0.99 0.3 2 10131.859 1
1000 3 0.99 0.3 3 349.482 0.890
1000 3 0.99 0.3 4 7262.340 1
1000 3 1 0.3 2 9842.764 1
1000 3 1 0.3 3 195.161 0.082
1000 3 1 0.3 4 8122.924 0.999
1000 5 0.95 0.3 2 16323.456 1
1000 5 0.95 0.3 3 1488.596 0.999
1000 5 0.95 0.3 4 11238.458 0.999
1000 5 0.97 0.3 2 16084.533 0.999
1000 5 0.97 0.3 3 1003.036 0.999
1000 5 0.97 0.3 4 11006.001 0.999
1000 5 0.99 0.3 2 16246.002 1
1000 5 0.99 0.3 3 462.494 0.967
1000 5 0.99 0.3 4 11669.805 1
1000 5 1 0.3 2 16618.797 1
1000 5 1 0.3 3 196.877 0.080
1000 5 1 0.3 4 13005.614 1

Note: trend, seasonal, and irregular case, proportion of rejections of H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 in the
subsampling test at a 5% nominal level (R = 1000 replicates of 4-variate time series, Bartlett taper, subsample size n
selected adaptively) and the average test statistic.

C© 2019 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article-abstract/doi/10.1093/ectj/uty002/5303850 by C

ensus Bureau Library, Tucker M
cElroy on 10 M

ay 2019



a26 T. S. McElroy and A. Jach

Table C16. Trend, seasonal, and irregular size/power (Parzen).

Average

T q(1) ρ(1) b j+1 test stat.
Empirical
size/power

1000 1 0.95 0.3 2 3454.147 1
1000 1 0.95 0.3 3 315.317 0.791
1000 1 0.95 0.3 4 2438.745 0.999
1000 1 0.97 0.3 2 3414.047 1
1000 1 0.97 0.3 3 208.865 0.504
1000 1 0.97 0.3 4 2542.215 0.998
1000 1 0.99 0.3 2 3440.203 0.999
1000 1 0.99 0.3 3 104.355 0.051
1000 1 0.99 0.3 4 2847.3 1
1000 1 1 0.3 2 3481.681 1
1000 1 1 0.3 3 45.377 0
1000 1 1 0.3 4 2863.417 1
1000 3 0.95 0.3 2 10159.124 1
1000 3 0.95 0.3 3 869.335 0.989
1000 3 0.95 0.3 4 6927.782 1
1000 3 0.97 0.3 2 10155.594 1
1000 3 0.97 0.3 3 543.721 0.931
1000 3 0.97 0.3 4 7042.252 0.997
1000 3 0.99 0.3 2 10308.321 1
1000 3 0.99 0.3 3 217.452 0.491
1000 3 0.99 0.3 4 8015.146 1
1000 3 1 0.3 2 10261.554 1
1000 3 1 0.3 3 47.314 0
1000 3 1 0.3 4 8578.804 1
1000 5 0.95 0.3 2 16931.012 0.999
1000 5 0.95 0.3 3 1442.593 0.997
1000 5 0.95 0.3 4 11250.759 0.998
1000 5 0.97 0.3 2 16954.534 1
1000 5 0.97 0.3 3 899.47 0.989
1000 5 0.97 0.3 4 11666.628 1
1000 5 0.99 0.3 2 17056.249 1
1000 5 0.99 0.3 3 334.333 0.786
1000 5 0.99 0.3 4 12066.504 1
1000 5 1 0.3 2 17158.759 1
1000 5 1 0.3 3 48.339 0.003
1000 5 1 0.3 4 14099.387 0.999

Note: trend, seasonal, and irregular case, proportion of rejections of H0 : dj + 1 = 0 versus H1 : dj + 1 > 0 in the
subsampling test at a 5% nominal level (R = 1000 replicates of 4-variate time series, Parzen taper, subsample size n
selected adaptively) and the average test statistic.
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