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We propose a new seasonal adjustment method based on the Regularized Singular Value Decomposition
(RSVD) of the matrix obtained by reshaping the seasonal time series data. The method is flexible enough
to capture two kinds of seasonality: the fixed seasonality that does not change over time and the time-
varying seasonality that varies from one season to another. RSVD represents the time-varying seasonality
by a linear combination of several seasonal patterns. The right singular vectors capture multiple seasonal
patterns, and the corresponding left singular vectors capture the magnitudes of those seasonal patterns and
how they change over time. By assuming the time-varying seasonal patterns change smoothly over time,
the RSVD uses penalized least squares with a roughness penalty to effectively extract the left singular
vectors. The proposed method applies to seasonal time-series data with a stationary or nonstationary
nonseasonal component. The method also has a variant that can handle the case that an abrupt change
(i.e., break) may occur in the magnitudes of seasonal patterns. Our proposed method compares favorably
with the state-of-art X-13ARIMA-SEATS program on both simulated and real data examples.
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1. INTRODUCTION

Seasonal adjustment of economic and business time-series
data is of great importance in economic analysis and business
decisions. Proper use of seasonal adjustment methodology
removes the calendrical fluctuations from the seasonal time
series, while minimizing distortions to other dynamics in the
data, such as trend. Seasonally adjusted time-series data can
be used to evaluate and study the present economic situation
(e.g., by examining the business cycle), and therefore help
policy-makers and economic agents make correct and timely
decisions. Moreover, seasonally adjusted time-series data can
be entered into time-series econometric models that analyze
the non-seasonal dynamic relationships among economic and
business variables. Findley (2005) is the most recent review
article on the subject; Bell, Holan, and McElroy (2012) con-
tains a volume of articles on recent developments in season-
ality and seasonal adjustment; the monograph of Dagum and
Bianconcini (2016) provides a comprehensive presentation of
various seasonal adjustment methods.

Generally speaking, there are two approaches for seasonal
adjustment, the model-based approach and the empirical-based
approach. The model-based approach directly incorporates sea-
sonality in the econometric model and jointly studies the
seasonal and nonseasonal characteristics in time-series data. It
can be argued that the seasonality in one economic variable can

be related to other economic variables, or to the nonseasonal
components within the same variable, and therefore seasonality
should not be regarded as a single and isolated factor; see Lovell
(1963), Sims (1974), and Bunzel and Hylleberg (1982), among
others. There are many different modeling strategies of seasonal
components, which can be generally categorized into several
types. One modeling strategy treats seasonality as deterministic
linear (nonlinear) additive (multiplicative) seasonal compo-
nents; see, for example, Barsky and Miron (1989), Franses
(1998), and Cai and Chen (2006). Another popular modeling
strategy considers seasonality as stochastic, where seasonality
can be defined as the sum of a stationary stochastic process and
a deterministic process (Canova 1992), a nonstationary process
with seasonal unit roots (Hylleberg et al. 1990; Osborn 1993), a
periodic process in which the coefficients vary periodically with
seasonal changes (Gersovitz and MacKinnon 1978; Osborn
1991; Hansen and Sargent 1993), or an unobservable compo-
nent in a structural time series model (Harrison and Stevens
1976; Harvey 1990; Eiurridge and Wallis 1990; Harvey and
Scott 1994; Proietti 2004). Because of the direct specification
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and estimation of the seasonal component in an econometric
model, the model-based approach is statistically more efficient
than the empirical-based approach. The disadvantage of the
model-based approach is that the extracted seasonal component
can be sensitive to the dynamic and distributional specifications
that are imposed on the econometric model.

The empirical-based approach uses ad hoc methods to
extract or remove seasonality and delivers plausible empirical
results with real data. One example is the X-11 method
proposed by the U.S. Census Bureau (Shiskin, Young, and
Musgrave 1965), which uses weighted moving averages
to remove seasonality. This simple empirical method can
be criticized for its inflexibility, lack of support from
statistical theory, and possible distortions of those nonseasonal
components in the time series, which subsequently causes
misinterpretations of dynamic relationships across different
time series. To correct the drawbacks of X-11, researchers have
proposed various improved empirical-based methods, such as
X-11-ARIMA (proposed by Dagum 1980) and X-12-ARIMA
(proposed by the U.S. Census Bureau, and described in Findley
et al. 1998). These improved methods pretreat the time-series
data with ARIMA model to eliminate outliers and (ir)regular
calendar effects, and perform forecasting and backcasting
techniques to complete the data points at both ends of the
time series before the weighted moving averages of X-11 are
applied to remove seasonal fluctuations.

Nowadays, there may not exist a very clear-cut distinction
between model-based and empirical-based approaches on sea-
sonal adjustment, as researchers prefer to synthesize the two
approaches by incorporating statistical models into empirical
methods: The two state-of-the-art seasonal adjustment meth-
ods, X-12-ARIMA and TRAMO-SEATS, widely used by many
national statistical agencies are of this kind. In this article,
we also take this synthesized approach. Under the innocuous
assumption that the nonseasonal component is stationary or
nonstationary with a stochastic trend, we propose a flexible and
robust seasonal adjustment method based on Regularized Sin-
gular Value Decomposition (RSVD) proposed by Huang, Shen,
and Buja (2008) and Huang, Shen, and Buja (2009). Hereafter,
these two papers are referred by HSB (2008) and HSB (2009)
respectively. We first transform the vector of seasonal time-
series data into a matrix whose rows represent periods and
columns represent seasons. Then, we perform the RSVD on this
matrix, the obtained right singular vectors represent seasonal
patterns and left singular vectors represent the magnitudes
of the seasonal patterns for different periods. RSVD applies
regularization to ensure that the extracted seasonal patterns
changes over time slowly. Such regularization improves sta-
bility of the extracted seasonal patterns and their magnitudes.
Our new method has merits in the following aspects. First,
it is flexible enough to handle both fixed and time-varying
seasonality, with or without abrupt changes in seasonality.
Second, it can accommodate both stationary and nonstationary
stochastic nonseasonal components. Third, because the regu-
larization parameter is fully data-driven by generalized cross-
validation, it is robust and applicable to some irregular seasonal
data for which popular seasonal adjustment methods may fail
to deliver reasonable results.

There are similarities and differences between the Seasonal-
Trend decomposition procedure based on Regression (STR)
approach proposed by Dokumentov and Hyndman (2015) and
our RSVD method in modeling seasonality. Essentially, both
STR and RSVD methods introduce Tikhonov regularization
terms that are motivated by the smoothness feature of
the seasonal component. The RSVD method considers the
singular value decomposition of the seasonal matrix and only
imposes roughness penalties on the left singular vectors that
capture the variation of seasonal patterns (i.e., corresponding
right singular vectors) across consecutive seasonal cycles.
In contrast, the STR method directly imposes roughness
penalties on seasonal terms (or the coefficients in the linear
combination of spline basis functions that approximate the
seasonal terms) across consecutive seasonal cycles and/or
within each seasonal cycle. However, compared to the STR
method, the main advantage of our RSVD method is that,
with the merit of dimension reduction due to a low rank
approximation, the parameterization of our method is much
more parsimonious than that of the STR method, which
directly estimates each seasonal term. Moreover, the RSVD
method decomposes the seasonal component into fixed and
time-varying seasonal patterns, which can provide much
rich information about the complexity and composition of
seasonality.

In this article, using both simulated and real economic data,
we also compare our proposed seasonal adjustment methods
with two state-of-the-art and widely used seasonal adjust-
ment methods (X-12-ARIMA and SEATS) provided in the
latest X-13ARIMA-SEATS program developed by U.S. Cen-
sus Bureau. We find that (i) when seasonality is moderate or
weak, traditional X-12-ARIMA and SEATS methods tend to
outperform our proposed seasonal adjustment method, which
is especially the case if the seasonality is weak; (ii) how-
ever, in comparison to X-12-ARIMA and SEATS methods,
our proposed seasonal adjustment method is good at cap-
turing strong seasonal variations in the series; (iii) our pro-
posed method is robust to some irregular seasonal data for
which X-12-ARIMA and SEATS may need additional delicate
performance tuning. Moreover, compared to X-12-ARIMA
and SEATS, our proposed method provides a more transpar-
ent and meaningful explanation for seasonality. Our proposed
method decomposes the seasonal component into different
seasonal patterns, traces the dynamics of seasonality by time-
varying pattern coefficients, and identifies important seasonal-
ity break times automatically, which provides rich insights into
seasonality.

The remaining part of this article is organized as follows.
Section 2 briefly reviews the RSVD. Section 3 introduces
some notations for the matrix representation of seasonal time
series. Section 4 gives our basic seasonal adjustment method
when nonseasonal component is stationary or difference is
stationary. Section 5 extends our basic seasonal adjustment
method to accommodate stochastic trend and abrupt changes in
seasonality. Simulation results under different data generating
processes (DGPs) are reported in Section 6, and three real
data examples are provided in Section 7. Section 8 concludes.
Due to the space limitation, some technical details, additional
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simulation results, and further discussions on some important
issues concerning our proposed RSVD seasonal adjustment
method are provided in the Online Appendices.

2. A BRIEF REVIEW OF REGULARIZED SVD

As a well-known matrix factorization technique, the singular
value decomposition (SVD) has been widely used in tackling
many real practical problems. In the context of latent semantic
analysis, Deerwester et al. (1990) propose a new approach to
automatic indexing and retrieval using the SVD method. Sarwar
et al. (2000) make use of SVD for recommender systems that
make product recommendations during a live customer interac-
tion. More recently and publicly known, Bell et al. (2009), the
$1M Grand Prize winner of the Netflix Prize contest, employ
SVD in the challenge of predicting user preferences.

Regularized singular valued decomposition (RSVD) is a
variant of singular value decomposition that takes into account
the intrinsic smoothness structure of a data matrix (HSB, 2008,
2009). The basic idea of RSVD is quite intuitive. The data
matrix is considered as discretized values of a bivariate function
with certain smoothness structure evaluated at a grid of design
points. To impose smoothness in singular value decomposition,
RSVD imposes roughness penalties on the left and/or right
singular vectors when singular value decomposition is imple-
mented on the data matrix.

Consider an n × p dimensional data matrix X = (xij) whose
column mean is zero. The first pair of singular vectors, u and v,
respectively, solves the following minimization problem:

(̂u, v̂) = arg min
u,v

‖X − uv�‖2
F , (1)

which does not assume any smoothness structure of the data
matrix. In contrast, RSVD explores such smoothness structure
by imposing roughness penalties on singular vectors u and v.
In the context of seasonal adjustment, the seasonal time series
can be represented as a matrix whose each row represents one
period of all seasons. We later argue that the data matrix should
have smooth changes across rows, and thus the changes in
left singular vector u are expected to be smooth. Therefore, a
relevant RSVD solves the following minimization problem:

(̂u, v̂) = arg min
u,v

‖X − uv�‖2
F + αu��u, (2)

where � is an n × n nonnegative definite roughness penalty
matrix, α is smoothing parameter, and v�v = 1 for identifica-
tion purpose.

A simple variant of the power algorithms in HSB (2008,
2009) gives the following Algorithm 1 for solving the problem
(2):

Algorithm 1 (Regularized singular value decomposition of
X).
Step 1. Initialize u using the standard SVD for X.
Step 2. Repeat until convergence:

1. v ← X�u
‖X�u‖ .

2. u ← (In + α�)−1Xv with α selected by minimizing the
following generalized cross-validation criterion:

GCV(α) = 1

n

‖[In − M(α)]Xv‖2(
1 − 1

n tr{M(α)}
)2

, (3)

where In is the n × n identity matrix, and M(α) = (In +
α�)−1 is the smoothing matrix.

The derivation of the generalized cross-validation criterion
used in (3) is similar to HSB (2008, 2009) and can be found
in the Online Appendices. The difference of Algorithm 1 from
previous algorithms is that, in HSB (2008) the roughness
penalty is imposed only on v and in HSB (2009) on both u
and v. If there is no penalty, that is, α = 0, the algorithm is
essentially the power algorithm for standard SVD and solves
the problem (1).

In general, the regularized SVD attempts to find a rank-r
decomposition (r ≤ p) such that X = UV�, where U is a n × r
matrix, and V is a p × r matrix. The jth column in matrix U
and V is called the jth left and right regularized singular vector
of matrix X, respectively. Algorithm 1 finds the first regularized
singular vector pair. The subsequent regularized singular vector
pairs can be obtained by repeatedly applying Algorithm 1 to the
residual matrix X − û̂v�. Below, we propose some variants of
Algorithm 1 for different scenarios of seasonal adjustment.

3. MATRIX REPRESENTATION OF SEASONAL TIME
SERIES

For a seasonal time series {xt : t = 1 · · · , T} with p seasons,
we can represent it (see Buys and Ballot 1847) as a matrix
with p columns, whose each row represents one period of the
seasons, as follows:

X = [
x�

1· x�
2· . . . x�

i· . . . x�
n·
]�

,

where the 1 × p row vector xi· denotes the ith row of matrix X.
Hence, the T × 1 column vector form of time-series xt can be
written as

XT ≡ Vec(X�) = (x1, · · · , xt, · · · , xT)�

= (x1·, · · · , xi·, · · · , xn·)�,

where the function Vec(·) converts a matrix into a column
vector by stacking the columns of the matrix. The subscripts of
the elements in the matrix representation can be obtained using
a mapping of the one-dimensional time subscript t ∈ N to the
two-dimensional time subscripts, (i, j) ∈ N

2, denoting the jth
season in the ith period,

I : N 	→ N
2 (4)

t → (i(t), j(t)) ≡ (�t/p�, t − 
t/p�p).

Let n ≡ T/p denote the total number of time span included in
the time series, so that we have that 1 ≤ i ≤ n, 1 ≤ j ≤ p, and
t = (i(t) − 1)p + j(t). Here, we assume that T/p is an integer
for simplicity of exposition.

For later use of notations, let ip and 0p denote the p × 1
column vector of ones and zeros, respectively. Moreover, let
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Qn denote the n-dimensional column-wise de-meaning matrix,
that is, Qn ≡ In − ini�n /n so that Qna = a − ā, for a vector
a = (a1, . . . , an)

�, where ā = ā in, and ā = ∑
1≤i≤n ai/n. Let

the (d − 1)× d matrix �d be the first-order difference operator,
that is,

�d ≡ [
0d−1 Id−1

] − [
Id−1 0d−1

]
.

Then the second-order difference operator is �2
d ≡ �d−1�d.

Using these difference operators, one widely used choice of the
penalty matrix in (2) can take the form � ≡ (�2

n)
��2

n.

4. BASIC SEASONAL ADJUSTMENT

This section discusses seasonal adjustment based on regular-
ized SVD. We motivate the use of regularized SVD on seasonal
adjustment in Section 4.1, and then propose the seasonal
adjustment procedures when the nonseasonal component of a
time series is stationary or difference stationary in Section 4.2
and 4.3 respectively. Section 4.4 introduces how to select the
number of seasonal patterns in the RSVD method.

4.1. Motivation of Using Regularized SVD for Seasonal
Adjustment

We decompose the seasonal time series {xt}T
t=1 into the

deterministic seasonal component st and stochastic nonsea-
sonal component et in the additive form,

xt = st + et, t = 1, . . . , T , (5)

where the nonseasonal component et is a stationary process.
Using the mapping I defined in (4), we rewrite (5) as xi,j =
sij + ei,j, where the seasonal component satisfies

∑p
j=1 si,j =

0 for identification. The decomposition can also be written in
matrix from,

X = S + E. (6)

When the seasonal effects are fixed, that is, the seasonal
pattern does not change from period to period, st = fj(t), the
seasonal component S can be represented as S = in · f�. In
this case, a single seasonal pattern f� = (f1, f2, · · · , fp) repeats
itself in each period. In general, the seasonal effects may change
over time, we use a rank-r reduced SVD of (S − in · f�) to
represent the time-varying seasonality:

S = in · f� + UV�, (7)

where U is an n × r matrix, and V is a p × r matrix with
V�V = Ir and r ≤ p. For identification, we require the
columns of U to be orthogonal to in or, U�in = 0, which is
equivalent to Q�

n U = U. The second term in the decomposition
(7) provides an intuitive explanation for the seasonality. The jth
column vector vj in V represents the jth seasonal pattern; and
the corresponding jth column vector uj in U is called pattern
coefficients, since its elements delineate how the jth seasonal
pattern changes across different periods. Equations (6) and (7)
comprise our basic seasonal adjustment method. For example,
in a special case of r = 1 with f = 0, the seasonal matrix is
S = uv� with v consisting of the seasonal pattern and u giving
its time evolution across different periods.

Now, we argue that there is intrinsic smoothness in the
seasonal signal that warrants using the regularized SVD. For
notational simplicity, assume the fixed seasonality term is void.
The ith row of S, denoted by si, represents the seasonal behavior
of series xt during the ith period, which is a linear combination
of all the seasonal patterns in V with the ith row of U as the
coefficients, that is,

si = uiV� =
p∑

j=1

ui,jvj.

A necessary condition for seasonality is persistence of a sea-
sonal pattern from one year to the next; for a stochastic
approach, persistence is assessed through correlation, whereas
in a deterministic context the concept of smoothness is used
instead. Essentially, seasonality imposes that the ui’s, or, ui,j’s
for fixed j (i.e., the elements in each column of matrix U)
change smoothly with i. Based on this smoothness on the
decomposition of seasonal matrix S, we deem that the rough-
ness of each column in the observed data matrix X is due to the
“contamination” of the stochastic nonseasonal component E in
(6). This smoothness also suggests the use of regularized SVD
for finding the decomposition (6) with a roughness penalty
applied on the columns of U. On the other hand, it is usually
not appropriate to apply a roughness penalty on the columns of
V, since seasonal behaviors usually have sharp increases and
falls within a period.

In sum, any seasonal matrix S can be decomposed uniquely
into the SVD form in (7) with some r ≤ p according to matrix
theory, which implies that any seasonal component is driven
by at most a fixed seasonal patterns f and the r time-varying
seasonal patterns in the columns of V. Given the smoothness
feature of seasonality, the pattern coefficients in the columns
of U should be smooth over time. The regularization with
roughness penalty effectively separates the seasonal variations
in S from the irregular component in E. Based on a selection
criterion, we select those significant seasonal patterns from the
data matrix X that drives the seasonal behavior and discard
those indiscernible seasonal patterns that are submerged in
noise. Therefore, our RSVD method should be good at cap-
turing seasonality that has strong variations compared to the
irregular component.

There are three reasons that prevent direct application of
Algorithm 1 in HSB (2008, 2009) to the data matrix X for
seasonal adjustment. First, because of the existence of fixed
seasonality, it is unrealistic to restrict the sample mean of each
column of X to zero, that is, to simply subtract the mean from
each column. Instead, the fixed seasonality f should be explic-
itly estimated in the seasonal adjustment procedure. Second,
for identification, the sum of seasonal terms within a period
should be zero, that is,

∑p
j=1 si,j = 0 for each i = 1, · · · , n.

Otherwise, the seasonal component would incorporate part
of the overall level of the series. Third, if the nonseasonal
component {et} is nonstationary and has a stochastic trend
which is more commonly encountered in economic time series
data, Algorithm 1, assuming stationarity in {et}, is invalid. Next,
taking all these into account, we develop a procedure that is
based on a modification of Algorithm 1.
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4.2. Seasonal Adjustment With Stationary et

Our basic seasonal adjustment procedure has three steps: 1.
Estimate the seasonal pattern coefficients in U using a modified
version of Algorithm 1 to satisfy the zero-sum restriction on
seasonal effects; 2. Estimate the fixed seasonal pattern f and
the time-varying seasonal patterns in V; 3 (optional). Estimate
the parameters of the stationary nonseasonal components. The
three steps are elaborated below.

Step One: Estimating Seasonal Pattern Coefficients in U.
To apply Algorithm 1, we first eliminate the fixed seasonal

effects in (7) by pre-multiplying the column-wise demeaning
matrix Qn to data matrix X to obtain X̃ = QnX. Since Qnin =
0n and QnU = U,

X̃ = QnS + QnE = Qn(in · f� + UV�) + QnE = UV� + Ẽ.

The resulting column-centered data matrix X̃ does not have a
fixed seasonality. To guarantee the zero-sum seasonal effects
requirement S · ip = 0n, we enforce the sufficient conditions
of zero-sum seasonal patterns, f�ip = 0 and V�ip = 0r.
Combining above gives the following modified version of
Algorithm 1.

Algorithm 2.
It is the same as Algorithm 1 except that
1. the data matrix X is replaced by X̃ = QnX, and
2. the updating equation in Step 2.1 now becomes

v ← QpX̃�u

‖QpX̃�u‖ .

In Step 2.1 of this algorithm, premultiplication with Qp

ensures v�ip = 0 for the zero-sum of seasonal pattern require-
ment, and the normalization is to ensure v�v = 1 for identifi-
cation.

Applying Algorithm 2 we obtain the first pair of estimated
right singular vector, denoted as ṽ, and the left singular vector,
denoted as û. The subsequent pair of singular vectors can
be extracted by applying Algorithm 2 to the residual matrix
X̃ − û̃v�, in which the preceding effect of the first pair of
singular vectors is subtracted from data matrix X̃. Applying this
procedure r times sequentially, we obtain r pairs of regularized
singular vectors, concatenating them into the n × r matrix
Û = (̂u1, · · · , ûr) and the p × r matrix Ṽ = (̃v1, · · · , ṽr). We
keep Û for use in the next step.

Step Two: Estimating Fixed/Time-Varying Seasonal Patterns
in f and V.

Recall that XT = Vec(X�). Given the estimates of seasonal
pattern coefficients Û in Step One, and that the pattern coeffi-
cients of fixed seasonal pattern f all take value 1, the estimates
of the time varying seasonal patterns in V and fixed seasonal
pattern f can be obtained jointly by solving a constrained least
squares problem,

(̂f, V̂) = arg min
f, V

[
XT − Vec(f · i�n + VÛ�)

]�
(8)

×
[
XT − Vec(f · i�n + VÛ�)

]
,

such that f� · ip = 0, and V� · ip = 0r.

Note that the minimization problem in (8) can be rewritten as,

β̂ = arg min
β

(XT − Zβ)�(XT − Zβ) with Rβ = 0r+1, (9)

where Z ≡ [in ⊗ Ip, û1 ⊗ Ip, · · · , ûr ⊗ Ip], β ≡
(f�, v�

1 , · · · , v�
r )�, and R ≡ Ir+1 ⊗ i�p . Then, the estimate

β̂ can be written explicitly as,

β̂ ≡ (̂f�, v̂�
1 , · · · , v̂�

r )�

= b − (Z�Z)−1R�[R(Z�Z)−1R�]−1Rb,

where b = (Z�Z)−1Z�XT is the unconstrained least-squares
estimate for the problem (9).

Given the estimates of fixed and time-varying seasonal
patterns in f̂ and V̂ obtained from the constrained least squares
regression, we obtain the estimated seasonal component as,

Ŝ = in̂f� + ÛV̂�.

Step Three (optional): Estimating ARMA Parameters in
Nonseasonal Component E.

In the second step, we obtain the estimated seasonal matrix
Ŝ, which can be rewritten in vector form as {̂st}T

t=1. Correspond-
ingly, the estimated nonseasonal component can be extracted
by subtracting ŝt from the original time series xt, that is, êt ≡
xt − ŝt. If the stochastic component of xt is assumed to follow a
stationary ARMA(p, q) process, that is, et ∼ ARMA(p, q) for
t = 1, . . . , T , the ARMA parameters can then be obtained by
fitting the ARMA model to êt. (This is a “nuisance” model;
other stationary models could be used without affecting the
methodology.)

Based on the fitted ARMA model, a feasible GLS estimation
can be obtained by weighting the least squares in (8) with
the inverse of estimated variance–covariance matrix of the
stochastic nonseasonal component êt. Although such an iterated
procedure could potentially improve estimation accuracy, we
find (using a simulation study) that the efficiency gain of the
feasible GLS in terms of reductions in AMSE and AMPE for
estimating the seasonal component is only marginal (around
2%) even when the first-order autocorrelation of et reaches 0.8.
Thus, in general, we recommend using the unweighted ordinary
least squares estimation in (8) instead of GLS unless the non-
seasonal component et exhibits very strong persistence. This
also has the benefit of avoiding the additional computation
burden. Moreover, as the ARMA model is usually not of
particular interest for seasonal adjustment, Step Three can be
omitted from the procedure.

4.3. Seasonal Adjustment With Difference Stationary et

The basic seasonal adjustment assumes that the nonseasonal
component of a seasonal time series is stationary. This section
discusses the situation more commonly encountered in eco-
nomic data, wherein the nonseasonal component is nonstation-
ary and has a stochastic trend. More specifically, we assume the
nonseasonal component et in the decomposition (5) xt = st + et

is an integrated process, that is, the first difference process of et

is stationary.
Existence of a stochastic trend in each column of E inval-

idates the use of regularized SVD in the basic adjustment
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procedure, the direct use of which may produce an inconsistent
estimate of the seasonal component S. As examination of (6)
indicates, when the nonseasonal component is stationary, that
there is no clear smooth pattern in each column of E, while the
seasonal component changes smoothly in each column of S;
therefore the regularized SVD can separate S from E. However,
if there is a stochastic trend in E, each column of E has a
stochastic trend and thus is quite smooth. Intuitively, the trend
smoothness in E “contaminates” the seasonality smoothness in
S. Thus, the basic regularized SVD in Section 4 will fail to
separate S from E, resulting in inconsistent estimates of smooth
pattern coefficients û’s. Moreover, the nonstationarity of the
nonseasonal component also invalidates the use of least squares
for estimating seasonal patterns v̂’s in Step Two of the basic
adjustment procedure in Section 4.2.

Our new procedure is a modification of the basic procedure
to address these issues. It also has three steps, as elaborated
below:

Step One: Estimating Seasonal Pattern Coefficients in U.
We first remove the stochastic trend in the nonseasonal

component and then apply the regularized SVD. To this end,
we take the first-order column difference of matrix X. This
differencing removes the stochastic trend in E but will not
change the column-wise smoothness of the seasonal component
matrix S. In matrix form, we postmultiply Equation (6) by ��

p
and obtain

X ≡ X��
p = S��

p + E��
p ≡ S + E.

As in the basic adjustment procedure, we represent the
seasonal component matrix using a reduced SVD as in (7), that
is, S = inf� + UV�. Then,

S = S��
p = (inf� + UV�)��

p ≡ inf� + UV�. (10)

Equations (7) and (10) show that the seasonal matrix S and
its first-order column-differenced matrix S share the same left
singular matrix U, as the first-order differencing operates from
the right side of the matrix. The first-order column-difference
on E removes the nonstationary trend in ARIMA(p, 1, q), so
that E is weakly stationary.

We eliminate the fixed seasonal effects in (10) by premul-
tiplying the column-wise demeaning matrix Qn by the first-
order column-differenced data matrix X to obtain X̃ = QnX.
We repeatedly apply Algorithm 1 r times to the matrix X̃ (or
the residual matrices) to sequentially extract the regularized
left singular vectors. Here, unlike in the basic procedure of
the previous section, there is no need to enforce the zero-sum
seasonal effects requirement on the right singular vectors, since
we are working on the column-differenced data matrix. Denote
the so-extracted U matrix as Û, for use in Step Two.

Step Two: Estimating Fixed/Time-Varying Seasonal Patterns
in f and V.

Given the estimated left singular vectors in Û, we estimate
the fixed and time-varying seasonal patterns in f and V jointly
by solving a constrained least-squares problem. In contrast to
the basic adjustment procedure, we need to work with the
differenced series to remove the effect of nonstationarity.

Let �XT denote the first difference of XT = Vec(X�), where
� is the differencing operator. The constrained least-squares

problem is similar to that in (8) and can also be written as

β̂ = arg min
β

(�XT − �Zβ)�(�XT − �Zβ) (11)

with Rβ = 0r+1,

where Z, β, and R are defined in the same manner as (9). After
solving the constrained least-squares problem above, we obtain
the estimated seasonal component as Ŝ = in̂f� + ÛV̂�.

Step Three (optional): Estimating Parameters in Nonsea-
sonal Component E.

If we assume that the nonseasonal component xt follows
the dynamics of an ARIMA(p, 1, q) process, then the ARIMA
parameters can be obtained by fitting an ARIMA model to the
residual series êt = xt − ŝt. Then, a feasible GLS estimation of
f and V can be obtained by weighting the least squares in (11)
with the inverse of the estimated variance-covariance matrix of
the differenced non-seasonal component �̂et. As we discussed
in the description of the basic seasonal adjustment procedure,
this step is usually not necessary.

4.4. Selecting the Number of Seasonal Patterns

We propose to select the number of seasonal patterns r by the
following information criteria. For each seasonal time series,
the number of period within each season p is fixed, and the
total number of seasons n increases as the total number of
observations T = np increases. We use standard Bayesian
Information Criterion (BIC) in time-series applications, in
which the penalty for overfitting (log n)/n only involves n.
If the nonseasonal component of the seasonal time series is
stationary, the information criterion is,

BIC(r) = ln

[
1

T

T∑
t=1

(xt − ŝt)
2

]
+ r

log n

n
; (12)

if the nonseasonal component of the seasonal time series is
nonstationary, the information criterion is,

BIC(r) = ln

[
1

T − 1

T∑
t=2

(�xt − �̂st)
2

]
+ r

log n

n
; (13)

where n is the total number of seasons, {xt} is the original
seasonal time series, {̂st} is the estimated seasonal component,
and � is first-order difference operator.

5. SEASONAL ADJUSTMENT WHEN THERE IS
ABRUPT CHANGE TO SEASONALITY

In previous discussions, it is assumed that the elements in
each column of matrix U (representing the magnitude of a sea-
sonal pattern in one period) changes smoothly across periods.
This has two implications. First, the magnitude of each seasonal
pattern only changes in a smooth fashion. Second, all seasonal
patterns appear in all periods. In reality, these assumptions may
be violated due to sudden changes of statistic criteria (such as
sampling method and scope) or social economic environment
(such as economic policies and enforcement of laws affecting
behavior). Hence, seasonal patterns do not necessarily prevail
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all the time in a time series: some seasonal patterns may
transiently exist with nonzero magnitudes, and abruptly vanish.
Moreover, the change in magnitude of seasonal pattern does not
necessarily have the same “smoothness” across all time spans:
the magnitudes of seasonality may present mild changes for
early periods, and then have sharp changes in other periods.
This section discusses how to perform seasonal adjustment to
handle these complicated scenarios.

To address abrupt changes (also referred to as breaks or
change points) in seasonality, our method is a modification
of procedures presented in the previous two sections. We
take the procedure from Section 4.3 as an example to show
how to modify it. The basic seasonal adjustment procedure in
Section 4.2 can be modified in a similar manner.

In Section 4.3, the seasonal adjustment procedure has three
steps. To handle the abrupt seasonality change, we only need
to modify Step One. It is sufficient to allow for at most one
abrupt change for each seasonal pattern but the timing of break
may be different for each seasonal pattern. Step One of the
previous procedure is based on X̃ = UV� + Ẽ. By assuming
each column of U is smooth, the previous procedure extracts the
columns of U using the regularized SVD. Since the columns
of U are sequentially extracted, we only need to discuss how
to modify the procedure for one column of U, denoted as u,
corresponding to a seasonal pattern v.

Now, suppose a nonsmooth change of seasonality happens
after � seasonal periods and � = 0 if there is no break.
The period index � separates the entire time span into two
portions: one part starts from the beginning and ends at period
�, and the second part contains the rest. If we know �, the
timing of the break, we can apply the following modification
of Algorithm 1 to extract u. Since the change point naturally
separates u into two parts u1 and u2, the modified algorithm
updates these two parts separately using different smoothing
parameters.

Algorithm 3.
It is the same as Algorithm 1 except that
1. the data matrix X is replaced by X̃ = QnX��

p , and
2. the updating equation in Step 2.2 now becomes two equations
that update u1 and u2 separately by applying Step 2.2 of the
original algorithm to the first � rows and the last n − � rows of
X̃ respectively.

In Algorithm 3, using different smoothing parameters for
the first � elements and last n − � elements of u enhances the
flexibility of the procedure to handle abrupt changes in seasonal
behaviors across time spans. After applying this algorithm
r times to sequentially extract the columns of Û, Step Two
of the procedure in Section 4.3 can be used to obtain f̂, V̂.
Including the dependence on � in our notation, we can obtain
the estimated seasonal component matrix Ŝ(�) = in̂f(�)� +
Û(�)V̂(�)�.

In practice, we don’t know � and so we need to specify it
using data. Since the roughness penalty involves second-order
differencing, we have 3 ≤ � ≤ n − 3. Including the no-break
case of � = 0, there are (n − 5 + 1) possible values of � for
each seasonal pattern. For r seasonal patterns, the set of all
configurations of breaks is L = {� = (�1, . . . , �r)}, and the total

number of all possible configurations is #(L) = (n − 5 + 1)r.
When n is large, #(L) can be so large that exhaustive search for
the optimal breaks impractical due to intensive computational
burden. When applying RSVDB method to real data, we set
a maximal number of seasonal patterns rmax to alleviate this
problem.

Next, we discuss how to specify the timing of the breaks.
We select the optimal specification of the change points �̂ by
minimizing the following criterion:

�̂ = arg min
�∈L

1

T − 1

T∑
t=2

[�xt − �̂st(�)]2.

Note the criterion equals

1

T − 1

T∑
t=2

[�st − �̂st(�)]2 + 1

T − 1

T∑
t=2

�e2
t (14)

+ 2

T − 1

T∑
t=2

[�st − �̂st(�)]�et.

Here, by taking a first-order difference of the times series
(i.e., �xt and �̂st(�)), we avoid working with a nonsta-
tionary series and the associated difficulties. By the ergodic
theorem, on the right-hand side of (14), the second term
converges to a constant and the third term converges to
zero. Thus, minimizing this criterion essentially finds the best
configuration by matching the extracted seasonal component
with the true seasonal component (i.e., focusing on the
first term).

The TRAMO-SEATS method has a feature to handle breaks
in seasonality as the seasonal outlier that allows for an abrupt
increase or decrease in the level of the seasonal pattern that is
compensated for in the other months or quarters. To use this
feature, one needs to specify in advance the types of breaks and
the break times in the official X-13ARIMA-SEATS program
from the U.S. Census Bureau. Such seasonal outliers can be
automatically detected in the Eurostat software JDemetra+. In
contrast, our RSVD method not only can automatically detect
seasonal breaks but also allows for more diverse abrupt breaks
in seasonality.

6. SIMULATION

In this section, we use simulated monthly time-series data
to evaluate the finite sample performance of our proposed
seasonal adjustment methods and compare them with one state-
of-art method used by U.S. Census Bureau. The benchmark
for our comparison is the X-13ARIMA-SEATS (U.S. Census
Bureau 2017), which is a hybrid program that integrates the
model-based TRAMO/SEATS software developed at the Bank
of Spain, described in Gómez and Maravall (1992, 1997)
and the X-12-ARIMA program developed at the U.S. Cen-
sus Bureau. In this section and the next, we abbreviate our
seasonal adjustment methods as RSVD (since RSVD plays a
critical role in our procedure), the TRAMO/SEATS and X-
11 style methodologies in X-13ARIMA-SEATS program as
SEATS and X-12-ARIMA respectively. The data generating
processes follow (5). Section S.2 (in the online appendices)
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and 6.1 consider artificial seasonality with and without abrupt
breaks and stationary/nonstationary ARIMA error terms, and
Section 6.2 considers seasonality from three real economic time
series.

6.1. Seasonality With Abrupt Breaks

Now, we consider a deterministic monthly seasonal compo-
nent with a nonsmooth break

sb
t ≡ sb

i,j = biaj

where i = 1, . . . , n and j = 1, . . . , 12 indicate year and month
respectively, and the elements in vector b = (b1, . . . , bn)

� and
a = (a1, . . . , a12)

� take the following values,

bi =
{

1 + i/10, if 1 ≤ i ≤ n/2,
1 + (n + 1 − i)/5, if n/2 + 1 ≤ i ≤ n.

a = (−1.25, −2.25, −1.25, 0.75, −1.25, −0.25, 2.75,

− 0.25, 0.75, −0.25, 0.75, 1.75)�.

The vector a represents the reoccurring variation within
each seasonal period, which is the same as that in Section
6.1. The magnitude of the seasonal component, captured by
the multipliers in vector b, increases slowly in the first n/2
years linearly, doubles at n/2 + 1 year, and then decreases
slowly in the last n/2 years linearly. The seasonality can be also
expressed in matrix form so = ba� = inf� + uv� where the
terms are defined the same way in (S.3). In Figure S2, we plot
fixed/time-varying seasonal patterns f and v in upper-left panel,
fixed/time-varying pattern coefficients in and u in upper-right
panel, fixed/time-varying seasonality inf� and uv� in lower-left
panel, and total seasonality so in lower-right panel.

For the nonseasonal component, we only consider the
nonstationary ARIMA(1,1,1) process in DGP3: et ∼
ARIMA(1, 1, 1), with φ = 0.8 and ψ = 0.1 with N(0, σ 2)

innovations and σ 2 = 0.04. The results of stationary cases
for DGP1 and DGP2, which are similar to the nonstationary
DGP3, are omitted here.

After the seasonal component sb
t and non-seasonal compo-

nent et are generated, we use the following formula to obtain
simulated time series data

xt = st + et ≡ κ
SD(et)

SD(sb
t )

sb
t + et,

and the sample unconditional standard deviation ratio
SD(st)/SD(et) is fixed to be exactly κ in each replication of
DGPs. For nonstationary DGP3, we choose κ = 0.2, 0.4, . . . , 2
in our setups. For each combination of DGP3 and κ values, we
simulate monthly time-series data with sample size T = 240
(i.e., n = 20 and p = 12). We repeat the simulation B = 500
times for each setup.

Table 1 reports the results of the two benchmark meth-
ods, RSVD without break, and RSVD allowing for break.
Both RSVD methods outperform the benchmarks by delivering
smaller absolute and relative losses, and the RSVD allowing
for break has the smallest error among the three methods. The
absolute loss (AMSE) of RSVD and the benchmarks increases
as the ratio κ increases, while that of RSVD allowing for
break decreases and stabilizes. The relative loss, AMPE, of
the three methods decreases as κ increases, and that of the
RSVD allowing for break decreases most quickly among the
three methods. Moreover, similar to the cases in Table S1, the
average selected numbers of seasonal patterns r for both RSVD
methods are generally the same and are close to one across
different values of κ , and no additional numbers of seasonal
patterns are added due to the irregular variation.

6.2. Seasonality From Real Economic Time Series

The simulation in Section 6.1 favors our proposed methods
since the artificial seasonality takes exactly the form in (7) that
the X-12-ARIMA and SEATS may disagree. We also use the
real seasonalities extracted from three seasonal economic time
series to conduct simulation. They are Industrial Production
Index, Total Nonfarm Payrolls, and the Inflation Rate calculated
from Consumer Price Index for all Urban Consumers, which
are available on Federal Reserve Economic Data website.

Table 1. Evaluation of estimates of seasonal component with break (DGP3)∗

AMSE (×10−2) AMPE (%) Avg. r

X-12- X-12-
κ ARIMA SEATS RSVD RSVDB ARIMA SEATS RSVD RSVDB RSVD RSVDB

0.2 4.3774 5.7199 1.9851 1.7623 33.18 40.89 24.32 23.87 1.030 1.026
0.4 11.2136 11.3763 2.5562 1.6082 19.51 28.93 11.82 11.49 1.012 1.016
0.6 21.4088 16.3613 3.8361 1.5588 15.23 23.38 8.06 7.54 1.006 1.014
0.8 34.7795 20.2008 5.6820 1.5439 13.16 19.62 6.27 5.63 1.008 1.014
1.0 50.3344 23.9295 8.0542 1.5366 11.92 16.90 5.19 4.49 1.004 1.014
1.2 68.6043 27.3233 10.9465 1.5318 11.16 14.49 4.49 3.74 1.004 1.014
1.4 86.4549 31.5762 14.4462 1.5296 10.56 12.82 4.04 3.20 1.012 1.014
1.6 108.0307 36.1908 18.4037 1.5276 10.12 11.46 3.67 2.80 1.012 1.014
1.8 130.6624 41.2645 22.9642 1.5264 9.77 10.37 3.39 2.49 1.004 1.014
2.0 155.3913 46.3343 28.0056 1.5254 9.49 9.49 3.18 2.24 1.008 1.014

*The nonseasonal component {et} follows Gaussian ARIMA(1,1,1) with AR(1) coefficient 0.8 and MA(1) coefficient 0.1. The official X-13ARIMA-SEATS program can only manually
specify seasonal outliers as breaks in seasonality. To make the evaluation more fair, we use the X-12-ARIMA and SEATS provided in JDemetra+ that is capable of detecting seasonal
outliers automatically.
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We adopt two different schemes of simulation and discuss
the simulation results thoroughly. The simulation results and
detailed discussion are reported in the online appendices. In
general, the main messages conveyed by these simulation
exercises are in line with those in the subsections above: When
seasonality is strong, our RSVD seasonal adjustment method
is superior to X-12-ARIMA and SEATS methods by delivering
much smaller AMSE and AMPE losses, and X-12-ARIMA and
SEATS methods tend to outperform our RSVD method when
the seasonality is weak.

7. REAL DATA

In the section, we use some real time-series data with
seasonal behaviors to compare our proposed RSVDB sea-
sonal adjustment method with the X-12-ARIMA and SEATS
methods. They are (i) monthly retail volume data (henceforth
retail), (ii) quarterly berry production data of New Zealand
(henceforth berry), and (iii) daily online submission counts
(henceforth counts). These three empirical examples are specif-
ically selected to showcase that our proposed RSVDB sea-
sonal adjustment method could produce (i) similar seasonal
components as the X-12-ARIMA and SEATS methods do; (ii)
better seasonal components when X-12-ARIMA and SEATS
fail; and (iii) seasonal components for other than quarterly and
monthly frequencies, such as daily and weekly. Furthermore,
the seasonality of the first series (monthly retail volume data) is
steady and mild, which is similar to that of the simulated series
in Section 6.2 where the seasonality is from real economic
time series. In contrast, the seasonality of the second series
(quarterly berry production data of New Zealand) is strong and
has some possible breaks, which is similar to that of simulated
series in Section 6.1 where the artificial seasonality has an
abrupt break in the middle of the time period.

Since no exact definition of seasonality exists and the true
underlying seasonality is always unknown in real data, different
seasonal adjustment methods recognize seasonality differently
given the same data. It is hard to formally compare the results
from different seasonal adjustment methods, especially when
they are very close. For empirical applications, these seasonal

adjustment methods can only be compared and evaluated in a
qualitative fashion with visual inspection. More importantly,
our proposed RSVDB method is able to decompose the sea-
sonal component into different seasonal patterns, trace the
dynamics of seasonality by time-varying pattern coefficients,
and identify important seasonality break times automatically.
We also use these three applications to illustrate that the
RSVDB method can provide a very transparent and meaningful
explanation to economic seasonality in real data.

In this section, only seasonal decompositions of the X-12-
ARIMA and SEATS methods in X-13ARIMA-SEATS pro-
gram and the RSVDB method are compared. The first monthly
series is already pretreated, and the second quarterly series
has very strong seasonal fluctuations which may overwhelm
possible calendar effects and outliers. Given the automatic fea-
ture of X-13ARIMA-SEATS program in seasonal adjustment,
we only shut down the options for calendar effects and auto-
matic outlier detection, and apply the X-12-ARIMA, SEATS,
and RSVDB methods to these two series directly so that the
comparison among the three methods only considers their
capabilities of seasonal adjustment. In addition, the number
of seasonal patterns r in the RSVDB method is selected by
the Bayesian Information Criterion (13), allowing for a non-
smooth break in each of the corresponding left singular vectors
with roughness penalties for all the three time series datasets.
To control the computational burden in the exhaustive search
for abrupt seasonality breaks, we limit the maximal number of
seasonal patterns to be 3, that is 1 ≤ r ≤ rmax = 3.

7.1. Retail Volume Data (Retail)

We first examine the monthly series of Motor Vehicle and
Parts Dealers published by the U.S. Census Bureau’s Advance
Monthly Sales for Retail and Food Services, covering the
period from January 1992 through December 2012.

Figure 1 and 4 show and compare the seasonal adjustment
results of the retail time series data using both the X-12-
ARMA, SEATS, and RSVD methods. In Figure 4(a) – (c),
we plot the fixed and time-varying seasonal patterns in f and
V = (v1, v2, v3) and their corresponding time-varying pattern

Figure 1. Logarithm retail volume: Original and seasonally adjusted series with the X-12-ARIMA, SEATS, and RSVDB methods
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Figure 2. New Zealand berries exports: Original and seasonally adjusted series with the X-12-ARIMA, SEATS, and RSVDB methods

coefficients in U = (u1, u2, u3). The black solid, red dashed,
and green dotted vertical lines in Figure 4(c) represents the
abrupt break detected in u1, u2, and u3 respectively. Figure 4(d)
presents the fixed seasonality in · f� and the time-varying sea-
sonality

∑3
r=1 urv�

r . In Figure 4(e), we plot the three seasonal
components extracted by X-12-ARIMA, SEATS and RSVD
method. Figure 1 shows the original time series and seasonal
adjustments by the three adjustment methods. Finally, to check
whether our RSVD method adjusts seasonality adequately, we
plot the periodogram for the adjusted series in Figure S3.
Clearly, the sample spectrum does not show any spike at any
of the seasonal frequencies, indicating no residual seasonality
exists.

First, in Figure 4(d), we find that the fixed seasonal com-
ponent is larger than the time-varying seasonal component.
Second, the seasonal component st extracted via X-12-ARIMA,
SEATS, and RSVD are very similar for this retail volume
time series. The three breaks detected in the three time-varying
pattern coefficients u1, u2, and u3 segment the time series into
four periods, see Figure 4(e) and Figure 1. In the period around
red dashed and green dotted vertical lines, the RSVD seasonal
component is slightly more volatile than the other two esti-
mated seasonal components, and the RSVD seasonal adjusted
series is slightly smoother than the other two seasonal adjusted
series. In the other periods, the RSVD seasonal components and
adjusted time series are almost the same as their counterparts.

7.2. Berry Production Data of New Zealand

We next examine the quarterly series of New Zealand con-
stant price exports of berries, covering the period from 1988Q1
to 2005Q2.

Figures 2 and 5 show and compare the seasonal adjustment
results of the berry production time series data using X-12-
ARIMA, SEATS, and RSVD. In Figure 5(a)–(c), we plot the
fixed and time-varying seasonal patterns in f and V = (v1, v2)

and their corresponding time-varying pattern coefficients in
U = (u1, u2). The fixed seasonal pattern has a much larger scale
than the time-varying seasonal patterns. The black solid and red
dashed vertical lines in Figure 5(c) represents the abrupt break

detected in u1 and u2 respectively. Figure 5(d) presents the fixed
seasonality in · f� and the time-varying seasonality

∑2
r=1 urv�

r .
In Figure 5(e), we plot the three seasonal components extracted
by X-12-ARIMA, SEATS, and RSVDB method. Figure 2
shows the original time series and seasonal adjusted ones by the
three adjustment methods. Finally, we plot the periodogram for
the RSVDB adjusted series in Figure S4. Clearly, the sample
spectrum does not show any spike at any of the seasonal
frequencies, indicating no residual seasonality exists.

Because of the laws of nature in agricultural production,
the actual berry production in the fall quarter is close to zero.
Despite this, both X-12-ARIMA and SEATS methods automat-
ically apply the logarithmic transformation and do not deliver
reasonable results: Their seasonal components are excessively
negative at certain periods in Figure 5(e), and their adjusted
series in Figure 2 is excessively high at those periods. It turns
out that one need further manually modify the default options of
the two methods to produce reasonable outcomes. In contrast,
the RSVD method is robust to this irregularity and produce
reasonable results. Just like the retail volume data, the fixed
seasonal component is much more salient than the time-varying
component, and dominates the seasonality.

Moreover, RSVD identifies the year 2000 as a major break
time in seasonality, as the first seasonal pattern coefficients
drop dramatically after year 2000. This phenomenon is also
manifested in Figure 2 and 5(e). The magnitude of seasonality
generally increases gradually before year 2000, then has a sud-
den decrease in year 2001 and decreases gradually thereafter.

7.3. Online Submission Count Data

Finally, we study a daily time series of submission counts
for 2015 Census Test, covering March 23 through June 1. The
Census Test is described in www.census.gov/2015censustests.
Submissions cover both self-responses and responses taken
over the telephone at one of the Census Bureau telephone
centers. In this case, the seasonal component to the data
corresponds to day-of-week dynamics, and it is of interest to
know whether certain days have systematically higher activity.

www.census.gov/2015censustests
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Figure 3. Logarithm submission counts: Original and seasonally adjusted series with the RSVDB method

Figures 3 and 6 show the seasonal adjustment results of the
submission counts time series data using the RSVD method. In
Figure 6(a)–(c), we plot the fixed and time-varying seasonal
patterns in f and v1 and their corresponding time-varying
pattern coefficients in u1. The black solid vertical line in
Figure 6(c) represents the abrupt break detected in u1. Fig-
ure 6(d) presents the fixed seasonality in · f� and the time-
varying seasonality u1v�

1 . In Figure 6(e), we plot the seasonal
component extracted by the RSVD method. Finally, we plot the
periodogram for the RSVDB adjusted series in Figure S5. The
sample spectrum does not show any spike at any of the seasonal
frequencies, indicating no residual seasonality exists.

Figure 3 plots the seasonal adjustment results of the daily
online submission count data in logarithms. Because the data
occurs at a daily frequency, the X-13ARIMA-SEATS soft-
ware cannot be applied, although in principle model-based
approaches could be used. However, the seasonal pattern (i.e.,
the weekly pattern) is very dynamic, and hence presents a chal-
lenge for parametric models. In contrast, our proposed RSVDB
method is still well applicable to the daily data with weekly
seasonality. In Figure 6(d), the fixed and time-varying seasonal
components have similar magnitude. In Figure 6(e), the RSVD
seasonal component shows that the seasonal behavior is quite
different at the beginning, middle, and end of the time series.
In Figure 3, the seasonal adjusted series is much smoother than
the original series: the submission counts series increases and
reaches its peak in the first week, decreases in the second week,
and first increases and then decrease in the third week. Then,
the adjusted series keeps decreasing and reaches its trough in
the sixth week. After that, the adjusted series increases again
but with more fluctuations.

More interestingly, RSVD identifies the 4th week as the
major break time in seasonality. It is observed that in Fig-
ure 6(c), the time-varying pattern coefficients are virtually zero
before and on the 4th week, indicating that basically no time-
varying seasonal pattern appears during the first 4 weeks. After
that, the time-varying pattern coefficients, moving away from
zero, first decreases a little and then increases sharply after the
7th week. This means that the time-varying seasonal pattern
emerges gradually after the 4th week and finally dominates the
seasonal component at the end of this series.

8. DISCUSSION AND CONCLUSION

Other important issues concerning our proposed RSVD
method include how to deal with some potential data problems
(such as missing values, outliers, and calendar effects), how to
obtain confidence intervals for the seasonally adjusted process,
and how to use RSVD to deal with multiple types of seasonality
for the time series with daily or even high frequency. Due to the
space limitation, some further discussions on these issues are
provided in Section S.4 of the online appendices.

The bulk of seasonal adjustment methodology and software
is divided between the model-based and empirical-based
approaches, each with their own proponents among researchers
and practitioners. The empirical-based methods all rely upon
linear filters, and therefore struggle to successfully adjust
highly nonlinear seasonal structures. The model-based methods
are more flexible, yielding a wider array of filters, but
the methods (whether based on deterministic or stochastic
components) still tend to be linear. When seasonality evinces
structural changes (perhaps a response of consumers to a
change in legislation), systemic extremes (perhaps due to
high sensitivity to local weather conditions), or very rapid
change (perhaps due to a dynamic marketplace, where new
technologies rapidly alter cultural habits) the conventional
paradigms tend to be inadequate. While it’s possible to specify
ever-more complex models, it is arguably more attractive to
devise nonparametric (or empirical-based) techniques that
automatically adapt to a variety of structures in the data –
this approach is especially attractive to a statistical agency
involved in adjusting thousands of series each month or quarter,
because devising specially crafted models for each problem
series requires excessive manpower.

The methodology of this article is empirical in spirit, utiliz-
ing a nonparametric method to separate seasonal structure from
other time series dynamics. Like X-12-ARIMA, which com-
bines nonparametric filters with model-based forecast exten-
sion, our RSVD method combines stochastic models of nui-
sance structures with the regularized elicitation of seasonal
dynamics. The advantages over purely model-based approaches
are an ability to avoid model misspecification fallacies, allow
for structural change in seasonality, handle seasonal extremes,
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Figure 4. The RSVDB seasonal decomposition of the logarithm retail series
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Figure 5. The RSVDB seasonal decomposition of the berries exports series
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Figure 6. The RSVDB seasonal decomposition of the daily submission counts series
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and capture rapidly evolving seasonality. Moreover, the RSVD
method is computationally fast and almost automatic (the
ARIMA specification does require choices of the user), and
hence is attractive in a context where individual attention to
thousands of series is a logistical impossibility. An admitted
downside is that RSVD does not quantify the estimation error
in the seasonal component. With market demands for more data
– higher frequency, more granularity – coupled with tightening
budgets, the necessity of automation in data processing must
drive future research efforts; RSVD takes a substantial step in
that direction.

Finally, we mention that there are many fruitful directions
for extensions to RSVD: use of the U and V singular vectors
to detect seasonality; multivariate modeling, where U vectors
may be common to multiple time series; handling multiple
frequencies of seasonality (e.g., daily time series with weekly
and annual seasonality) through an extension of matrix embed-
ding to an array (tensor) structure. Any of these facets would
greatly assist the massive data processing task facing statistical
agencies.

SUPPLEMENTARY MATERIALS

The online appendices include the derivation of the GCV
criterion in Algorithm 1, simulation results with artificial sea-
sonality without abrupt breaks, simulation results with season-
ality from real economic time series, further discussions on
some extensions of our RSVD method, and additional tables
and figures for simulation, model comparison, and empirical
illustration. The data and R codes are also provided.
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Gómez, V., and Maravall, A. (1992), “Time Series Regression with ARIMA
Noise and Missing Observations—Program TRAMO,” EUI Working Paper
ECO, No. 92/81. [7]
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