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Abstract

This paper presents new evidence on the returns to schooling based on an interactive fixed
effects framework that allows for multiple unobserved skills with associated prices that are
potentially time-varying. Skills and prices are both allowed to be correlated with schooling.
The modeling approach can also accommodate individual-level heterogeneity in the returns to
schooling. The framework thus constitutes a substantive generalization of most existing ap-
proaches that assume ability is unidimensional and/or returns are homogeneous. Our empirical
analysis employs a unique panel dataset on earnings and education over the period 1978-2011
based on respondents from the Survey of Income and Program Participation (SIPP) linked with
tax and benefit data from the Internal Revenue Service (IRS) and Social Security Administra-
tion (SSA). Our preferred specification yields a point estimate of the average marginal returns
to schooling of about 2.7 percent relative to ordinary least squares and two stage least squares
estimates which lie in the range 10.7-44.4 percent. A decomposition of the aggregate least
squares bias shows that the omitted ability component is responsible for a larger fraction of
the bias relative to the heterogeneity component. Finally, our heterogeneity analysis suggests
larger returns for individuals born in more recent years, the presence of sheepskin effects, and
considerable within-group heterogeneity.
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1 Introduction

The human capital hypothesis (Becker, 1962) states that in a competitive market, higher education
leads to higher human capital and therefore higher wages. This hypothesis has led to decades of
empirical discussion on the average marginal return to education based primarily on the Mincer
regression (Mincer, 1974). The debate has centered around the omitted ability bias, with the
assumption being that ordinary least squares (OLS) estimates of the growth rate of earnings with
schooling are likely to be overstated due to the positive association between earnings and ability
as well as ability and schooling (Griliches, 1977). In an attempt to correct for the potential upward
bias, a large body of empirical work has emerged over the past four decades that adopted various
econometric strategies to account for the endogeneity of schooling which could potentially deliver
a reliable estimate of the returns to schooling. Such strategies include the use of instrumental
variables (IV) estimates (e.g., Angrist and Krueger, 1991), utilizing within family variation in
schooling (e.g., Ashenfelter and Krueger, 1994), and the use of observable proxies for ability (e.g.,
Heckman, Stixrud, and Urzua, 2006). However, each strategy suffers from its own set of issues
and collectively they produce conflicting and sometimes surprising results (Card, 2001; Heckman,
Lochner, and Todd, 2006; Caplan, 2018). These issues have led to a call for new approaches
utilizing panel data econometrics and large administrative datasets (Heckman, Lochner, and Todd,
2006; Altonji, 2010).

This paper adopts an interactive fixed effects or common factor framework for estimating
the returns to schooling that allows for multiple unobserved skills with associated prices that are
potentially time-varying. The skills are represented by the factor loadings while their prices are
represented by the common factors. Additive individual and/or time fixed effects are obtained as
special cases of this framework. Skills and prices are both allowed to be correlated with schooling
which addresses the endogeneity of the latter without resorting to external instruments or proxies
for ability. The modeling approach can also accommodate individual-level heterogeneity in the
returns to schooling. The framework thus constitutes a substantive generalization of most existing
approaches that assume ability is unidimensional and/or returns are homogeneous. Moreover,
it allows us to quantify two important sources of bias: one from ignoring the interactive fixed
effects structure (the ability bias) and the other from ignoring potential parameter heterogeneity.
Estimation is carried out using the methods developed by Bai (2009), Pesaran (2006), and Song
(2013) that facilitate consistent estimation of the growth rate of earnings with schooling and enable
statistical inference via asymptotically valid standard errors.

Using a common factor structure to model the earnings function is, however, not new to
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the literature. Hause (1980) employs an interactive effects framework (referring to it as “the fine
structure of earnings”) to decompose the covariance matrix of earnings time series into ability and
on-the-job training components and evaluate the empirical significance of the latter. Heckman
and Scheinkman (1987) employ a multifactor model for earnings in order to test the hypothesis of
uniform pricing across sectors of the economy. More recently, Carneiro et al. (2003) use the com-
mon factor structure as a dimension reduction tool to model the dependence across unobservable
ability components and estimate counterfactual distributions of outcomes while Heckman, Stixrud,
and Urzua (2006) show that a low-dimensional vector of latent cognitive and non-cognitive skills
modeled using a factor structure explains a variety of behavioral and labor market outcomes (see
also Heckman et al., 2017). Westerlund and Petrova (2017) apply the interactive fixed effects
framework to the returns to schooling and find smaller returns than OLS. However, their analysis
was an empirical illustration of the performance of Pesaran’s (2006) common correlated effects
estimator under asymptotic collinearity, and leaves much room for work.1 Our contribution differs
from these studies in that we exploit the time series variation in schooling over the sample period
as well as the high-dimensional nature of the panel dataset to simultaneously address the twin
issues of heterogeneity in returns to schooling and the endogeneity of schooling thus enabling us
to disentangle the biases associated with ignoring one or both of these features.

Our empirical analysis employs a unique panel dataset on earnings and education over the
period 1978-2011 based on respondents from the Survey of Income and Program Participation
(SIPP) linked with tax and benefit data from the Internal Revenue Service (IRS) and Social Secu-
rity Administration (SSA). Combining nine SIPP survey panels and administrative earnings data
provides a panel dataset that is of high quality, has a long time dimension, and includes a large
number of individuals. Administrative data on earnings is advantageous relative to survey data due
to rising measurement error and non-response in survey data (Abowd and Stinson, 2013; Meyer
et al., 2015). This is particularly relevant for estimating the returns to schooling, given that the
nature of earnings misreporting in survey data tends to vary with earnings and education levels
(Pedace and Bates, 2000; Cristia and Schwabish, 2009; Chenevert et al., 2016). The availability
of tax data from 1978-2011 and the linking of multiple SIPP panels to the tax data generates a
dataset with a much larger time dimension and cross-section dimension than in the few existing
panel studies on returns to schooling, which usually rely on the Panel Study of Income Dynamics
(PSID) or the National Longitudinal Study of Youth (NLSY) (e.g., Angrist and Newey, 1991; Koop

1This includes the application of the framework to a larger dataset, use of additional estimators (Bai, 2009; Song,
2013), analysis of a variety of specifications to account for heterogeneity and experience, relation of the results to
both the IV and the ability proxy literature, and accommodation of individual-level heterogeneity in the returns to
schooling, all of which we address in this paper.
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and Tobias, 2004; Ashworth et al., 2017; Westerlund and Petrova, 2017).2

Previewing our results, we first replicate the well established finding in the literature that
the IV estimate of the growth rate of earnings due to schooling is larger than the corresponding
OLS estimate, both using cross-section and panel data. The IV estimate is based on using either
the quarter of birth or its interaction with the year of birth as instruments following Angrist and
Krueger (1991). Next, our interactive fixed effects estimates are found to be considerably smaller
than the OLS estimates, regardless of whether a pooled or heterogenous model is estimated. Our
preferred specification based on a model with heterogeneous coefficients yields a point estimate
of the average marginal returns to schooling of about 2.7 percent relative to ordinary least squares
and two stage least squares estimates which lie in the range 10.7-44.4 percent. While both omit-
ted ability and heterogeneity biases contribute to the overall OLS bias, a decomposition of the
aggregate least squares bias shows that the omitted ability component is responsible for a larger
fraction of the bias relative to the heterogeneity component. Lastly, we analyze both across-group
and within-group heterogeneity in the returns to schooling. Although we find minimal evidence
of heterogeneous returns across race, Hispanic status, or foreign born status, our results indicate
that returns are larger for individuals born in more recent years. Our findings are also suggestive
of “sheepskin effects” rather than diminishing marginal returns to years of schooling. Finally, we
uncover considerable within-group heterogeneity in the returns to education within demographic
groups and education levels.

The rest of the paper is organized as follows. Section 2 discusses issues related to the existing
econometric strategies in the literature. Section 3 introduces the interactive effects framework
including a brief description of the associated estimation methods. Section 4 details the adminis-
trative data used to conduct the empirical analysis. Section 5 presents the estimated specifications
and results. Section 6 concludes.

2 Issues in the Existing Literature

In order to motivate the approach taken in this paper, it is useful to first highlight the issues
associated with the different econometric strategies that have been employed in the literature to
correct for the omitted ability bias inherent in OLS estimates of the returns to schooling. These
issues have turned out to be of considerable importance from an empirical standpoint and have
contributed to a general lack of consensus about the appropriate methodology to adopt when
estimating the returns to schooling. We first discuss the two main approaches that are based

2Two other recent examples of panel analysis use administrative data from Norway and Sweden (Bhuller et al.,
2017; Nybom, 2017).
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on utilizing cross-sectional data: the instrumental variable (IV) approach and the ability proxy
approach. This is followed by an assessment of existing panel data studies including a discussion
of the relative advantages of our approach which should further help delineate our contribution to
the literature.

The IV approach is based on exploiting natural variation in the data caused by exogenous
influences on the schooling decision. For instance, the seminal study of Angrist and Krueger
(1991) uses an individual’s quarter of birth (interacted with year of birth or state of birth in some
specifications) as an instrument for schooling based on the observation that compulsory schooling
laws tend to lead individuals born earlier in the year to have less schooling relative to those born
later in the year. Surprisingly, however, the IV estimates were found to be consistently larger than
the OLS estimates thereby presenting an empirical puzzle regarding the interpretation of the IV
estimates (See Card, 2001, Table II, for a summary of this literature). One potential explanation
for the larger IV estimates is in terms of the Local Average Treatment Effect (LATE) on a selected
sample (Imbens and Angrist, 1994) . That is, if the instrument has a larger impact on individuals
with higher marginal returns to schooling, the IV procedure will tend to produce an overestimate
of the average marginal returns to education. Heckman, Lochner, and Todd (2006) and Heckman,
Urzua, and Vytlacil (2006), however, point out that the LATE interpretation of the IV estimate
assumes away heterogeneity in the response of schooling choices to instruments. Card (2001)
discusses other explanations for the puzzle including attenuation bias in the OLS estimates due
to measurement error in schooling, short term credit constraints and specification search bias.3,4

Carneiro and Heckman (2002) argue, using AFQT as a measure of ability, that the observed pattern
of results can simply be a consequence of using poor or invalid instruments that are either only
weakly correlated with schooling or correlated with ability. Heckman, Lochner, and Todd (2006)
conclude in their survey of the literature that the IV approach is of limited use in uncovering a
reliable estimate of the returns to schooling.

The ability proxy approach employs observable proxies for ability in order to mitigate the im-
pact of the ability bias. Common proxies for cognitive ability include GPA, AFQT scores and other
components in the ASVAB tests while those for non-cognitive ability include the Rotter Locus of
Control Scale which measures the degree of control individuals feel they possess over their life and

3Card (2001) notes that measurement error in schooling cannot explain the observed difference in OLS and IV
estimates while Carneiro and Heckman (2002) show that IV can exceed OLS even in the absence of credit constraints.

4Oreopoulos (2006) approximated the average treatment effect by looking at compulsory schooling policy change
that affected a large group of people in U.K. and suggested that even when the sample is not subject to sample selection
problems and credit constraints, the IV estimate is still larger than the one in OLS and therefore the answer to the puzzle
remains far from satisfying.
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the Rosenberg Self-Esteem Scale which measures perceptions of self-worth (Heckman, Stixrud,
and Urzua, 2006). Heckman et al. (2017) provide a comparison of standard OLS estimates to
estimates controlling for ability proxies using Bartlett cognitive and non-cognitive factors, and find
that the latter are about 20-50 percent smaller, depending on the specification. Similar reductions
are reported by Ashworth et al. (2017) in comparing the basic Mincer regressions to regressions
that include ability proxies and actual experience using NLSY panel data.5 A major challenge
facing this literature is that the ability proxies, particularly those measuring non-cognitive ability or
“soft skills” such as conscientiousness, conformity, self-esteem, etc., are far from perfect resulting
in biased estimates of the schooling effect (see Heckman, Stixrud, and Urzua, 2006). Our paper
contributes to the literature by providing a rigorous framework that allows the data to speak
regarding the importance of multi-dimensional abilities without relying on imperfect proxies. Our
preferred interactive fixed effects estimates suggest a reduction in the average marginal returns to
schooling between 64-95 percent relative to OLS.

In contrast to the cross-section methods, the panel data approach identifies the effect of
schooling based on time-series variation within individuals. Angrist and Newey (1991) and Koop
and Tobias (2004) use panel data from the National Longitudinal Survey of Youth (NLSY) to
estimate the returns to schooling (more precisely, the percentage growth rate of earnings due
to schooling) although their modeling approaches are different. Both studies, however, assume
that individual fixed effects can effectively capture the potential endogeneity of schooling. An-
grist and Newey (1991) employ a standard panel data framework with homogeneous coefficients
where unobserved heterogeneity is controlled for using individual and time fixed effects. They
find that the fixed effects estimates are roughly twice as large as the OLS estimates which runs
counterintuitive to the notion that ability bias tends to overstate the OLS returns and suggests that
individual fixed effects are not sufficient to control for the potential upward bias. Koop and Tobias
(2004) address the issue of cross-sectional heterogeneity in returns adopting a Bayesian framework
to characterize the nature of such heterogeneity. Comparing results across a wide variety of
specifications, they find strong evidence in favor of models that allow for heterogeneous slopes.
Our modeling approach is considerably more general than those adopted in these studies in that we
allow for multidimensional abilities with possibly time-varying prices as well as cross-sectional
heterogeneity in the growth rate of earnings with schooling. As referenced in the introduction and
discussed in detail in section 4, our empirical analysis uses a linked survey-administrative dataset

5Based on reviewing the earlier evidence, Caplan (2018, Chapter 3) suggests that cognitive ability bias is between
20-30 percent while non-cognitive ability bias is between 5-15 percent. He interprets the ability bias in the literature
as a lower bound on the true bias due to the imperfect measure of abilities, especially the non-cognitive abilities.
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which offers important advantages over survey-based data that have been employed in most of the
existing panel data studies.

A potential drawback of the panel data approach is that it requires a sample of individuals
with continuous earnings while increasing schooling; this may include, for example, traditional
students who also work while obtaining a bachelors degree or individuals who return to school
later in life, whether to finish an uncompleted degree or for additional degrees. This sample
could be different from the traditional idea of a student who completes his/her schooling degrees
consecutively and does not work while in school. Setting aside sample selection effects, there could
also be issues comparing time-series earnings before, during, and after schooling, since earnings
before or during schooling could be part-time or seasonal work and not truly reflect an individual’s
earnings ability (Lazear, 1977; Card, 1995). That said, we believe these concerns are mitigated
somewhat by the fact that we do replicate well-established results from the cross-section literature
with our sample; the fact that we find similar sample statistics and cross-section estimates if we
instead use a sample that does not require continuous earnings while in school; and the fact that
other research has shown that the student population who works during school is both large and
growing (Hotz et al., 2002; Bacolod and Hotz, 2006; Bound et al., 2012; Scott-Clayton, 2012), and
is thus an important population itself. Furthermore, unlike the cross-section approach, the use of
panel data allows us to formally test for heterogeneity in the returns to schooling as well as explore
its nature across and within subgroups.

3 Empirical Framework

This section presents the interactive fixed effects framework that forms the basis of our empirical
analysis aimed at estimating the growth rate of earnings with years of schooling. Conditional
on the common factor structure embedded in the framework that represents multiple skills with
time varying prices, one can derive not only the aggregate OLS and IV biases but also provide
a decomposition of the biases in terms of their omitted ability and heterogeneity components.
Section 3.1 lays out the modeling framework including a description of the alternative estimation
approaches. Section 3.2 outlines the derivations and details regarding the computation of the two
sources of bias. A potential explanation for the pattern of results obtained from the empirics can
be given based on these derivations.
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3.1 The Interactive Fixed Effects Model

The general interactive fixed effects model with heterogeneous coefficients is specified as

yit = ci + xitβi +w′itγi + vit (1)

vit = λ
′
i ft +uit (2)

where yit and xit represent, respectively, the (log of) annual earnings and the years of schooling
completed for person i = 1, ...,N at period t = 1, ...,T , and wit is a vector of observable charac-
teristics that influence wages and are potentially correlated with education (e.g., experience). We
include a set of person fixed effects ci to control for time-invariant person characteristics such as
gender and race. The parameter βi measures the percentage change in annual earnings for person
i due to an additional year of schooling. This parameter does not necessarily represent an internal
rate of return to schooling unless the only costs of schooling are earnings foregone, and markets
are perfect (Heckman, Lochner, and Todd, 2006). The error term vit is composed of a common
component (λ ′i ft) and an idiosyncratic component (uit). Here λi represents a (r× 1) vector
of unmeasured skills (factor loadings), such as innate abilities, while ft is a (r× 1) vector of
unobserved, possibly time-varying, prices (or common factors) of the unmeasured skills.6 Both
loadings and the factors are potentially correlated with the observables (xit ,wit). The number of
common components r is assumed unknown. The object of interest is the average marginal return
[E(βi)] in the population. Note that while the returns to each of the skill components (λ ′i ft) are
identified, the skills and their prices are not separately identified.7 That is, the estimated factors
and their loadings only estimate a rotation of the underlying true parameters and so cannot be
given a direct economic interpretation. Unlike Heckman, Stixrud, and Urzua (2006), our paper
does not attempt to distinguish between the role of cognitive and non-cognitive skills in explaining
the behavior of earnings. Rather, we are interested in estimating the rate of growth of earnings with
schooling employing the interactive fixed effects structure as a device to control for the different
components of ability that may affect earnings and are potentially correlated with schooling.

Various panel data specifications used in the literature can be obtained as special cases of
(1) and (2). The standard panel data model with person and time fixed effects considered by
Angrist and Newey (1991) is obtained by setting βi = β , γi = γ, λi = λ . Koop and Tobias (2004)

6While we refer to the factor loadings as unobserved skills/abilities throughout the paper, there are other time-
invariant determinants with possibly time-varying prices, such as motivation and persistence, that can be captured by
the factors loadings as well.

7For an arbitrary (r× r) invertible matrix A, we have FΛ′ = FAA−1Λ′ = F∗Λ∗′, so that a model with common
factors F = ( f1, ..., fT )

′ and loadings Λ = (λ1, ...,λN)
′ is observationally equivalent to a model with factors F∗ =

( f ∗1 , ..., f ∗T )
′ and Λ∗ = (λ ∗1 , ...,λ

∗
N)
′ where F∗ = FA and Λ∗ = ΛA−1′.
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consider a restricted version of (1) and (2) that allows heterogeneity in returns to schooling but
assumes that the endogeneity of schooling (i.e., the ability bias) is fully accounted for by the
individual fixed effects ci. Thus, their model does not allow for multiple skill components with
time varying prices (Hause, 1980; Heckman and Scheinkman, 1987; Heckman, Lochner, and Todd,
2006). We consider estimating model (1) and (2) using two alternative econometric procedures:
the principal components approach (Bai, 2009; Song, 2013) and the common correlated effects
approach (Pesaran, 2006). We now briefly describe each of these methods.

3.1.1 The Principal Components Approach

Bai (2009) advocates an iterative principal components approach that treats the common factors
and their loadings as parameters which are jointly estimated with the regression coefficients as-
suming cross-sectional homogeneity of the latter. Under both large N and large T, the estimator is
shown to be

√
NT -consistent and asymptotically normal under mild conditions on the idiosyncratic

components that allow for (weak) correlation and heteroskedasticity in both dimensions. To ensure
that the asymptotic distribution is centered around zero, a bias corrected estimator is proposed. Our
empirical analysis employs the bias corrected estimator which we refer to as the IFE (or interactive
fixed effects) estimator.

Song (2013) develops a heterogeneous version of the IFE estimator that allows the regression
coefficients to be unit-specific. The estimator is obtained by taking the cross-sectional average of
the individual specific IFE estimates and is shown to be

√
N-consistent for the average return in

the population. We refer to this estimator as the IFEMG (MG denoting mean group) estimator.
Both the IFE and IFEMG estimators require a choice on the number of common factors. Bai

(2009) proposes estimating the number of factors employing the information criterion procedure
of Bai and Ng (2002). Specifically, the number of factors is obtained by minimizing the criterion

IC(k) = ln

[
(NT )−1

N

∑
i=1

T

∑
t=1

û2
it(k)

]
+ k
(

N +T
NT

)
g(N,T )

over k ∈ [0,kmax], where kmax is a prespecified upper bound. The residuals {ûit(k)} are obtained
from principal components estimation assuming k factors and g(N,T ) is a penalty function. When
estimating a pooled model as in Bai (2009), the IFE estimate is used to construct the residual
series while estimating a heterogeneous version as in Song (2013) entails the use of the individual
level IFE estimate. We set kmax = 10 and use g(N,T ) = ln

( NT
N+T

)
which corresponds to the

“ICp1” criterion in Bai and Ng (2002).
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3.1.2 The Common Correlated Effects (CCE) Approach

Pesaran (2006) proposes to proxy for the unobserved common factors ft using cross-sectional av-
erages of the dependent and independent variables, i.e., unlike the principal components approach,
the factors are treated as nuisance parameters rather than parameters of interest. Estimation is based
on augmenting the regression (1) with the cross-sectional averages and does not require knowledge
of the number of factors. Two estimators are suggested: (1) the common correlated effects mean
group (CCEMG) estimator which allows for heterogeneous coefficients and is obtained by estimat-
ing person-specific time series regressions using ordinary least squares and taking the average of
the person-specific estimates; (2) the common correlated effects pooled (CCEP) estimator which
pools the observations over the cross-section units and achieves efficiency gains when the slope
parameters are the same across units.

Based on a random coefficients formulation for the regression coefficients as well as the
factor loadings, both estimators are shown to be

√
N-consistent and asymptotically normal as the

cross-section dimension (N) and the time series dimension (T ) jointly diverge to infinity. The
finite sample performance of both estimators can be sensitive to a particular rank condition which
requires that the number of factors does not exceed the total number of observed variables (see the
Monte Carlo evidence in section 7 of Pesaran, 2006).

Pesaran (2006, p.1000) also suggests a two-step approach to estimation that involves com-
bining the CCE and principal components approaches. For the model specified in (1) and (2), the
first step entails obtaining the residuals

v̂it = yit− ĉi− xit β̂i−w′it γ̂i

where (ĉi, β̂i, γ̂i)
′ denote the individual level CCE estimates. The factors are then estimated by

principal components treating the residuals as observed data where the number of factors is again
selected based on the information criterion discussed in section 3.1.1. In the second step, the factor
estimates (say { f̂t}T

t=1) are then directly used as regressors in the regression equation

yit = ci + xitβi +w′itγi +λ
′
i f̂t +ξit (3)

Given that the consistency of β̂i hinges on the validity of the aforementioned rank condition, we
replace β̂i with the CCEMG estimate when computing the first step residuals. The estimate of
βi obtained from OLS estimation of (3) will be referred to as the “two-step CCE” estimate and
the corresponding mean group version as CCEMG-2. For the pooled analog of (1), the first step
residuals are obtained using the CCEP estimate and the resulting estimate is referred to as CCEP-2.
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Our empirical analysis reports both the one and two-step CCE estimates. A potential advantage of
the two-step approach is that the second-step estimate is based on factors estimated by principal
components instead of observable proxies and is therefore possibly less sensitive to the fulfillment
of the rank condition.8

3.2 Omitted Ability and Heterogeneity Biases

In the interactive effects environment, there are at least two potential sources of bias that can arise
in panel Ordinary Least Squares (OLS)/Instrumental Variable (IV) estimation of the returns to
schooling. The first is the omitted ability bias that emanates from ignoring the common factor
structure (2). While OLS estimation treats the ability components as part of the error term leading
to endogeneity of the schooling variable, the IV estimator can be subject to bias if the instruments
are inappropriate in that they are unable to fully account for the OLS bias. The second source
of bias arises from estimating a pooled specification when the true regression coefficients are
heterogeneous. In practice, the two biases may reinforce or offset each other depending on their
signs. In what follows, we consider each of these possible biases in turn and derive analytical
expressions for them including conditions under which one would expect a given pattern in the
relative magnitude of the regression parameter estimates. The interactive effects framework allows
us to separately estimate the bias associated with each of the two sources.

3.2.1 Omitted Ability Bias

In this section, we employ the CCE and IFE estimators described in the preceding section to derive
expressions for and estimates of the biases induced by the OLS and IV estimators assuming that
the true model is given by (1) and (2). The interactive effects framework allows us to not only
obtain estimates of the aggregate ability bias but also the bias attributable to each of the ability
components. In particular, comparison of the component-specific OLS and IV biases allows us
to isolate components that are responsible for exacerbating the IV bias relative to OLS from those
where the instruments are effective at mitigating the bias. For instance, the instruments may reduce
the bias associated with an ability component that is negatively correlated with schooling (e.g.,
high school skills) while worsening the bias associated with a component positively correlated
with schooling (e.g., college skills).9 To simplify the exposition, we consider a setup where ability

8The rank condition is potentially very relevant in this application, given that our empirical analysis based on
panel data includes a small number of observed variables (2-4, depending on the specification).

9We borrowed the language of “high school” versus “college skills” from Heckman, Lochner, and Todd (2006)
page 390. One can also think of it as “mechanical” versus “cognitive/non-cognitive skills” (See Prada and Urzua,
2017).
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is two-dimensional (r = 2) and the regression coefficients are homogeneous.10 The model is given
by

yit = xitβ +λ1i f1t +λ2i f2t +uit (4)

where yit (xit) is the residual obtained by regressing log wages (schooling) on the set of controls
and a full set of time and person dummies. Note that given the set of dummies included, the
means of yit and xit across i and t as well as their overall means (over i and t) are all zero. Let
c j,it = λ ji f jt be the common component associated with factor j ( j = 1,2).

The probability limit of the OLS estimator can be expressed as

p lim β̂OLS = [Var(xit)]
−1Cov(xit ,yit)

= β +[Var(xit)]
−1Cov(xit ,c1,it)+ [Var(xit)]

−1Cov(xit ,c2,it)

= β +B1ols +B2ols (5)

where

Var(xit) = plimN,T→∞(NT )−1
∑
t

∑
i

x2
it (6)

Cov(xit ,c j,it) = plimN,T→∞(NT )−1
∑
t

∑
i

xitλ ji f jt (7)

In (5), B1ols can be interpreted as the bias in the OLS estimator induced by f1 and B2ols the bias
induced by f2. The aggregate OLS bias is given by

Bias(β̂OLS) = p lim β̂OLS−β = B1ols +B2ols = Bols

Now consider a two stage least squares (2SLS) estimator based on a set of K instruments zit (as
before, zit is the residual from regressing the instruments on the set of controls and a full set of
time and person dummies.) where Cov(zit,k,xit) 6= 0 where k = 1, ...,K. Define the (T ×1) vector
Yi = (Yi1, ...,YiT )

′, the (T ×K) matrix Zi = (zi1, ...,ziT )
′ and the (NT ×K) matrix Z = (Z′1, ...,Z

′
N)
′.

The first stage estimate is Π̂ =
(
∑

N
i=1 Z′iZi

)−1
∑

N
i=1 Z′iXi. The 2SLS estimate is

β̂2SLS =

(
Π̂
′

N

∑
i=1

Z′iZiΠ̂

)−1(
Π̂
′

N

∑
i=1

Z′iYi

)

Denote X̂i = ZiΠ̂. Then we have

p lim β̂2SLS = β +[p lim(NT )−1
N

∑
i=1

X̂ ′i X̂i]
−1





p lim(NT )−1 [
∑i X̂ ′i F1λ1i

]

+p lim(NT )−1 [
∑i X̂ ′i F2λ2i

]





= β +B1iv +B2iv (8)
10The ability bias associated with the IFEMG estimator is derived in the Appendix B.
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In (8), B1iv can be interpreted as the bias in the 2SLS estimator induced by f1 and B2iv the bias
induced by f2. The aggregate 2SLS bias is given by

Bias(β̂2SLS) = p lim β̂2SLS−β = B1iv +B2iv = Biv

The 2SLS estimator has a larger aggregate bias than the OLS estimator if Biv > Bols or

B2iv−B2ols > B1ols−B1iv (9)

In accordance with our empirical results, we assume that B1ols+B2ols = Bols > 0. We consider the
following two cases depending on the magnitude and direction of the component-specific biases
that turn out to be relevant in our context:

• Case A: B1ols > 0, B2ols < 0 such that B1ols > |B2ols|. Then β̂OLS is upward biased with the
positive bias induced by f1 dominating the negative bias induced by f2:

Bias(β̂OLS) = p lim β̂OLS−β = B1ols +B2ols = Bols > 0

The inequality (9) is consistent with any of the following four scenarios:

1. IV is effective in reducing the magnitude of the bias from both components: |B2iv|< |B2ols| ,
|B1iv|< B1ols.

2. IV is effective in reducing the magnitude of the bias from component 1 only: |B2iv| >
|B2ols| , |B1iv|< B1ols.

3. IV is effective in reducing the magnitude of the bias from component 2 only: |B2iv| <
|B2ols| , B1iv > B1ols.

4. IV is completely ineffective: |B2iv|> |B2ols| , B1iv > B1ols.

In general, if ability is multidimensional and one of its components is negatively correlated
with schooling, it is possible for the aggregate 2SLS bias to exceed the aggregate OLS bias
regardless of whether the instruments are fully, partially or not effective in reducing the magnitude
of the bias in any or all of its components.

• Case B: B1ols > 0, B2ols > 0

The inequality (9) is consistent with any of the following three scenarios:
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1. IV is effective in reducing the magnitude of the bias from component 1 only: B2iv > B2ols,

B1iv < B1ols.

2. IV is effective in reducing the magnitude of the bias from component 2 only: B2iv < B2ols,

B1iv > B1ols.

3. IV is completely ineffective: B2iv > B2ols, B1iv > B1ols.

In contrast to case A, if each of the ability components induce a positive bias in the OLS
estimates, the instruments can be (at most) effective at reducing the bias associated with only a
subset of the components at the expense of exacerbating the bias associated with the remaining
components, for (9) to hold.

Under the factor model framework (4), each of the bias terms in (5) and (8) can be con-
sistently estimated. This is because even though the factors and their loadings are not separately
identified, their product, i.e., the common components (c j,it) are. The estimated biases can be
obtained as follows:

B̂1ols = [SVar(xit)]
−1SCov(xit , ĉ1,it)

B̂2ols = [SVar(xit)]
−1SCov(xit , ĉ2,it)

B̂1iv = [SVar(X̂i)]
−1SCov(X̂i, F̂1λ̂1i)

B̂2iv = [SVar(X̂i)]
−1SCov(X̂i, F̂2λ̂2i)

where, for j = 1,2, ĉ j,it = λ̂ ji f̂ jt are the Bai (2009) estimates of the common components and
SVar(xit), SVar(X̂i), SCov(X̂i, F̂jλ̂ ji), SCov(xit , ĉ j,it) denote the sample variance and sample co-
variances respectively, which are the sample analogs of the quantities defined in (6) and (7).
Specifically, these quantities are computed as follows:

SVar(xit) = (NT )−1
∑
t

∑
i

x2
it (10)

SVar(X̂i) = (NT )−1
N

∑
i=1

X̂ ′i X̂i (11)

SCov(X̂i, F̂jλ̂ ji) = (NT )−1

[
∑

i
X̂ ′i F̂jλ̂ ji

]
(12)

SCov(xit , ĉ j,it) = (NT )−1
∑
t

∑
i

xit λ̂ ji f̂ jt = T−1
∑
t

{
N−1

∑
i

xit λ̂ ji f̂ jt

}
(13)

Note that in (10-13), we do not need to subtract the means since the variables already have mean
zero. Note that SCov(xit , ĉ j,it) is the average (over time) of the cross-sectional correlation between
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xit and ĉ j,it . Each of the terms in (10-13) can be computed based on our data and factor model
estimates to examine the extent to which the component-specific biases offset or reinforce each
other.

The CCE approach does not directly estimate the factors so we employ the following two-
step procedure to estimate the bias components: (1) Obtain the residuals ηit = yit−xit β̂CCE , where
β̂CCE is either the CCEP or CCEMG estimator depending on whether one estimates a pooled or
heterogeneous model; (2) Given a choice of the number of factors, estimate the common factor
model ηit = λ ′i ft +uit by principal components. Once the factor structure estimates are obtained,
the biases attributable to each of the skill components can be estimated as discussed for the IFE
estimator above. Note that since the CCE procedure proxies for the factors using cross-section
averages of the variables, the aggregate bias estimated using the two-step procedure will not
necessarily equal the difference between the OLS and the CCEP (or CCEMG). Our empirical
results indicate that the difference is, however, minimal. For the CCEP-2 and CCEMG-2 estimates,
the biases can be computed in the same way as for IFE and IFEMG, respectively.

3.2.2 Heterogeneity Bias

Heterogeneity bias arises when one estimates a pooled specification when the regression coeffi-
cients are in fact heterogeneous across the cross-section units. To analyze this source of bias, we
consider the IFE estimator of Bai (2009). We can write (1) as

Yi = Xiβi +Fλi +Ui (14)

with Yi,Xi,Ui being (T×1) vectors defined as Yi =(yi1, ...,yiT )
′, Xi =(xi1, ...,xiT )

′, Ui =(ui1, ...,uiT )
′

and F = ( f1, ..., fT )
′ being the (T × r) matrix of common factors. Here we interpret yit (xit) as the

part of log wages (schooling) unexplained by the controls wit and person/time fixed effects.

The IFE estimator is given by

β̂IFE =

(
N

∑
i=1

X ′i MF̂Xi

)−1( N

∑
i=1

X ′i MF̂Yi

)
(15)

where MF̂ = IT − F̂
(
F̂ ′F̂

)−1 F̂ ′, and F̂ is the principal components (PC) estimate of F .
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Under the heterogeneous model (14), we can write (15) as

β̂IFE =

(
∑

i
X ′i MF̂Xi

)−1

∑
i

X ′i MF̂ (Xiβi +Fλi +Ui)

=

(
∑

i
X ′i MF̂Xi

)−1

∑
i

X ′i MF̂
(
Xiβi +(F− F̂)λi + F̂λi +Ui

)

=

(
∑

i
X ′i MF̂Xi

)−1

∑
i

X ′i MF̂Xiβi +

(
∑

i
X ′i MF̂Xi

)−1(
∑

i
X ′i MF̂(F− F̂)λi +∑

i
X ′i MF̂Ui

)

'
N,T large

(
∑

i
X ′i MF̂Xi

)−1

∑
i

X ′i MF̂Xiβi

where the approximation in the last line holds since the other terms are negligible for large N,T [see
Bai, 2009]. This gives

β̂IFE '
N,T large

∑
i

ωiβi (16)

where ωi =
(
∑i X ′i MF̂Xi

)−1 X ′i MF̂Xi is the weight on the individual i’s return (note that ∑i ωi =

1). This suggests that β̂IFE is likely to exceed β̂IFEMG (since β̂IFEMG is an estimate of N−1
∑i βi)

if there exists positive correlation between βi and ωi, i.e., marginal returns are higher for those
individuals who have higher time variation in the unexplained portion of schooling. This can
be verified empirically by computing the cross-sectional correlation between β̂i (the individual-
specific IFE estimate) and ωi.

4 Data

Our analysis uses large, high-quality panel data from the U.S. Census Bureau that includes self-
reported educational history and administrative records of earnings over a large number of years.
This section describes the details of the individual-level linked survey and administrative data, and
the construction of the sample for analysis.

4.1 Linked Survey-Administrative Data

Linked survey and administrative data come from the U.S. Census Bureau Gold Standard File.
The dataset is based on respondents from the Survey of Income and Program Participation (SIPP)
linked with tax and benefit data from the Internal Revenue Service (IRS) and Social Security
Administration (SSA). Nine SIPP panels are linked: 1984, 1990, 1991, 1992, 1993, 1996, 2001,
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2004, and 2008. The linked dataset includes the respondents’ SIPP survey information for the
years during which they were in the survey and annual tax and benefit information that ranges
from 1978 to 2011 for some variables and 1951 to 2011 for others.11

The SIPP is a household-level survey. A new set of households is sampled during each
panel. These households are then surveyed longitudinally for 2-1/2 years to 4 years through
several waves of interviews. Each panel consists of approximately 14,000 to 52,000 households.
All household members age 15 or older are surveyed. The survey provides detailed social and
economic information on the respondent during their SIPP panel years. Linking these individuals
to tax and benefit data provides information, including earnings, over a much longer time frame.

Linking the SIPP with administrative data provides a unique panel dataset of education and
earnings. The SIPP information includes the respondent’s educational history, including not just
the highest level of schooling completed, but also the year during which each level of school was
completed. This within-person longitudinal schooling variable allows for within-person analysis of
education and earnings. The data also provide a long history of detailed earnings data: when SIPP
respondents are linked to IRS data, their annual detailed earnings can be observed for the entire
time frame of 1978-2011.12 The earnings data is based on W-2 records for employed workers and
Schedule C records for self-employed workers, including deferred earnings.

Administrative data on earnings may be advantageous to survey data due to rising mea-
surement error and non-response in survey data (Abowd and Stinson, 2013; Meyer et al., 2015).
Previous work has shown that earnings data from surveys appears to be overstated at the bot-
tom of the earnings distribution and understated at the top (Pedace and Bates, 2000; Cristia and
Schwabish, 2009; Chenevert et al., 2016). Chenevert et al. (2016) also found that survey earnings
data is overstated for lower education levels and understated for higher education levels. These
findings have potential implications about the reliability of survey data for estimating the returns
to schooling. Chenevert et al. (2016) estimated Mincer (1974) cross-section equations using OLS
with different sets of earnings data from survey and administrative sources for individuals from the
2008 SIPP. They found that the source of earnings data has little affect on the estimated return to
schooling, although it does affect estimates of the return to potential experience.

Combining survey data from the SIPP and administrative earnings data from the IRS provides

11The analysis is based on version 6.0 of the U.S. Census Bureau’s SIPP Gold Standard File. Outside researchers
can access a synthetic version of the Gold Standard File, known as SIPP Synthetic Beta. Researchers can then have
their results validated on non-synthetic data. More information is available here: https://www.census.gov/programs-
surveys/sipp/guidance/sipp-synthetic-beta-data-product.html.

12Summary earnings records are available back to 1951 from the SSA, but these summary earnings are capped at
the taxable maximum.
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a panel dataset that is of high quality, has a long time dimension, and includes a large number of
individuals. This type of dataset is rare in the returns to schooling literature. Most studies have
relied on cross-section analysis (e.g., Angrist and Krueger (1991); Card (1995); Staiger and Stock
(1997); Card (1999)) or short panels (e.g., Carneiro and Heckman (2002); Carneiro et al. (2003);
Cunha et al. (2005); Rubinstein and Weiss (2006); Carneiro et al. (2011); Park (2011)). Heckman,
Lochner, and Todd (2006) conclude in their survey of the literature that the solution to improving
the estimation of returns to schooling lies in rich panel data and new econometric approaches.
The use of linked survey and administrative data addresses the former of those recommendations
by providing a large, high-quality panel of earnings and education. It also addresses the latter
recommendation; the use of rich panel data allows for an interactive fixed effects framework which
cannot be applied to cross-section or short panel data. Altonji (2010) discusses these points and
also the use of linked survey and administrative data specifically as avenues for future research.

Studies that use panel data typically use either the Panel Study of Income Dynamics (PSID)
(e.g., Carneiro et al. (2003); Cunha et al. (2005); Rubinstein and Weiss (2006); Westerlund and
Petrova (2017)) or the National Longitudinal Study of Youth (NLSY) (e.g., Angrist and Newey
(1991); Carneiro et al. (2003); Koop and Tobias (2004); Cunha et al. (2005); Rubinstein and
Weiss (2006); Ashworth et al. (2017)). These studies find similar results to cross-section studies,
including that IV estimates are larger than OLS estimates (Angrist and Newey, 1991). The linked
SIPP-administrative data has several advantages over the PSID and NLSY. These advantages
include larger sample sizes, due to the combination of SIPP respondents across multiple SIPP
panels;13 more accurate earnings data, due to the removal of survey mis-reporting, non-response,
and top-coding; less attrition, because SIPP respondents can be linked to administrative earnings
records regardless of whether they answered survey questions about earnings; and a longer time
dimension for earnings, due to administrative earnings data that covers many years. The drawbacks
of the linked SIPP-administrative data relative to NLSY are the lack of parental information and
the lack of an observed proxy for ability, such as AFQT scores.

4.2 Sample Selection and Summary Statistics

The sample of individuals in the analysis was selected from the linked SIPP-administrative dataset
based on seven selection criteria: (1) males; (2) with variation in their years of schooling during
1978-2011; (3) with earnings observations in each year from 1978-2011; (4) without any missing
data for the other variables included in the analysis; (5) between the ages of 16-65 during the

13Most panel studies in the literature analyze approximately 1,000-2,000 individuals, with the extremes being 888
in Westerlund and Petrova (2017) and 3,695 in Cunha et al. (2005).
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entirety of 1978-2011; (6) at least 27 years of age at the time of their SIPP survey; and (7) not
currently enrolled in school at the time of their SIPP survey.

The sample is restricted to males in order to analyze a population that historically is con-
sistently and strongly attached to the labor market, and to be consistent with the majority of the
literature so that results are comparable. Restricting the sample to those with variation in schooling
allows for the estimation of person fixed effects models. Restrictions (3)-(4) are included to
produce a balanced panel. Restriction (5) limits the analysis to individuals’ prime working years.
Restrictions (6) and (7) exclude individuals most likely to have incomplete educational histories in
the survey data.

Table 1 Panel A shows summary statistics for the variables included in the analysis. The final
sample includes 6,300 individuals.14 Each column corresponds to a different set of the sample that
is used in the analysis below. The full balanced panel sample is shown in column (3). This column
shows the means and standard deviations for each variable over the full 6,300 individuals and 34
years of the panel. Columns (1) and (2) show means and standard deviations of the variables at two
point-in-time cross-sections of the full balanced panel sample. Column (1) is based on the 6,300
individuals in the year 1990. Column (2) is based on the 6,300 individuals at age 40.

The variables included are annual earnings from W-2 or self-employment earnings records,
including deferred earnings; years of school; age, measured in quarters;15 and demographic con-
trols for marital status, race (‘White’, ‘Black’, ‘other race’), Hispanic origin, foreign born status,
birth year, and state of residence at the time of the SIPP survey.

Years of school is a longitudinal variable based on survey responses indicating highest
education level completed (‘no high school degree’, ‘high school degree’, ‘some college’, ‘college
degree’, and ‘graduate degree’), the year during which high school was completed, the year during
which post-high school education began, the year during which post-high school education ended,
and the year during which a bachelor’s degree was earned. Collectively, these variables were used
to build a longitudinal schooling variable.

First, individuals were assigned a highest-level-completed variable for each year. All indi-
viduals were assigned ‘no high school degree’ before the year during which they graduated high
school and ‘high school degree’ beginning in their graduation year. Individuals whose highest

14All counts are rounded according to U.S. Census Bureau disclosure avoidance rules.
15We followed Angrist and Krueger (1991) and constructed age-in-quarters as the individual’s age-in-quarters at

the time of their SIPP survey. That is, the within-birthyear-birthquarter variation due to the differences in which quarter
individuals were born and which quarter they were interviewed allows cross-section IV specifications that include birth
year fixed effects, age controls, and the quarter-based IVs. When we moved to the panel setting, we calculated the
age-in-quarters variable for their non-survey years by subtracting/adding four for each additional year away from the
survey year for consistency and for the sake of estimating similar panel 2SLS specifications.
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completed level was ‘some college’ and thus did not obtain a college degree were assigned ‘some
college’ beginning in the year during which their post-high school education began. Individuals
who obtained at least a college degree were assigned ‘college degree’ beginning in the year during
which they obtained their bachelor’s degree. Individuals who obtained a graduate degree were
assigned ‘graduate degree’ beginning in the year during which their post-high school education
ended.16 Then, based on highest level completed at each year, individuals were assigned a years of
school variable. Individuals with ‘no high school degree’ in a given year were assigned 10 years
of school, individuals with ‘high school degree’ were assigned 12 years of school, individuals with
‘some college’ were assigned 14 years of school, individuals with ‘college degree’ were assigned
16 years of school, and individuals with ‘graduate degree’ were assigned 18 years of school.17

The sample is mostly made up of individuals who are of non-minority statuses: the sample is
only 5.2 percent Black, 2.4 percent other race, 3.9 percent Hispanic, and 2.6 percent foreign born.18

The small size of these groups is related to the sample restriction for earnings observations in each
year from 1978-2011 and the sample restriction for no missing covariate information. Minority
groups, including Black and Hispanic males, historically have higher unemployment rates and
lower labor force participation rates than White males and are thus more likely to have gaps in
their employment history (Altonji and Blank, 1999). There is also evidence that minority groups
are more likely to have non-response items in survey data (Griffin, 2002; Chenevert et al., 2016).
Finally, there is also evidence that individuals who are White are more likely to work while in

16Note that the variable for the year during which post-high school education ended could be before, the same as, or
after the year during which a bachelor’s degree was earned. If a person started college but did not obtain a bachelor’s
degree, then it indicates when the person dropped out. If a person obtained a bachelor’s and then stopped, then it is
the same as the bachelor’s year variable. If the person obtained a graduate degree, then it indicates when they finished
graduate school.

17Assigning years of school based on highest level completed in this way is common in the literature (e.g.,
Heckman, Lochner, and Todd, 2006; Henderson, Polacheck, and Wang, 2011). Another approach is to measure actual
years spent in school, regardless of completed education levels. This is not feasible in the U.S. Census Bureau Gold
Standard File as it is in some other datasets such as the NLSY, although it is not obvious that this approach would
be preferable; variation in years of school that is independent of completed education levels (e.g., individuals who
complete college in three versus five years) might introduce more measurement error into the variable, depending on
beliefs about whether measured years of school should be tied to educational achievement. Another set of results not
shown in this paper were based on a schooling variable that smoothed the discrete jumps in years of school described
above by attempting to impute actual years spent in school. However, doing so was difficult based on available
information in some instances, such as for individuals with long periods of time between the beginning and ending of
post-high school education; while the educational history variables do report when post-high school education began
and ended, it is not possible to know if or when individuals took breaks from school during college or between college
and graduate school.

18Survey weights are not used in the sample statistics or regression analysis to re-weight to a nationally
representative sample. SIPP survey weights would need to be adjusted not only for the linkage rate to administrative
data and missing data, but also for the combination of many SIPP panels into one sample.
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school than individuals who are Black or Hispanic (Hotz et al., 2002).
Panel B of Table 1 shows summary statistics for a comparison sample with the same individ-

uals, except also including individuals who have missing earnings data while enrolled in school. As
discussed earlier in the paper, using a panel approach forces the analysis to be based on individuals
who have earnings data while increasing their education. This is a necessity of extending the
analysis of returns to schooling to the panel setting, but it does introduce a sample of individuals
who are potentially different with respect to observable or unobservable characteristics.

Table 1 shows that 62.38 percent of individuals in the comparison sample that relaxes the
earnings-during-school restriction remain in the sample of analysis. This is generally consistent
with evidence that as much as 92 percent of individuals gain at least some work experience during
high school and 88 percent during in college (Hotz et al., 2002). Employment during college,
in particular, has been on the rise and is one of the main variables related to increased time-to-
graduation (Bound et al., 2012). The frequent occurrence of work while enrolled in school helps
eliminate concerns that the sample of analysis is a small, non-representative group of individuals.

While the incidence of work during school appears to be frequent in the linked dataset and the
literature, much of this work is likely part-time work. Thus, earnings may be artificially low during
school, which could lead to larger estimates of the return to schooling from panel datasets. For
this reason, the analysis below first estimates cross-section specifications in order to replicate the
well-known pattern of OLS/2SLS results from the literature. This is done using two point-in-time
cross-sections from the full panel sample: one based on values in the year 1990 and the other
based on values at age 40. These cross-section samples are shown in the summary statistics
table. Furthermore, the full panel sample will be used to generate OLS and 2SLS estimates, in
addition to estimates from specifications based on an interactive fixed effects structure. Thus, to
the extent that estimates of the return to schooling are larger or smaller based on panel data, all
of the estimators will be affected by this, such that comparing estimates from OLS/2SLS with
estimates from interactive fixed effects specifications still illustrates the effect of allowing for
multiple unobserved skills whose prices can vary over time.

5 Empirical Results

The empirical results are organized into five subsections. Section 5.1 presents the set of spec-
ifications estimated that differ according to whether cross-section or panel data are employed,
whether the effect of experience is accounted for, whether the regression parameters are allowed
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to be heterogeneous and whether interactive fixed effects are incorporated.19 Section 5.2 reports
the cross-section estimates which replicate the robust empirical finding in the literature that the
instrumental variable estimate of the returns to schooling exceeds the OLS estimate. The former is
based on using the quarter of birth or its interaction with year of birth as instruments (Angrist
and Krueger, 1991). Section 5.3 presents the panel OLS, 2SLS, and interactive fixed effects
estimates obtained by pooling the data across cross-section units assuming homogeneous param-
eters. Section 5.4 contains results for models that allow heterogeneity in the returns to schooling.
Finally, Section 5.5 conducts a more in-depth analysis of the nature and degree of heterogeneity
by examining the distribution of returns for various subgroups of the population.

5.1 Estimated Specifications

We estimate a total of fourteen specifications that are summarized in Table 2. We group the
specifications as follows:

• Group 1 [Specifications 1-2]: Cross-section OLS and 2SLS regressions of log hourly
earnings on schooling to verify the “IV > OLS” result commonly found in empirical studies
(see Card, 2001 for a survey of these results). When age controls are included, we estimate
the specification

yi = c+ xiβ +w′iγ +aiρ1 +a2
i ρ2 +ui

where wi is a vector of demographic controls and ai denotes the age of individual i. The
age variables are included to account for the actual experience (we discuss this issue further
below). Demographic controls include race, Hispanic status, foreign born status, marital sta-
tus, state of residence during the SIPP survey and birth year. We also explore the sensitivity
of the results to the omission of age controls by estimating the model

yi = c+ xiβ +w′iγ +ui

• Group 2 [Specifications 3-7]: Standard panel data specifications that include time and/or
person fixed effects to control for unobserved heterogeneity. Here, we estimate five different
specifications depending on the type of fixed effects included as well as whether age and
demographic controls are included. The most general specification in this group takes the
form

yit = δt + xitβ +w′itγ +aitρ1 +a2
itρ2 +uit (17)

19Note that no tests to determine statistical significance have been performed except where indicated explicitly in
the text or tables. Estimates of the return to schooling across the different sets of specifications listed here have not
been tested to determine whether they are statistically different from one another.
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where ait denotes the age of individual i at period t. We consider the following variants
of (17): (a) the age and demographic controls are excluded; (b) the age and demographic
controls are replaced by a person fixed effect; (c) the demographic controls are excluded;
(d) the age controls are excluded. Angrist and Newey (1991) consider a specification of the
form

yit = ci +δt + xitβ +w′itγ + peitρ1 + pe2
itρ2 +uit (18)

where peit denotes potential experience and is computed as peit = ait − xit − 6, where they
define xit as the highest grade completed. They estimate a reduced form schooling effect
(expressed as a function of peit and ait) based on the observation that the effect of schooling
conditional on potential experience is not identified.20 We present a derivation in the Ap-
pendix which shows that the effect of actual experience can be accounted for by including
age and its square as controls as in (17).

• Group 3 [Specifications 8-10]: This group contains specifications that include interactive
fixed effects while assuming that the regression coefficients are homogeneous. The nesting
model takes the form

yit = δt + xitβ +aitρ1 +a2
itρ2 +λ

′
i ft +uit (19)

The following variants of (19) are considered: (a) the age controls are excluded; (b) the age
controls are replaced by a person fixed effect.

• Group 4 [Specifications 11-14]: This group consists of specifications where the slope
parameters are allowed to be individual specific. The general specification in this set is
given by

yit = xitβi +aitρ1i +a2
itρ2i +λ

′
i ft +uit (20)

We estimate three variants of (20): (a) the interactive fixed effects and age controls are
replaced by a person fixed effect; (b) the person and interactive fixed effects are excluded;
(c) the age controls are replaced by a person fixed effect.

20The returns to schooling literature often controls for potential experience, measured as (age−years of school−6),
by assuming that individuals do not work while in school but do work during every other work-age year. This allows
researchers to proxy for experience when no direct way to measure experience exists. We account for actual experience
rather than potential experience because we can observe the accumulation of experience based on the presence of
annual earnings and we specifically limit our sample to individuals who continue to work and earn income while
increasing their schooling.
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5.2 Cross-Section Estimates

Table 3 presents the cross-section OLS and 2SLS estimation results. Panel A reports the results
for our main sample of analysis. Columns (1)-(6) report findings based on the cross-section at year
1990 while columns (7)-(9) report findings based on the cross-section at age 40. OLS results using
the first cross-section indicate that the age controls have little impact on the estimated effect of
schooling with a point estimate of about 9 percent in either case. The corresponding 2SLS point
estimates are much larger when quarter of birth indicators are used as instruments. The estimated
schooling effect depends crucially on the instruments used: when age controls are excluded, using
the birth quarter as instruments results in a point estimate of about 28.6 percent while using the
interactions of quarter of birth with year of birth as instruments yields an estimate of only 13.9
percent. The same pattern of results is observed for the cross-section at age 40 with the 2SLS
point estimates exceeding the OLS estimate with the extent of the excess determined by the set of
instruments employed.

Overall, these findings are in accordance with the literature summarized in Card (2001)
which demonstrates the robustness of the “IV>OLS” result across different datasets as well as
different instrument sets. For instance, the seminal study by Angrist and Krueger (1991) finds,
based on the 1920-29 birth cohort using data on men from the 1970 Census, an OLS estimate of
about 7 percent and a 2SLS estimate of about 10 percent when controlling for age and its square,
race, marital status and urban residence.21

Panel B of Table 3 presents estimates based on the comparative sample from Panel B of Table
1. The OLS and 2SLS estimates are very similar to those in Panel A when individuals who have
missing earnings data during school are included.22 This helps alleviate concerns that our panel
results are driven largely by sample selection effects.

21Our 2SLS estimates are slightly larger than those in the literature when only birth quarter is used as an instrument;
OLS estimates generally range from 5 to 10 percent, while 2SLS estimates generally range from 10 to 16 percent
(Card, 2001). The slightly larger 2SLS estimates could be due to the fact that we have a sample of continuous earners,
which could make returns to schooling appear larger (Lazear, 1977; Card 1995); the fact that our sample is based on
individuals born in more recent years than most of the literature and there is evidence that returns to schooling have
been increasing over time (e.g., Card and Lemieux, 2001); the fact that our results are based on a different data source
than most of the literature, and the only paper of which we are aware that has estimated returns to schooling based on
SIPP and administrative data finds slightly larger OLS estimates than the literature (Chenevert et al., 2016); or an odd
LATE interpretation for this sample.

22The number of observations in Panel B is slightly lower than in the summary statistics from Panel B of Table
1. This is because some individuals in the comparative sample have not yet completed their schooling and thus have
missing earnings data at the time period of the cross-section analysis.
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5.3 Pooled Estimates

The results from OLS and 2SLS estimation using panel data over 1978-2011 are presented in Table
4. Panel A results include demographic controls while Panel B results exclude these controls.
Columns (1)-(3) report the OLS estimates while the 2SLS estimates are reported in columns
(4)-(7). The following observations are readily apparent from these findings: (a) similar in spirit
to the cross-section analysis, the OLS point estimates are smaller than the 2SLS point estimates
across specifications; (b) the age controls only have a minor effect on the OLS estimate, irrespective
of whether demographic controls are included while the 2SLS point estimates are noticeably
smaller when age controls are included; (c) the demographic controls have little impact on the
estimated schooling coefficient (OLS and 2SLS), once the age controls are included. Controlling
for time and person fixed effects, Angrist and Newey (1991) obtain point estimates of the reduced
form schooling effect in the range 3.4-9 percent across their estimation methods (OLS, 2SLS
and its variants) while the range for our point estimates is 10.7-26.2 percent. Their results are,
however, not directly comparable to ours, being based on a different dataset (NLSY). In addition
to parameter estimates, Table 4 also reports the results of Pesaran’s (2015) CD test for the presence
of cross-section dependence for each estimated specification.23 In all cases, the test provides
evidence against no cross-section dependence (at the 1% level) which further motivates the use
of the interactive fixed effects estimators.

Table 5 reports the results from estimating pooled specifications with interactive fixed effects.
The estimators included are the IFE, CCEP and CCEP-2 estimators. Irrespective of whether
one controls for interactive effects using principal components or cross-section averages of the
observed variables, the point estimates are smaller in magnitude than the OLS and 2SLS estimates
reported in Table 4. For instance, the IFE point estimate when age controls are included is about 4.2
percent while the corresponding OLS and 2SLS estimates are about 11.6 percent and 15.5 percent
(or 21.5 percent if quarter of birth indicators are used as instruments), respectively. Under the
assumption that the interactive effects specification represents the true model, the pattern of results
suggests that the OLS and 2SLS estimates are both upward biased, with the magnitude of the 2SLS
bias exceeding the OLS bias. This is consistent with the assumption that the IV approach suffers
from poor instruments that are correlated with unobserved abilities or skills, which the interactive
fixed effects specifications can account for. The CCEP point estimates are larger than the IFE
estimates reflecting the difference in how the unobserved common factors are accounted for in the

23The test is based on estimated pairwise correlation coefficients between the pooled OLS/2SLS residuals for each
pair of cross-section units. The test has a standard normal asymptotic distribution under the null hypothesis of no
cross-section dependence.
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two approaches. However, the CCEP-2 estimates that employ the estimated factors are much closer
to the IFE estimates, especially so when age controls are included. Finally, an interesting pattern
emerges across the three specifications (columns 1-3) when using the IFE estimate - the estimated
number of common factors corresponding to the most general specification (column 3) is one less
than that when a person and time fixed effect are included and two less than that when only a time
fixed effect is included. This is precisely the pattern that one would expect a priori if the factors
are able to pick up the components that are not controlled for in a particular specification. For
example, the difference between the specifications in columns 2 and 3 amounts to the presence of
a person-specific trend in the latter which is accounted for by the additional factor estimated for
the specification with only time and person fixed effects.

Our interpretation of the interactive fixed effects structure as capturing unobserved skills
or abilities hinges on the assumption that there are no suitable proxies to fully account for their
effects. Alternatively, such a structure could be potentially capturing time-varying returns to time
invariant individual-specific characteristics such as demographics or these characteristics could
serve as useful proxies for individual skills or abilities. To investigate this possibility, we estimated
the following specification with demographic-by-year fixed effects, denoted d′iθt , by OLS:

yit = δt + xitβ +w′itγ +d′iθt + vit

The estimates, reported in columns (1)-(3) of Appendix C, are only marginally smaller than those
reported in columns (1)-(3) of Panel B in Table 4, with a reduction of about 10 percent for our
preferred specification with age controls. These findings lend support to our interpretation of the
factor loadings as skills and that interactive fixed effects are needed to fully model these skills.

As discussed in Section 3.2.1, the interactive fixed effects estimates can be used to obtain
estimates of the OLS and 2SLS biases associated with each of the skill components. Table 6
shows the biases corresponding to the first four common factors for each of the IFE, CCEP and
CCEP-2 estimates. The contribution of additional factors to the total bias (reported in column (5))
is marginal in all cases. For all three estimation approaches, the aggregate 2SLS bias exceeds the
OLS bias across specifications with the magnitude of the excess being relatively greater for the
IFE and two-step CCE approaches, consistent with the findings reported in Tables 4 and 5. While
including age controls mitigate the biases to some extent, the magnitudes remain considerable
even in this case. For instance, the aggregate OLS bias with age controls using the IFE approach
accounts for about 64 percent of the estimated OLS effect of schooling (Table 4, column 3). The
corresponding aggregate 2SLS bias accounts for about 73 percent of the estimated 2SLS effect of
schooling (Table 4, column 7). Similar magnitudes are obtained when the biases are based on the
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two-step CCE approach.
The disaggregate bias estimates reveal some interesting patterns. First, the leading common

component is the major contributor to the aggregate OLS bias, accounting for at least 50 percent of
the bias across specifications/estimators and nearly all of the bias when only year fixed effects are
used to control for unobserved heterogeneity. In contrast, the first two common components are
important contributors to the 2SLS bias, with the first component being relatively more important
when age controls are included and vice-versa. Notably, a sizeable negative bias component (cor-
responding to the second common factor) emerges in both OLS and 2SLS cases when age controls
are included (the exception being the case where the 2SLS bias is computed using the IFE esti-
mates). In the 2SLS case, this component makes a substantial contribution in the (one-step) CCE
approach serving to reduce the resulting aggregate estimated bias sufficiently to a value smaller
than the estimated bias using the IFE approach, even though the positive bias emanating from the
first common component is larger using the former approach. The negative bias component can be
interpreted as the presence of mechanical skills that are negatively correlated with schooling but
make a positive contribution to earnings (Heckman, Lochner, and Todd, 2006; Prada and Urzua,
2017). Finally, it is useful to note that the 2SLS estimator is only successful at ameliorating the
bias associated with the common components which only make a negligible contribution to the
total bias (i.e., components other than the first two), at the expense of aggravating the bias in
the two leading components. These results show that, assuming an underlying interactive factor
structure, the consistent “IV > OLS” finding in the literature could be due to the use of instruments
that actually worsen the ability bias.

5.4 Mean Group Estimates

Table 7 presents results from estimating the specifications 11-14 in Table 2 (i.e., those corre-
sponding to Group 4) that allow the slope parameters to be individual-specific. In addition to the
CCEMG, CCEMG-2 and IFEMG estimators, we also include the OLSMG estimator that entails
taking the average of the individual specific time series OLS regressions of log earnings on a
constant and schooling. Note that a mean group 2SLS estimate cannot be computed since the
instruments are time-invariant. To confirm the presence of heterogeneity, Table 7 also reports the
results from conducting two slope homogeneity tests recently proposed by Ando and Bai (2015)
and Su and Chen (2013).24 Both tests provide evidence against the null of slope homogeneity at

24The Ando and Bai (2015) test is based on the (scaled) difference between the individual level estimates and the
IFEMG estimate while the Su and Chen (2013) test is based on the Lagrange Multiplier (LM) principle that utilizes
IFE residuals computed under the null of slope homogeneity. Both tests have a standard normal asymptotic null
distribution. We refer the reader to the original articles for details.
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the 1% significance level.
When the interactive effects are ignored, point estimates of the return to schooling are

considerably larger - when age controls are included, the OLSMG point estimate is about 35
percent, which is more than ten times as large as the IFEMG (2.7 percent) and CCEMG-2 (2.9
percent) estimates and larger than three times the CCEMG estimate (9.7 percent). Consistent
with the foregoing pooled results, the one-step CCE approach yields a larger point estimate of the
average marginal returns to schooling relative to the IFE and two-step approaches which yield very
similar estimates. Given that the pooled estimates exceed the corresponding mean group estimates
for both the IFE and two-step CCE approaches, we should expect a positive correlation between the
individual level estimate β̂i and the weight on individual i′s return ωi according to the heterogeneity
bias analysis in Section 3.2.2. Indeed, the IFE-based correlations were estimated to be .009
and .005 with and without age controls, respectively, while the corresponding two-step CCE
correlations were estimated as .019 and .022, respectively. The one-step CCE results were also
in agreement with the predicted signs, except when age controls are included, although in this case
the difference between the pooled and mean group estimate was rather small (.3%) [indeed smaller
(in absolute value) than the difference between any other pair of estimates in Tables 5 and 7].25

The pattern of findings for the estimated schooling effect obtained from the IFE and two-step CCE
approaches therefore suggest that ignoring potential heterogeneity is likely to induce an upward
bias in the parameter estimates. We also computed the CD test for cross-section dependence
based on the OLSMG estimate and found evidence against no cross-section dependence for both
specifications at the 1% level.26

As in the pooled case, we compute the biases associated with the OLSMG estimate using the
CCEMG, CCEMG-2 and IFEMG estimates of the common structure. The findings are reported in
Table 8. When age controls are excluded, the first common component is responsible for at least
80 percent of the aggregate bias across three estimation approaches. Consistent with the pooled
results, the inclusion of age controls only alleviate the aggregate bias to a limited extent: the bias
reduction using both the IFE and two-step approaches is about 22 percent while that based on the
one-step CCE procedure is about 23 percent. In either case, the aggregate bias is very large: the
aggregate OLSMG bias accounts for up to 95 percent of the estimated OLSMG effect of schooling
in Table 7, depending on the specification. An important difference with the pooled bias results in
Table 6 is that the biases associated with each of the skill components are now positive, regardless

25When age controls are excluded, Corr(β̂i, ω̂i)≈−.054 based on the one-step CCE approach, in accordance with
β̂CCEP < β̂CCEMG. With age controls, Corr(β̂i, ω̂i)≈−.008 but β̂CCEP > β̂CCEMG.

26The results are available upon request.
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of whether one controls for experience. This finding suggests that the emergence of a negative bias
component in the pooled case might be a consequence of the failure to incorporate cross-sectional
heterogeneity in the returns to schooling.

Finally, since the interactive effects framework allows for both individual slope heterogeneity
and cross-sectional dependence modeled through a common factor structure, it is possible to
obtain estimates of the biases emanating from each of the two sources. We can use the decom-
position β̂POLS− β̂IFEMG =

(
β̂POLS− β̂IFE

)
+
(

β̂IFE − β̂IFEMG

)
, where β̂POLS denotes the OLS

estimate assuming a homogeneous slope parameter. The first term in the decomposition may
be interpreted as the bias arising from ignoring the common factor structure while the second
term denotes the bias from ignoring potential parameter heterogeneity. The results are shown
in Figure 1. Based on the results for our preferred specification that includes age controls, we
find β̂POLS − β̂IFEMG ' 8.9 percentage points, β̂POLS − β̂IFE ' 7.4 percentage points, β̂IFE −
β̂IFEMG ' 1.5 percentage points. A similar calculation using the two-step CCE estimate yields
β̂POLS− β̂CCEMG−2' 8.7 percentage points, β̂POLS− β̂CCEP−2' 7.4 percentage points, β̂CCEP−2−
β̂CCEMG−2 ' 1.3 percentage points. For the one-step CCE method, we obtain β̂POLS− β̂CCEMG '
1.9 percentage points, β̂POLS− β̂CCEP ' 1.6 percentage points, β̂CCEP− β̂CCEMG ' 0.3 percentage
points. For all three estimation approaches, the omitted ability bias captured using the interac-
tive fixed effects structure appears to be the more important contributor to the total bias of the
least squares estimator that does not incorporate the common factor structure or slope parameter
heterogeneity.

5.5 Heterogeneity Analysis

Estimates of the return to schooling in Table 7 show the average of the individual returns across all
individuals. This section discusses heterogeneity of the individual-level returns. We focus on the
distributional characteristics of the individual returns, differences in mean returns across and within
subgroups and characteristics associated with extreme returns. Most papers in the literature assume
that the return to schooling is the same for all individuals, but there are exceptions (Harmon et al.,
2003; Koop and Tobias, 2004; Henderson et al., 2011; Li and Tobias, 2011; Zhu, 2011). The results
for heterogeneity across and within subgroups discussed below are most comparable to the results
from Henderson et al. (2011). They use cross-section nonparametric kernel regression methods to
study heterogeneity in returns and summarize the heterogeneity across and within subgroups, but
their method does not address omitted ability bias.
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5.5.1 Distribution of Individual Returns

Figure 2 shows the distribution of individual returns for each estimator based on kernel density
plots.27 The figure illustrates that there are large differences in returns across individuals. Most of
the density associated with the heterogeneous OLS model falls between approximately a negative
50 percent return and a positive 100 percent return. The common factor models clearly shift
the distribution to the left, which is consistent with evidence that the common factor models are
removing positive bias in the OLS estimates due to unobserved multidimensional skills.

The common factor models place greater density immediately around the modal return,
which is illustrated by the height of the density plots compared to OLS. The OLS returns are
somewhat left-skewed compared to the common factor model returns. Finally, despite the rela-
tively large difference between the CCEMG estimate and the IFEMG and CCEMG-2 estimates
reported in Table 7, the three common factor model distributions look very similar; the difference
in the CCEMG return appears to be due to relatively small differences along the left tail and right
side of the distribution.

The most striking result from the figure is that each of the estimators shows a considerable
fraction of individuals with negative returns to schooling. Overall, 13.0 percent of individuals
have negative returns in the heterogeneous OLS model, 45.2 percent in the heterogeneous IFE
model, 38.4 percent in the heterogeneous CCE model, and 45.9 percent in the heterogeneous CCE-
2 model. The OLS fraction is similar to Henderson et al. (2011), who find that 15.2 percent of
individuals who are White have negative returns to schooling. Heckman et al. (2017) and Prada
and Urzua (2017), who use ability proxies from the NLSY to address ability bias, appear to find
fractions of negative returns between the OLS and common factor models: Prada and Urzua (2017)
report that 19 percent of individuals in their sample would have had higher annual earnings if
they had decided not to attend a 4-year college. Heckman et al. (2017) do not report an exact
fraction, but the log wage panel in their Figure 7 appears to indicate a fraction less than zero of
approximately 20-40 percent.

5.5.2 Across-Group Heterogeneity

Table 9 reports the mean and variance of the individual returns separately by several subgroups:
race (White, Black, other race), Hispanic status, foreign born status, birth cohort (born before 1950,

27The kernel density plots are based on a standard normal (Gaussian) kernel with a bandwidth of 0.1.
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born 1950-1954, born 1955-1959, born after 1959), and highest education level completed.28,29

Mean returns for individuals who are non-White are statistically tested against the mean for in-
dividuals who are White. For the other subgroups, the mean for each group is statistically tested
against the mean for the group listed directly above it within each panel of the table.

Based on the OLSMG model, the mean return to schooling is statistically larger for individ-
uals who are Black compared to White and for individuals born in later birth cohorts. According
to highest completed education level, the mean of the individual returns is statistically larger for
individuals with a high school degree compared to some college, statistically larger for individuals
with some college compared to a bachelor’s degree, and statistically larger for individuals with a
graduate degree compared to a bachelor’s degree. These results are similar to those from Hen-
derson et al. (2011), who find that returns to schooling are larger for individuals who are Black,
natives, individuals born in more recent years, and individuals with lower levels of educational
attainment.

Mean individual returns from the heterogeneous common factor models are smaller than
those from the OLSMG model for every subgroup, which is consistent with the main results
discussed in the previous sections. In addition to smaller mean returns, the common factor models
show three differences in the relative size of returns across subgroups compared to the OLSMG
model: (1) There are no statistically significant differences by race; (2) CCEMG shows statistically
smaller returns for Hispanic and foreign-born individuals; (3) There is a different pattern across
highest level of education completed. Both OLSMG and the common factor models show the
largest mean return to schooling for individuals who ultimately stop at high school, but they show
different relative returns for other education levels: common factor models show the next largest
mean returns for individuals whose highest achievement is a bachelor’s degree or a graduate degree,
whereas OLSMG shows the second largest returns for individuals who begin college but do not
finish. The common factor model returns are statistically smaller for some college compared to
high school (IFEMG and CCEMG), statistically larger for a bachelor’s compared to some college
(CCEMG), and statistically smaller for a graduate degree compared to a bachelor’s (CCEMG).

The statistically larger returns for more recent birth cohorts, found across all four heteroge-
neous models, is consistent with evidence that returns to schooling have risen over time (Card and

28The CCE model from Pesaran (2006) makes a random coefficients assumption on the individual-level returns.
This assumption only affects the CCE standard errors and therefore analysis of the mean and variance of individual-
level returns by particular characteristics is feasible without violating assumptions of the model.

29Due to the limited sample size as explained in section 4.2, the results of non-white, Hispanic, and foreign born
individuals should be interpreted with caution. It is possible that these groups in our sample have unique attributes and
are not representative of the rest of the population or that we lack the statistical power to detect significant differences.
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Lemieux, 2001).30 With regard to the results across completed education levels, the OLSMG re-
sults suggest diminishing marginal returns to years of schooling, at least until graduate school. The
common factor model results are more suggestive of “sheepskin effects” (Layard and Psacharopou-
los, 1974; Hungerford and Solon, 1987; Jaeger and Page, 1996); if the value of additional years of
school is partly related to the value of degree attainment rather than knowledge obtained in each
year, then returns may be larger for individuals who complete bachelor’s and graduate degrees
than for individuals who drop out of college. Henderson et al. (2011) find evidence of diminishing
marginal returns that are similar to those from the OLSMG model: larger returns to schooling for
individuals with some college than individuals with a bachelor’s or more.

5.5.3 Within-Group Heterogeneity

The heterogeneous models also allow for the analysis of heterogeneity within subgroups. Table
9 shows the variance of the individual returns within each subgroup. The common factor models
show larger variance than OLSMG for every subgroup except for individuals born before 1950
(CCEMG). Larger variance suggests that, in addition to removing positive bias in the mean re-
turn as discussed above, accounting for multidimensional skills with time-varying prices that are
potentially correlated with schooling also increases the overall dispersion of returns around the
mean.

The common factor models change the relative variance across subgroups compared to
OLSMG in two cases: (1) The heterogeneous common factor models generally show larger vari-
ance for more recent birth cohorts, whereas OLSMG shows smaller variance;31 (2) The common
factor models show much larger variance for individuals who only obtain a high school degree than
any other education level, whereas OLSMG shows similar variance between these individuals and
those with higher levels of education.

Table 10 reports the 25th, 50th, and 75th percentiles of the distribution of individual returns
by subgroup. The common factor model estimators show smaller returns at each percentile, which
is once again consistent with previous results. The difference between the 25th and 75th percentiles
is often larger for OLSMG than the heterogeneous common factor models. This is inconsistent
with the larger variance associated with the common factor models in Table 9 . However, this can
be reconciled by analyzing the distributional plot in Figure 2. The common factor estimators place

30The differences across birth cohorts for CCEMG-2 do not show statistically significant differences when a given
birth cohort is only tested against the cohort directly above it in the table, but statistically larger returns for more recent
birth cohorts do exist when the 1955-1959 or after-1959 cohorts are tested against the before-1950 cohort.

31The one notable exception is that IFEMG shows much larger variance for individuals born before 1950 than any
other cohort. But IFEMG still shows increasing variance over time for the subsequent cohorts.
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relatively more density immediately around the mode than OLS, which produces a smaller range
between the 25th and 75th percentiles than OLS. But the factor model estimators also have longer
tails than OLS, which increases the overall variance.

5.5.4 Extreme Returns

Given that the results discussed above show significant heterogeneity in returns both across and
within subgroups, Table 11 shows characteristics that are associated with being in the top 5 percent
and bottom 5 percent of returns for each estimator. In addition to the characteristics discussed
above, these tables also include whether the individual finished high school late (at age 20 or
later), began college late (three or more years after finishing high school), and finished college late
(did not obtain their bachelor’s until age 26 or later).

Based on OLSMG, individuals in the top 5 percent of returns are statistically more likely
to have begun college late, have finished college late, be Black, have been born after 1959, and
have obtained only some college. They are also statistically less likely to be married at age 40,
have been born in 1950-1954, and hold a bachelor’s or graduate degree. Individuals in the bottom
5 percent of returns are statistically more likely to have finished high school late, have finished
college late, have been born in 1950-1954, and hold a bachelor’s or graduate degree. They are also
statistically less likely to have begun college late, have been born in 1955-1959, have been born
after 1959, or have obtained only some college. These results are fairly consistent with those from
Henderson et al. (2011), who find that individuals born in more recent years and individuals who
are Black are more likely to have returns in the top 5 percent, while individuals born in earlier
years and individuals who are married are less likely to have returns in the top 5 percent.

Some aspects of the OLSMG results are intuitive. For example, individuals born in more
recent birth cohorts being statistically more likely to have a top 5 percent return and statistically
less likely to have a bottom 5 percent return is consistent with the literature that returns to schooling
have increased over time. Other results are less intuitive, such as individuals who hold a bachelor’s
or graduate degree being statistically less likely to have a top 5 percent return and statistically more
likely to have a bottom 5 percent return, compared to the opposite pattern for individuals with only
some college.

The heterogeneous common factor models show that individuals in the top 5 percent of
returns are statistically more likely to have begun college late, have finished college late (IFEMG
and CCEMG-2), have finished high school late (CCEMG-2), and have been born after 1959. They
are also statistically less likely to have been born in 1950-1954 (CCEMG-2), have been born
in 1955-1959 (IFEMG and CCEMG), have obtained only some college (CCEMG only), have a
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bachelor’s degree, and have a graduate degree (IFEMG and CCEMG-2). The CCEMG model also
shows that individuals in the top 5 percent are statistically less likely to be a race other than White
or Black, be Hispanic, or be foreign-born. Individuals in the bottom 5 percent are statistically
more likely to have finished high school late (CCEMG), have begun college late (CCEMG and
CCEMG-2), have finished college late, be Hispanic (IFEMG), have been born after 1959 (IFEMG
and CCEMG-2), and have obtained only some college. They are also statistically less likely to have
been married at age 40, have been born in 1955-1959 (CCEMG and CCEMG-2), have a bachelor’s
degree, and have a graduate degree (IFEMG and CCEMG-2).

The common factor model results seem to correct some of the less intuitive results from
OLSMG. The common factor models show that individuals with a bachelor’s or graduate degree
are statistically less likely to end up in the bottom 5 percent of returns while those with only some
college are statistically more likely to end up in the bottom 5 percent. This is the opposite of the
OLSMG result and is consistent with the potential “sheepskin effects” discussed previously. The
result that individuals born after 1959 are statistically more likely to end up in both the top and
bottom 5 percent according to the common factor models, despite having larger mean returns in
Table 9 , is consistent with the larger variance in returns for more recent birth cohorts.

Finally, all three common factor estimators find evidence that individuals who begin college
late or finish college late are more likely to be in both the top and bottom 5 percent of returns.
In addition to suggesting large within-group heterogeneity for these individuals, this result is also
consistent with multiple potential selection biases that have different predictions for the return to
schooling: (1) Some individuals who begin and finish college late may do so because of poor
grades or lack of motivation, which could also be related to lower earnings after college; (2) Other
individuals who begin and finish college late may do so because their realized outcomes in the
labor market without a college degree suggested that they had the most to gain from continuing
their education; (3) Still more individuals who begin and finish college late may have delayed
because of large financial or psychic costs associated with attending college, in which case those
who eventually went to and completed college must have had large potential returns in order to
take on the large costs (Becker, 1964; Heckman, Lochner, and Todd, 2006).

6 Conclusion

This study explores the viability of an interactive fixed effects approach to estimating the returns to
schooling employing a large panel dataset that links survey data with tax and benefit information
obtained from administrative records. This research is possible due to the linking of SIPP sur-
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vey data with administrative records from the Social Security Administration (SSA) and Internal
Revenue Service (IRS). SIPP provides longitudinal education information, while administrative
records provide a long history of high-quality earnings data. The generality of the interactive
fixed effects approach over most existing approaches is apparent in at least three dimensions: (1)
Unobserved ability is allowed to be multidimensional where each component is characterized by
its own contribution to earnings with skill prices that can vary over time; (2) The endogeneity
of schooling is accounted for through estimation of or proxying for the skill prices that is made
possible by the high-dimensional nature of the the panel without the need to resort to external
instruments or proxies for ability; (3) Individual-level heterogeneity in the returns to schooling
can be accommodated that allows us to simultaneously address the twin sources of bias that can
arise due to unmeasured skills (the omitted variable bias) and assuming that the marginal returns
to schooling are homogeneous across individuals.

The estimates from our preferred specification indicate considerably lower average marginal
returns to schooling compared to traditional methods such as ordinary least squares or two stage
least squares. While both aforementioned sources of bias contribute to the aggregate least squares
bias, our estimates point to a relatively more important role for the bias induced by omission of
time-varying returns to skills. The two biases operate in the same direction serving to explain
the gap in the heterogeneous interactive fixed effects estimates and the homogeneous panel OLS
estimates. Our subgroup heterogeneity analysis suggests interesting differences among methods
both within and across subgroups. For example, OLS or standard nonparametric regressions
suggest the presence of diminishing marginal returns to schooling, at least until graduate school.
In contrast, our preferred estimates are suggestive of “sheepskin effects” so that degree attainment
can have an important impact in determining the value of additional years of schooling.

Several extensions of our analysis are in order. First, it would be interesting to investigate
the extent of heterogeneity in returns at different quantiles of the earnings distribution using the
quantile interactive effects approach recently developed by Harding and Lamarche (2014). Second,
while our results indicate important differences both across and within subgroups, our sample only
includes men. Analysis of heterogeneity from a gender standpoint is a promising avenue for future
research. Third, our paper only considers cross-sectional heterogeneity but as the nonparametric
analysis of Henderson et al. (2011) documents, returns vary not only across individuals but also
across time. A limitation of our analysis in this context is that splitting the sample by time
periods would leave us with relatively few observations in each subsample (splitting by, say, half
would imply a time series dimension of seventeen for each subsample) to estimate the individual
specific parameters. Fourth, our analysis assumes that the skill prices are homogeneous across
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individuals although they are allowed to vary over time. Heckman and Scheinkman (1987) find
evidence in favor of a model where skill prices are sector-specific which suggests the presence of
a grouped factor structure for earnings which allows heterogeneity in skill prices across sectors
of the economy but possibly homogeneous for individuals within a particular sector. We leave
analyses of these and related issues as possible directions for further research.
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Figure 1: Bias Decomposition of Pooled OLS Estimate

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard
File.
Note: The total stacked bar for each estimator represents the pooled OLS estimate of the returns to
schooling with year fixed effects and age controls, corresponding to column (3) in Panel B of Table

4. We use the decomposition β̂POLS − β̂IFEMG =
(
β̂POLS − β̂IFE

)
+
(
β̂IFE − β̂IFEMG

)
, where

β̂POLS denotes the OLS estimate assuming a homogeneous slope parameter. The first term in the
decomposition may be interpreted as the bias arising from ignoring the common factor structure
while the second term denotes the bias from ignoring potential parameter heterogeneity. The same
calculations are applied using CCE and CCE-2 estimates.
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Figure 2: Distribution of Marginal Returns to Schooling

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard
File.
Note: Each line is a kernel density plot of individual returns based on the heterogeneous model for
the given estimator. Results are based on the specification with age controls, which corresponds to
columns (2), (4), (6), and (8) in Table 7.
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Table 1: Summary Statistics

(1) (2) (3)
Year 1990 sample Age 40 sample Panel sample

A. Sample of Analysis - with earnings-in-school restriction

Annual earnings 43,920 59,270 50,660
(35,540) (61,390) (76,890)

Years of school 14.60 14.83 14.46
(2.076) (2.004) (2.138)

Age (in quarters) 133.2 160.3 151.2
(16.65) (1.715) (42.63)

Married 0.750 0.805 0.698
(0.433) (0.396) (0.459)

Black 0.052 0.052 0.052
(0.222) (0.222) (0.222)

Other race 0.024 0.024 0.024
(0.152) (0.152) (0.152)

Hispanic 0.039 0.039 0.039
(0.193) (0.193) (0.193)

Foreign born 0.026 0.026 0.026
(0.159) (0.159) (0.159)

Birth year 1957 1957 1957
(4.160) (4.160) (4.160)

Observations 6,300 6,300 213,000

B. Comparative Sample - without earnings-in-school restriction

Annual earnings 42,570 62,300 50,410
(35,730) (71,820) (81,400)

Years of school 14.75 15.01 14.56
(2.164) (2.093) (2.249)

Age (in quarters) 130.8 160.3 148.8
(16.51) (1.716) (42.58)

Married 0.720 0.792 0.669
(0.449) (0.406) (0.471)

Black 0.057 0.057 0.057
(0.232) (0.232) (0.232)

Other race 0.039 0.039 0.039
(0.194) (0.194) (0.194)

Hispanic 0.041 0.041 0.041
(0.198) (0.198) (0.198)

Foreign born 0.052 0.052 0.052
(0.222) (0.222) (0.222)

Birth year 1957 1957 1957
(4.117) (4.117) (4.117)

Observations 10,100 10,100 342,000

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard File.
Note: Each column reports averages and the standard deviations in parentheses for the given sample. Columns
(1) and (2) report averages at given points in time from the panel sample. The panel sample used for analysis
in Panel A includes males with earnings observations in each year from 1978-2011, variation in level of education
during 1978-2011, between the ages of 16-65 during the entirety of 1978-2011, age 27 or older at the time of the
SIPP survey, not currently enrolled in school at the time of the SIPP survey, and without any missing data. The
sample includes a balanced panel of N=6,300 individuals over T=34 years. Annual earnings are adjusted for
inflation to 1999 dollars. The comparative samples shown in Panel B are the same as those from above, except
they also include individuals without earnings data while enrolled in school.
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Table 6: Bias Associated with OLS and 2SLS Estimates, Due to Common Factor Structure

(1) (2) (3) (4) (5) (6)
Factor skill 1 Factor skill 2 Factor skill 3 Factor skill 4 All others Total

IFE

A. Covariates: Year fixed effects
OLS 0.081 0.008 0.004 0.002 0.002 0.097
2SLS 0.100 0.107 -0.002 -0.0002 -0.001 0.204

B. Covariates: Person and year fixed effects 1

OLS 0.062 0.020 0.014 0.006 0.008 0.110
C. Covariates: Year fixed effects and age controls

OLS 0.073 -0.008 0.005 0.002 0.002 0.074
2SLS 0.083 0.025 0.003 0.00003 0.001 0.113

CCEP

A. Covariates: Year fixed effects
OLS 0.040 0.001 0.002 0.001 0.0001 0.044
2SLS 0.050 0.102 -0.003 0.0001 0.0001 0.150

B. Covariates: Person and year fixed effects
OLS 0.045 0.013 0.008 0.003 0.002 0.071

C. Covariates: Year fixed effects and age controls
OLS 0.035 -0.021 0.002 0.001 0.0004 0.017
2SLS 0.216 -0.162 0.0003 0.00003 -0.0004 0.054

CCEP-2

A. Covariates: Year fixed effects
OLS 0.074 0.007 0.004 0.002 0.001 0.089
2SLS 0.088 0.110 -0.003 0.0001 0.0001 0.196

B. Covariates: Person and year fixed effects
OLS 0.058 0.020 0.013 0.005 0.006 0102

C. Covariates: Year fixed effects and age controls
OLS 0.081 -0.015 0.005 0.002 0.002 0.075
2SLS 0.267 -0.152 0.0001 -0.00005 -0.0003 0.113

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard
File.
Note: Bias estimates for OLS are based on the part of years of school that is unexplained by
the covariates listed in the panel title. Similarly, bias estimates for 2SLS are based on the part
of quarter of birth indicators interacted with year of birth indicators that is unexplained by
the other covariates listed in the panel title. The OLS and 2SLS estimates correspond to the
specifications in Table 4 Panel B that include the covariates listed in the panel title. The common
factors in the IFE panels are based on the IFE results, and in the CCE panels are based on the
principal components procedure applied to residuals based on the CCEP estiamtes in Table 5
that correspond to the specifications in the panel titles. Column (5) includes common factors up
to 9 in the IFE panel (8 in the CCE panels) for the specifications with only year effects, 8 in the
IFE panel (7 in the CCE panels) for the specifications with person and year effects and 7 in the
IFE panel (8 in the CCE panels) for the specifications with age controls.
1 The discrepancy of the total bias (0.110 versus 0.109 which is the difference between OLS es-
timate in Table 4 Panel B column (2) and IFE estimate in Table 5 column (2)) is due to rounding.
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Appendices

A Accounting for Experience

Consider the pooled specification

yit = δt + xitβ + eitρ1 + e2
itρ2 +λi

′ ft +uit (A.1)

where eit denotes actual experience and xit denotes schooling. Let eit = ei0 + t, where ei0 is initial
experience and t is the time trend. Therefore,

yit = δt + xitβ +(ei0 + t)ρ1 +(ei0 + t)2
ρ2 +λi

′ ft +uit

or,
yit = (ei0ρ1 + e2

i0ρ2)+(2ei0ρ2)t +(ρ1t +ρ2t2 +δt)+ xitβ +λi
′ ft +uit

or,
yit = ρ̃1i + ρ̃2it + δ̃t + xitβ +λi

′ ft +uit (A.2)

where

ρ̃1i = ei0ρ1 + e2
i0ρ2, ρ̃2i = 2ei0ρ2

δ̃t = ρ1t +ρ2t2 +δt

Thus, from (A.2) in the pooled model, besides time fixed effect, we should include a person fixed
effect and person-specific linear trend, which is equivalent to a pooled model that includes age and
age-squared terms instead of the person fixed effect and person-specific linear trend.

In the heterogeneous model,

yit = xitβi + eitρ1i + e2
itρ2i +λi

′ ft +uit

or
yit = ρ̆1i + ρ̆2it +ρ2it2 + xitβi +λi

′ ft +uit (A.3)

where
ρ̆1i = ei0ρ1i + e2

i0ρ2i, ρ̆2i = ρ1i +2ei0ρ2i

From (A.3), we should include a person fixed effect, person-specific quadratic trend, which is
equivalent to a heterogeneous specification that includes age and age-squared terms instead of the
person fixed effect and person-specific quadratic trend.
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B Bias in the OLS Mean Group [OLSMG] Estimator

The aggregate bias in the OLSMG estimator (based on the IFE approach) can be expressed as

β̂OLSMG− β̂IFEMG = N−1
∑

i

{(
∑
t

X2
it

)−1

∑
t

Xit λ̂
′
i f̂t

}
(A.4)

=
r

∑
j=1

[
N−1

∑
i

{(
∑
t

X2
it ∑

t
Xit λ̂ ji f̂ jt

)−1
}]

assuming r common factors. In (A.4), λ̂i = (λ̂1i, λ̂2i, ..., λ̂ri)
′ so that λ̂ ji represents the j-th factor

loading for individual i. The contribution of the j-th factor to the aggregate bias is therefore

N−1
∑

i

{(
∑
t

X2
it ∑

t
Xit λ̂ ji f̂ jt

)−1
}

For the CCE approach, since the factors are not directly estimated, we follow a two-step procedure
to estimate the component-specific biases as described in Section 3. The only difference is that the
residuals in the first step are now computed using β̂CCEMG.

C Time-Varying Returns to Demographics as Proxies for Interactive Fixed Effects

(1) (2) (3)

OLS OLS OLS

Years of School 0.105*** 0.116*** 0.104***

(0.004) (0.004) (0.004)

Age & age-squared No No Yes

Person FE No Yes No

Year FE Yes Yes Yes

Demographics-by-Year FE Yes Yes Yes

CD test stat 112.1 110.8 112.2

Observations 213,000 213,000 213,000

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard File.
Note: Columns (1)-(3) are identical to columns (1)-(3) in Panel B of Table 4, except with demographic-by-year
fixed effects included. These additional fixed effects are intended to proxy for the interactive fixed effects structure.
That is, whereas a general version of the pooled interactive fixed effects approach estimates yit = δt +xitβ +w′itγ +
λ ′i ft +uit , here we estimate yit = δt + xitβ +w′itγ +d′iθt + vit . The demographic variables included in di are race,
Hispanic status, foreign born status, marital status, birth year, and state of residence in the SIPP survey.
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