
Report Issued: February 5, 2018 (Updated: March 9, 2021)

Disclaimer: This report is released to inform interested parties of research and to encourage discussion. 

The views expressed are those of the authors and not those of the U.S. Census Bureau. 

RESEARCH REPORT SERIES 

(Statistics #2018-02) 

Inference for Multivariate Regression Model based on 

Synthetic Data generated using Plug-in Sampling 

Ricardo Moura 

CMA, Faculty of Sciences and Technology, Nova University of Lisbon 

Martin Klein 

Center for Statistical Research and Methodology, U.S. Census Bureau 

John Zylstra 

Department of Mathematics and Statistics, 

University of Maryland, Baltimore County 

Carlos Coelho 

CMA and Mathematics Department, Faculty of Sciences and Technology, 

Nova University of Lisbon 

Bimal Sinha 

Department of Mathematics and Statistics, 

University of Maryland, Baltimore County 

and Center for Statistical Research and Methodology, U.S. Census Bureau 

Center for Statistical Research and Methodology 

Research and Methodology Directorate 

U.S. Census Bureau 

Washington, D.C. 20233 



Inference for Multivariate Regression Model based on
Synthetic Data generated using Plug-in Sampling

Ricardo Moura

Center for Mathematics and Applications (CMA/UNL),

NOVA School of Science and Technology, NOVA University of Lisbon

Portuguese Navy Research Center (CINAV)

and Naval Academy, Alfeite, Almada

Martin Klein∗

Division of Biometrics VIII, Office of Biostatistics,

Office of Translational Sciences, Center for Drug Evaluation and Research,

U.S. Food and Drug Administration,

Silver Spring, Maryland

John Zylstra

Department of Mathematics and Statistics,

University of Baltimore, Baltimore County (UMBC)

Carlos A. Coelho

Center for Mathematics and Applications (CMA/UNL)

and Mathematics Department,

NOVA School of Science and Technology, NOVA University of Lisbon

Bimal Sinha∗

Department of Mathematics and Statistics,

University of Baltimore, Baltimore County (UMBC)

and Center for Statistical Research and Methodology (CSRM), U.S. Census Bureau

∗Disclaimer: This article reflects the views of the authors and should not be construed to represent
the views and/or policies of neither the U.S. Food and Drug Administration or the U.S. Census Bureau

1



Abstract

In this paper, the authors derive the likelihood-based exact inference for singly
and multiply imputed synthetic data in the context of a multivariate regression model.
The synthetic data are generated via the Plug-in Sampling method, where the un-
known parameters in the model are set equal to the observed values of their point
estimators based on the original data, and synthetic data are drawn from this esti-
mated version of the model. Simulation studies are carried out in order to confirm the
theoretical results. In case multiple synthetic datasets are permissible, the authors
provide an exact test procedure and compare their results with the asymptotic results
of Reiter (2005a). The authors provide exact test procedures, which in case multiple
synthetic datasets are permissible, are compared with the asymptotic results of Reiter
(2005a). An application using 2000 U.S. Current Population Survey public use data
is discussed. Furthermore, properties of the proposed methodology are evaluated in
scenarios where some of the conditions that were used to derive the methodology do
not hold, namely for nonnormal and discrete distributed random variables, cases in
which the inferential procedures developed still show very good performances.

Key Words: Data Confidentiality, Finite sample analysis, Maximum likelihood esti-
mators, Multivariate Regression, Partially Synthetic Data, Pivotal quantities, Plug-in
Sampling, Statistical Disclosure Control.

1 Introduction

Methods of statistical disclosure control are used to achieve the competing goals of

publishing statistical outputs from surveys, while protecting the survey respondents’ confi-

dential data from disclosure. Statistical disclosure control methods include data swapping,

perturbation with randomly added or multiplied noise, and the release of synthetic data.

The use of synthetic datasets has gained considerable popularity and importance in recent

times (Klein et al., 2013). In this paper, we investigate some inferential aspects of statistical

analysis based on synthetic data for situations when either a single or multiple synthetic

datasets based on the original data are created as substitute for publication and analysis.

Little (1993) and Rubin (1993) first advocated the use of synthetic data for statistical dis-

closure control, using the framework of multiple imputation (Rubin, 1987). Rubin (1993)

argued that synthetic data so created do not correspond to any actual sampling unit, thus
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preserving the confidentiality of the respondents. Inferential methods for fully synthetic

data were developed by Raghunathan et al. (2003). Reiter (2005a) presented an illustration

and empirical study of fully synthetic data and Reiter and Raghunathan (2007) provided an

overview of multiple imputation techniques, including its use in statistical disclosure con-

trol. Reiter (2003) presented methods for drawing inference for partially synthetic data.

This is exactly the context of our paper.

There are two main methods one can use to generate synthetic data: Posterior Predictive

Sampling and Plug-in Sampling (Reiter and Kinney, 2012), and statistical methods of data

analysis can be developed for both methods.

Although most inferential methods for synthetic data are based on multiple imputation,

Klein and Sinha (2015a,b,c, 2016)) in a series of recent papers developed exact parametric

inferential methods based on singly imputed synthetic data for several probability models,

including the multiple linear regression model where the sole response variable is taken

as sensitive, thus requiring protection, while the covariates are treated as non-sensitive.

There are cases where singly imputed synthetic data have been released (Hawala, 2008;

Kinney et al., 2011, 2014), and therefore procedures for valid data analysis for this case are

desirable.

Our main objective in this paper is to extend this scenario to the case of a multivariate

linear regression model where there are multiple sensitive responses following a multivariate

normal distribution with means modeled as linear combinations of multiple non-sensitive

covariates. Based on the fitted multivariate linear regression model, we synthesize the

sensitive responses based on the Plug-in Sampling method, and develop exact inferential

data analysis procedures for both single and multiple imputation.

A brief description of the Plug-in Sampling method, which will be used throughout the

paper, follows. Suppose that Y = (y1, ...,yn) are the original data which are jointly dis-

tributed according to the probability density function (pdf) fθ(Y), where θ is the unknown
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(scalar, vector or matrix) parameter. We start by taking the value of a point estimator

θ̂(Y) of θ, and plug it into the joint pdf of Y. The resulting pdf, with the unknown θ

replaced by the observed value of the point estimator θ̂(Y), is denoted by fθ̂. The singly

imputed synthetic data, denoted by V, are then generated by drawing V = (v1, ...,vn)

from the joint pdf fθ̂(Y). In case of multiple imputation, this procedure is independently

repeated M times to generate M synthetic datasets.

In terms of the multivariate linear regression model, in our context, we consider several

sensitive response variables yj, j = 1, ...,m, originating the vector of response variables y =

(y1, ..., ym)′, and a set of p non-sensitive predictors x = (x1, ..., xp)
′. We assume that y|x ∼

Nm(B′x,Σ), with B and Σ unknown. We write Y = (y1, ...,yn) with yi = (y1i, ..., ymi)
′

and X = (x1, ...,xn) with xi = (x1i, ..., xpi)
′. We also assume that rank(X : p×n) = p < n

and n ≥ m+ p. We are thus considering the following multivariate regression model

Ym×n = B′m×pXp×n + Em×n (1)

where Em×n is distributed as Nmn(0, In ⊗Σ). It is well known that, based on the original

data, B̂ = (XX′)−1XY′ is the MLE and the UMVUE of B, distributed as Npm(B,Σ ⊗

(XX′)−1), independent of Σ̂ = 1
n
(Y − B̂′X)(Y − B̂′X)′ which is the MLE of Σ, with

nΣ̂ ∼ Wm(Σ, n− p), and therefore S = nΣ̂
n−p will be the unbiased estimator of Σ.

There are several tests for B, based on the original data, in the literature (Anderson,

2003). In this paper, the authors will develop two new procedures to be used with synthetic

data to draw inference for B, and also for C = AB and ∆ = ABD where A is a k × p

matrix with rank(A) = k ≤ p and k ≥ m, and D is an m×r matrix with rank(D) = r ≤ k.

The organization of the paper is as follows. In Section 2, based on singly and multiply

imputed synthetic data generated via Plug-in Sampling, we develop two exact inference pro-

cedures for the matrix of regression coefficients B. These will be based on pivot statistics

which are different from the classical test statistics for B under this model (see Ander-

son (2003)). These classical statistics are shown to be non-pivotal in the case of imputed
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synthetic data generated via Plug-in Sampling. The new exact inferential procedures are

compared with Reiter’s asymptotic methodology for multiple imputation synthetic data

(Reiter, 2005a). In Section 3, we present some simulation results in order to check the

accuracy of the theoretically derived results for the singly imputed and multiply imputed

synthetic data, comparing the latter with the results obtained using an adaptation of Re-

iter’s methodology. We also define the radius (distance between the center and the edge)

of the confidence sets for the matrix of regression coefficients B, both for the original data,

as well as for the singly and the multiply imputed synthetic data. The Plug-in Sampling

method offers smaller radius of the confidence sets than the Posterior Predictive Sampling

(PPS) method and also gives estimates of the parameters closer to the ones obtained from

the original data, despite giving slightly higher levels of disclosure risk (Moura, 2016). Sec-

tion 4 presents data analyses under the proposed methods for singly and multiply imputed

synthetic data in the context of public use data from the 2000 U.S. Current Population

Survey (CPS), and the results are compared with those obtained from the original data. In

Section 5, using the CPS data, the authors present an evaluation of the level of protection

of the released synthetic datasets by comparing single and multiple imputation scenarios.

Some concluding remarks are added in Section 6. Proofs of the theorems, corollaries, and

other technical derivations appear in Appendices A and B.

We conclude this section with an observation regarding the existence of sufficient statis-

tics. Suppose the original data are Y ∼ fθ, and the synthetic data V = (V1, . . . ,VM) are

generated such that V1, . . . ,VM |Y are iid from fθ̂. Suppose that T(Y) is a sufficient statis-

tic for θ based on the original data. Then the pdf of the synthetic data V = (V1, . . . ,VM)

is
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∫ { M∏
j=1

fθ̂(Y)(Vj)
}
fθ(Y)dY =

∫ { M∏
j=1

gθ̂(Y) (T(Vj))h(Vj)
}
fθ(Y)dY

=
{ M∏
j=1

h(Vj)
}∫ { M∏

j=1

gθ̂(Y) (T(Vj))
}
fθ(Y)dY,

which implies the following result.

Lemma 1.1. Suppose that when the original data Y are observed, T(Y) is a sufficient

statistic for θ. Then when the synthetic data V = (V1, . . . ,VM) are made available,

(T(V1), . . . ,T(VM)) is jointly sufficient for θ. Furthermore, if M = 1, the sufficient statis-

tic is simply T(V1), and if M > 1, then
∑M

j=1 T(Vj) is sufficient if

fθ(Y) = h(Y)ψ(θ) exp{γ(θ)′T(Y)}, i.e., if fθ(Y) belongs to the exponential family.

2 Analysis under Single and Multiple Imputation

In this section, a likelihood-based approach for analysis of synthetic data generated from

a multivariate regression model is presented for the Plug-in Sampling method. First, we

provide two new and exact inferential procedures based on the likelihood principle for

single and multiple imputation synthetic data (for M = 1, the single imputation case, both

procedures concur) and then work out an adaptation of Reiter’s method for our setup.

Consider the multivariate linear regression model (1) with Y, X, B, Σ, B̂ and S defined

in that same context.

The synthetic data consist of M (≥ 1) synthetic versions of Y generated based on the

Plug-in method as described below. To consider the single imputation case one only has

to take M = 1. From the original data (yi1, ..., yim, x1i, ..., xpi), i = 1, ..., n, after estimating

B and Σ by B̂ and S, respectively, we generate the synthetic data, denoted as Vj =

(v
(j)
1 , ...,v

(j)
n ), j = 1, . . . ,M , where v

(j)
i = (v

(j)
1i , ..., v

(j)
mi)
′, i = 1, . . . , n, are independently
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distributed as

v
(j)
i |(B̂,S) ∼ Nm(B̂′xi,S). (2)

Our goal is to draw inference on B based on the partial synthetic data

(v
(j)
1i , ..., v

(j)
mi , x1i, ..., xpi), for i = 1, ..., n and j = 1, . . . ,M .

2.1 A First New Procedure based on the mean synthetic covari-

ances

Towards the aforementioned objective of drawing inference on B, based on the partial

synthetic data, let B∗j = (XX′)−1XV′j and S∗j = 1
n−p(Vj − B∗′j X)(Vj − B∗′j X)′ be the

estimators of B and Σ based on Vj. Conditionally on (B̂,S), for any j = 1, ...,M , B∗j

is independent of S∗j and {(B∗1,S∗1), . . . , (B∗M ,S∗M)}, by Lemma 1.1, are jointly sufficient

estimators for B and Σ. Let us also define

B
∗
M =

1

M

M∑
j=1

B∗j and S
∗
M =

1

M

M∑
j=1

S∗j , (3)

which are mutually independent, conditionally on B̂ and S. The main inferential results

we derive are, for p ≥ m and n ≥ m+ p,

1. B
∗
M is an unbiased estimator for B, with V ar(B

∗
M) = M+1

M
Σ⊗(XX′)−1 (see Appendix

B.1),

2. an unbiased estimator of Σ is S
∗
M (see Appendix B.1),

3. we prove in Corollary 2.2 (see below) that

TM =

∣∣∣(B∗M −B)′(XX′)(B
∗
M −B)

∣∣∣∣∣∣(n− p)S∗M ∣∣∣ (4)
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is a pivotal quantity and, for W ∼ Wm(Im, n−p) and Fp,l ∼ Fp−l+1,M(n−p)−l+1 (where

Fm,n denotes an F distribution with m and n degrees of freedom),

TM |W
st∼

{
m∏
l=1

p− l + 1

M(n− p)− l + 1
Fp,l

}
|M(n− p)W−1 + Im|,

where
st∼ means ‘stochastically equivalent to’,

4. if one wants to test the significance of a set of regression coefficients or more gener-

ally of a linear combination of these regression coefficients, AB = C where A is a

k × p matrix with rank(A) = k ≤ p and k ≥ m, one may define

TM,C =
|(AB

∗
M −C)′(A(XX′)−1A′)−1(AB

∗
M −C)|

|(n− p)S∗M |

and proceed by noting that, for W ∼ Wm(Im, n− p) and Fk,l ∼ Fk−l+1,M(n−p)−l+1,

TM,C|W
st∼

{
m∏
l=1

k − l + 1

M(n− p)− l + 1
Fk,l

}
|M(n− p)W−1 + Im|; (5)

then, we may build

(i)a test for the parameter matrix C: in order to test H0 : C = C0 versus H1 : C 6= C0

at a given γ level, we reject H0 whenever the computed value of TM,C0 exceeds its

1− γ quantile; in particular a test for B = B0 follows upon taking A = Ip,

(ii)a confidence set for C: a (1− γ)-level confidence set for C is given by

∆(C) = {C : TM,C ≤ δM,k,m,p,n;γ}, (6)

where δM,k,m,p,n;γ is the 1−γ quantile of TM,C (the value of δM,k,m,p,n;γ can be obtained

by simulating the distribution of TM,C, by first generating W ∼ Wm(Im, n − p) and

then generating TM,C|W from (5)),

5. to infer about ABD = ∆ where A is a k× p matrix and D is a m× r with r ≤ k, we

start from its natural point estimator ∆∗M = AB
∗
MD and propose to use the pivotal
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quantity (see Corollary 2.3)

TM,∆ =
|(∆∗M −∆)′ (A(XX′)−1A′) (∆∗M −∆)|

|(n− p)D′S∗MD|
(7)

whose distribution is obtained from the relation

TM,∆|W∗ st∼

{
r∏
l=1

k − l + 1

M(n− p)− l + 1
Fk,l

}∣∣∣M(n− p)W∗−1 + Ir

∣∣∣
where Fk,l ∼ Fk−l+1,M(n−p)−l+1 and W∗ ∼ Wr(Ir, n − p), all independently; taking

r = 1 and k = 1, and making A : 1 × p a matrix of zeros except for A1,g = 1, and

D : m × 1 a matrix of zeros except for Dh,1 = 1, for g = 1, . . . , p and h = 1, . . . ,m

we may observe that

TM,∆ = TM,B(g,h)
=
|(B∗M(g,h) −B(g,h))

′ (A(XX′)−1A) (B
∗
M(g,h) −B(g,h))|

|(n− p)D′S∗MD|
thus concluding that the (1− α) confidence interval for B(g,h) will be given by

B
∗
M(g,h) ±

√
q∗M,1−α(n− p)S∗M(h,h)(XX′)−1g,g,

with q∗M,1−α being the value of the 1 − α cut-off point of the distribution of TM,∆,

noting that D′S∗D = S∗(h,h) and A(XX′)−1A′ = (XX′)−1(g,g) (for details in the proof

of this result see Section S3 of Part II of the supplementary material).

Results in 1-5 are derived based on the following Theorem and Corollaries, whose proofs

are provided in Appendix A.

Theorem 2.1. The joint pdf of (B
∗
M ,S

∗
M) defined in (3) is proportional to∫

exp

{
−1

2
tr

[
(Σ +

1

M
S)−1(B

∗
M−B)′(XX′)(B

∗
M−B) +M(n− p)S−1S∗M+(n− p)Σ−1S

]}
× |S∗M |

M(n−p)−m−1
2 × |S|

−M(n−p)−n+2p+m+1
2

|Σ|n2
× |Σ−1 +MS−1|−p/2 dS,

from which we can infer that, conditional on S, B
∗
M and S

∗
M are independent, with B

∗
M |S ∼

Npm(B, (Σ + 1
M

S)⊗ (XX′)−1) and M(n− p)S∗M |S ∼ Wm(S,M(n− p)).
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Corollary 2.2. The distribution of TM defined in (4) can be obtained from the decomposi-

tion

TM |W
st∼

{
m∏
l=1

p− l + 1

M(n− p)− l + 1
Fp,l

}∣∣∣M(n− p)W−1 + Im

∣∣∣
where W∼Wm(Im, n−p) and Fp,l∼Fp−l+1,M(n−p)−l+1. This implies that TM is a pivotal

quantity, that is, its distribution does not depend on Σ.

Corollary 2.3. The distribution of TM,∆ defined in (7) can be obtained from the decom-

position

TM,∆|W∗ st∼

{
r∏
l=1

k − l + 1

M(n− p)− l + 1
Fk,l

}∣∣∣M(n− p)W∗−1 + Ir

∣∣∣
where W ∼ Wr(Ir, n−p) and Fk,l ∼ Fk−l+1,M(n−p)−l+1, thus implying that TM,∆ is a pivotal

quantity.

We may refer that all the above results remain valid for M = 1, that is, the single

imputation case, for which inferential procedures were not available in the literature.

Remark 2.1. When m = 1 and M = 1, the statistic TM in (4) reduces to the statistic T 2

used in (Klein and Sinha, 2015a) which has a distribution obtained from the fact that

T 2|W=w ∼
p

n− p

[
1 +

n− p
w

]
Fp,n−p where fW (w) =

1

2
n−p
2 Γ

(
n−p
2

)e−w
2 w

n−p
2
−1. �

Remark 2.2. One could think that for our context we could suggest the use of the following

adaptations of the classical test criteria for the multivariate regression model (see Anderson

(2003) for the classical test criteria)

(a) T (1) = |S∗M |
|S∗M+(B

∗
M−B)′(XX′)(B

∗
M−B)| (Wilks’ Lambda Criterion)

(b) T (2) = tr
[
(B
∗
M −B)′(XX′)(B

∗
M −B)(S

∗
M)−1

]
(Pillai’s Trace Criterion)

(c) T (3) = tr
(

(B
∗
M −B)′(XX′)(B

∗
M −B)[(B

∗
M −B)′(XX′)(B

∗
M −B) + S

∗
M ]−1

)
(Hotelling-Lawley Trace Criterion)
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(d) T (4) = λ1 where λ1 denotes the largest eigenvalue of (B
∗
M−B)′(XX′)(B

∗
M−B)(S

∗
M)−1

(Roy’s Largest Root Criterion),

but, unfortunately, these test statistics are non-pivotal statistics (see Appendix B.1), oppo-

site to what happens with the statistics TM , TM,C and TM,∆.

2.2 A Second New Procedure based on a combination of mean

and cross synthetic covariances

Noting that it will be possible to gather more information from the released synthetic

data we propose, in this Subsection, another likelihood-based approach for exact inference

about B, based on a combination of mean and cross synthetic covariances. Let us start by

recalling that Vj is a m×n matrix formed by the vectors (v
(j)
1 , ...,v

(j)
n ), generated assuming

v
(j)
i |B̂,S ∼ Nm(B̂′xi,S), i = 1, ..., n. Supposing that we have access to the M imputations

V1, ...,VM , with Vj = (v
(j)
1 , ...,v

(j)
n ), j = 1, ...,M , and noting that, conditionally on B̂

and S, (v
(1)
i , ...,v

(M)
i ) is a random sample from Nm(B̂′xi,S), for any i = 1, ..., n, let us

consider vi = 1
M

∑M
j=1 v

(j)
i and Svi =

∑M
j=1(v

(j)
i − vi)(v

(j)
i − vi)

′ which are the sufficient

statistics for Σ, based on the i-th vector of covariates. Defining Sv =
∑n

i=1 Svi, we have

(v1, ...,vn,Sv) as the joint sufficient statistics for (B,Σ). Conditionally on B̂ and S, we

have vi ∼ Nm(B̂′xi,
1
M

S) and Sv ∼ Wm(S, n(M − 1)) since Svi ∼ Wm(S,M − 1).

From the M released synthetic data matrices Vj, j = 1, ...,M , we may define VM =

1
M

∑M
j=1 Vj and then define for B the estimator

B
∗
M = (XX′)−1XV

′
M , (8)

which ends up being the same estimator defined in Subsection 2.1.

We may obtain additional information about Σ from Smean = (VM −B
∗′
MX)′(VM −B

∗′
MX),

which can be combined with the previous estimator Sv to obtain

Scomb =
Sv +M × Smean

Mn− p
. (9)
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Analogous to what was done in Subsection 2.1, one can derive the following inferential

results, for p ≥ m, and n > m+ p,

1. an unbiased estimator of Σ is Scomb (see Appendix B.2),

2. we prove in Corollary 2.5 (see below) that

Tcomb =

∣∣∣(B∗M −B)′(XX′)(B
∗
M −B)

∣∣∣∣∣(n− p
M

)Scomb
∣∣ , (10)

is a pivotal quantity and that, for W ∼ Wm(Im, n− p) and F ∗p,l ∼ Fp−l+1,Mn−p−l+1,

Tcomb|W
st∼

{
m∏
l=1

p− l + 1

Mn− p− l + 1
F ∗p,l

}∣∣∣M(n− p)W−1 + Im

∣∣∣,
3. if one wants to test the significance of a set of regression coefficients or more generally,

a linear combination of B, namely, AB = C where A is a

k × p matrix with rank(A) = k ≤ p and k ≥ m, one may define

Tcomb,C =
|(AB

∗
M −C)′(A(XX′)−1A′)−1(AB

∗
M −C)|∣∣(n− p

M
)Scomb

∣∣
and proceed by noting that, for W ∼ Wm(Im, n− p) and F ∗k,l ∼ Fk−l+1,Mn−p−l+1,

Tcomb,C|W
st∼

{
m∏
l=1

k − l + 1

Mn− p− l + 1
F ∗k,l

}∣∣∣M(n− p)W−1 + Im

∣∣∣; (11)

then, we may build

(i) a test for the parameter matrix C: in order to test H0 : C = C0 versus H1 : C 6=

C0, at a given γ level, we reject H0 whenever the computed value of Tcomb,C0 exceeds

its 1− γ quantile; in particular a test for B = B0 follows upon taking A = Ip,

(ii) a confidence set for C: a (1− γ) level confidence set for C is given by

∆(C) = {C : Tcomb,C ≤ ωM,k,m,p,n;γ}, (12)

where ωM,k,m,p,n;γ is the 1 − γ quantile of Tcomb,C (the value of ωM,k,m,p,n;γ may

be obtained by simulating the distribution of Tcomb,C, by first generating W ∼

Wm(Im, n− p) and then generating Tcomb,C|W from (11)),

12



4. to infer about ABD = ∆ where A is a k × p matrix and D is an m× r matrix with

r ≤ k, we start from its natural point estimator ∆∗M = AB
∗
MD and propose to use

pivotal quantity (see Corollary 2.6)

Tcomb,∆ =
|(∆∗M −∆)′ (A(XX′A′)−1) (∆∗M −∆)|

|(n− p)D′ScombD|
(13)

whose distribution is given by

Tcomb,∆|W∗ st∼

{
r∏
l=1

k − l + 1

Mn− p− l + 1
F ∗k,l

}∣∣∣M(n− p)W∗−1 + Im

∣∣∣
where F ∗k,l ∼ Fk−l+1,Mn−p−l+1 and W∗ ∼ Wr(Ir, n − p), all independently. Taking

r = 1 and k = 1, and making A : 1 × p a matrix of zeros except for A1,g = 1, and

D : m × 1 a matrix of zeros except for Dh,1 = 1, for g = 1, . . . , p and h = 1, . . . ,m

we may observe that the (1− α) confidence interval for ∆ = B(g,h) will be given by

B
∗
M(g,h) ±

√
q∗comb,1−α(n− p)Scomb,(h,h)(XX′)−1g,g

(for details in the proof of this result see Section S3 of Part II of the supplementary

material).

The above results are derived based on the observation that Smean|S ∼ Wm( S
M
, n− p),

and on the following Theorem and Corollaries, whose proofs are provided in Appendix A.

Theorem 2.4. The joint pdf of (B
∗
M ,Scomb) defined in (8) and (9) is proportional to∫

exp

{
−1

2
tr

[
(Σ +

1

M
S)−1(B

∗
M−B)′(XX′)(B

∗
M−B) + (Mn− p)S−1Scomb+(n− p)Σ−1S

]}
× |Scomb|

Mn−p−m−1
2 × |S|

−Mn−p−n+2p+m+1
2

|Σ|n2
× |Σ−1 +MS−1|−p/2 dS,

from which we can infer that, conditional on S, B
∗
M and Scomb are independent, with

B
∗
M |S ∼ Npm(B, (Σ + 1

M
S)⊗ (XX′)−1) and (Mn− p)Scomb|S ∼ Wm(S,Mn− p).

13



Corollary 2.5. The distribution of Tcomb defined in (10) can be obtained from the decom-

position

Tcomb|W
st∼

{
m∏
l=1

p− l + 1

Mn− p− l + 1
F ∗p,l

}∣∣∣M(n− p)W−1 + Im

∣∣∣
where W ∼ Wm(Im, n−p) and F ∗p,l ∼ Fp−l+1,Mn−p−l+1, which implies that Tcomb is a pivotal

quantity, that is, its distribution does not depend on Σ.

Corollary 2.6. The distribution of Tcomb,∆ defined in (13) can be obtained from the de-

composition

Tcomb,∆|W
st∼

{
r∏
l=1

k − l + 1

Mn− p− l + 1
F ∗k,l

}∣∣∣M(n− p)W∗−1 + Ir

∣∣∣
where W∗ ∼ Wr(Ir, n − p) and F ∗k,l ∼ Fk−l+1,Mn−p−l+1, implying that Tcomb,∆ is a pivotal

quantity.

Remark 2.3. It is the case that Var(S
∗
M) > Var(Scomb) for M ≥ 2 (with equality for

M = 1), and therefore the second new procedure is expected to outperform the first new

procedure for M ≥ 2. Anyway we still make both procedures available in the paper since

the first procedure has an easier implementation, which the analyst may prefer to use given

that for larger sample sizes there will be no big differences between the results from the two

procedures, in terms of the radius, as it is shown in Section 3.

The proof of this Remark may be seen in Appendix B.3.

2.3 Reiter’s (2005) Methodology Under Multiple Imputation

Now we present an adaptation of Reiter (2005a) methodology for drawing inference on a

vector valued parameter, based on multiply synthetic data, to draw inference on a matrix

of regression coefficients. Although originally developed for synthetic data generated by
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Posterior Predictive Sampling, Reiter and Kinney (2012) show that the methodology in

Reiter (2005a) is also valid for synthetic data generated via Plug-in Sampling.

In order to be possible to use Reiter’s (2005) methodology to estimate B from V1, ...,VM ,

the synthetic datasets defined at the beginning of Section 2, we consider vec(B) = (B′1 B′2 ... B
′
m)′,

a pm × 1 parameter vector, where B′1, ...,B
′
m are the m columns of B. Based on the

original data, vec(B̂) is an estimator of vec(B) and its covariance matrix estimator is

U = S⊗ (XX′)−1 a pm × pm matrix. Let vec(B∗j) = vec((XX′)−1XV
′
j) and Uj =

S∗j ⊗ (XX′)−1, where S∗j = 1
n−p(Vj−B∗′j X)(Vj−B∗′j X)′, for j = 1, . . . ,M . Note that, con-

ditionally on B̂ and S, vec(B∗j) is an unbiased estimator of vec(B) and Uj is an unbiased

estimator of its variance. Then the following estimators

vec(B
∗
M) =

1

M

M∑
j=1

vec(B∗j), UM =
1

M

M∑
j=1

Uj,

bM =
1

M − 1

M∑
j=1

(vec(B∗j)− vec(B
∗
M))(vec(B∗j)− vec(B

∗
M))′

should be Reiter’s estimators to be used to draw inference about B, where vec(B
∗
M) is an

estimator for vec(B), its variance being estimated by 1
M

bM + UM . Let us consider the

statistic

TR,M =
(vec(B

∗
M)− vec(B))′(UM)−1(vec(B

∗
M)− vec(B))

pm(1 + r)

where r = tr(bMU
−1
M )

Mpm
. The distribution of TR,M is approximated by an Fpm,w(r) distribution

where w(r) = 4 + [pm(M − 1)− 4] [1 + 1/r − 2(rpm)−1(M − 1)−1]
2

(Reiter, 2005a).

3 Simulation Studies

In this section we present results of some simulations. The objectives of these simulations

are (i) to show that the inferential methods used in Section 2 perform as we predicted for

our proposed methodology for singly and multiply imputed synthetic data generated via
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Plug-in Sampling, and (ii) to compare the accuracy of our proposed methodology with the

accuracy of Reiter (2005a) methodology for multiply imputed partially synthetic data. All

simulations were carried out using the software Mathematicar. To conduct the simulation,

we take the population distribution as a multivariate normal distribution with expected

value given by the right hand side of (1), with matrix of regression coefficients B, and

covariance matrix Σ, for m = 2 and p = 3, given by

B =


1 2

3 2

1 1

 and Σ =

 1 0.5

0.5 1

 .

The values x1i, x2i, x3i, i = 1, ..., n, of the explanatory variables are generated as iid N(0, 1)

and held fixed for the entire simulation.

Based on a Monte Carlo simulation with 105 iterations, we compute estimates of the

coverage probability (percentage of observed values of the statistics smaller than the re-

spective theoretical cut-off points) of the following confidence regions (where in all cases,

the level of the confidence region is set to 0.95):

1. for the two new procedures in Subsections 2.1 and 2.2, based on single and multiple

synthetic data, the confidence sets for B and for AB = C, given by (6) and (12),

are computed, with A = ( 02×1| I2), using the methodology described in the two

subsections referred above; for M = 1, 2, 5, 10, 20 synthetic datasets, the estimated

average coverage probabilities of the confidence sets are shown in Table 1 under

the columns B(1) and AB(1) for the new procedure in Subsect. 2.1, and under the

columns B(2) and AB(2) for the new procedure in Subsect. 2.2; for M = 1 only one

column is needed since the two procedures coincide, and Reiter’s adapted procedure

is not available for single imputed data;

2. the confidence set for B is obtained using the adapted methodology of Reiter (2005a)

in Subsect. 2.3, for M(> 1) synthetic datasets, and then for each of the cases M =
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2, 5, 10, 20, the estimated coverage probabilities of the confidence sets are shown in

Table 1 under the column vec(B).

Table 1: Estimated average coverage probabilities for B and AB

(a) Average coverage for B

n

M = 1 M = 2 M = 5 M = 10 M = 20

vec(B) B(1) B(2) vec(B) B(1) B(2) vec(B) B(1) B(2) vec(B) B(1) B(2)

10 0.951 0.830 0.950 0.950 0.754 0.949 0.947 0.748 0.950 0.949 0.753 0.948 0.947
20 0.953 0.919 0.955 0.953 0.874 0.947 0.948 0.867 0.948 0.949 0.870 0.950 0.950
50 0.953 0.955 0.950 0.951 0.924 0.949 0.948 0.921 0.949 0.948 0.924 0.949 0.948

100 0.946 0.957 0.946 0.947 0.934 0.946 0.946 0.931 0.948 0.948 0.935 0.948 0.948
200 0.949 0.964 0.953 0.952 0.943 0.950 0.951 0.943 0.949 0.949 0.944 0.949 0.950

(b) Average coverage for AB

n

M = 1 M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

10 0.950 0.968 0.949 0.950 0.791 0.947 0.946 0.799 0.948 0.946 0.791 0.944 0.947
20 0.952 0.994 0.950 0.951 0.888 0.948 0.947 0.891 0.949 0.949 0.888 0.950 0.950
50 0.954 0.999 0.953 0.954 0.931 0.950 0.949 0.927 0.948 0.946 0.928 0.949 0.949

100 0.946 1.000 0.946 0.948 0.940 0.948 0.948 0.937 0.949 0.950 0.939 0.948 0.948
200 0.951 1.000 0.953 0.952 0.946 0.949 0.950 0.948 0.951 0.949 0.948 0.950 0.949

The results reported in Table 1 for sample sizes n=10, 20, 50, 100, 200, show that,

based on singly imputed and multiply imputed synthetic data, the 0.95 confidence sets for

B and AB have an estimated coverage probability approximately equal to 0.95, confirming

that the confidence sets perform as predicted. Using the adapted methodology of Reiter

(2005a) for multiply imputed partially synthetic data the estimated coverage probabilities

fall short of the stipulated level of 0.95 for very small sample sizes, as expected, since this

procedure is asymptotic in nature, but quickly attain the desired level even for moderate

sample sizes for the cases where M ≥ 5.

In Part I of the supplementary material we address cases where the response variables

have non-normal distributions, namely when they have a multivariate t-distribution, a

multivariate skew-normal distribution, a binomial distribution, a Poisson distribution and a

distribution with a spike at zero. As it may be seen from Tables S1–S8 in the supplementary
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material, our procedures show, in general, for all these distributions values of estimated

average coverage probabilities for B and AB (with A = ( 02×1| I2)), very close to the

nominal value of 0.95, even for small sample sizes. We may note that in all cases the

adaptation of Reiter (2005a) procedure gives somewhat similar results, at least for the

larger sample sizes. Only for the case of distributions of response variables with a spike at

zero, when testing for the matrix B, the adapted Reiter procedure seems to present even

lower average coverage probabilities than our procedures.

We may note that in the single imputation case (M = 1), the estimated average coverage

probabilities have values that are slightly closer to the nominal value of 0.95, mainly when

considering discrete distributions for the response variables. This may lead to the conclusion

that the use/release of singly imputed datasets may be more adequate in these cases.

In order to measure the radius (distance between the center and the edge) of the confi-

dence sets, we propose, for a level 0 < γ < 1,

ΥM = δM,k,m,p,n;γ × |(n− p)S̃M |,

where δM,k,m,p,n;γ is the cut-off point and where we take M = 1, 2, 5, 10, 20, with S̃M = S
∗
M

for the first new procedure, and S̃M =(n− p
M

)/(n− p)Scomb for the second new procedure,

and making k = p.

In order to compare with the original data, we take M = 0, with S̃0 = S, and the cut-off

points δ0,k,m,p,n;γ are obtained as the γ quantiles of the statistics

TO =
|(B̂−B)′(XX′)(B̂−B)|

|(n− p)S|
st∼

m∏
l=1

p− l + 1

n− p− l + 1
Fp,l, (14)

TO,C =
|(AB̂−C)′(A(XX′)−1A′)−1(AB̂−C)|

|(n− p)S|
st∼

m∏
l=1

k − l + 1

n− p− l + 1
Fk,l, (15)

where Fp,l ∼ Fp−l+1,n−p−l+1 and Fk,l ∼ Fk−l+1,n−p−l+1.

18



The expected value of this measure will be

E(ΥM) = δM,k,m,p,n;γ ×
(n− p)!

(n− p−m)!
×KM,p,n,m|Σ|

where K0,p,n,m = 1 for the original data and, for M ≥ 1,

KM,p,n,m =
1

Mm(n− p)m
(Mn−Mp)!

(Mn−Mp−m)!

for the procedure in Subsection 2.1, and

KM,p,n,m =
1

Mm(n− p)m
(Mn− p)!

(Mn− p−m)!

for the procedure in Subsection 2.2, where when M = 1 it will refer to the case of single

imputed synthetic data. For more details about these expected values see Appendix B.4.

For M = 0, 1, 2, 5, 10, 20 and sample sizes n = 10, 20, 50, 100, 200, we present the average

(avg) of simulated values of ΥM , for 105 simulations, and its expected value (exp) E(ΥM)

for B in Table 2 and for C = AB in Table 3.

Observing Tables 2 and 3, we conclude that as the number M of released synthetic

datasets increases, ΥM decreases and eventually coincides with the value of Υ0, the value

for the original data, indeed as expected, since as M increases, the amount of information

about the original data released increases, leading us closer to the inference drawn from

the original data. We also observe that the values of ΥM , for M > 1, for both procedures

become identical for larger sample sizes.

We may see that the Plug-in Sampling method offers radius that are much smaller than

those obtained with the PPS method. For M = 1, that is, in the case of single imputation,

the PPS method leads to radius which are approximately two and half times the radius

obtained under Plug-in Sampling, what may be seen as an important advantage of the

Plug-in Sampling method (Moura, 2016, Sec. 4.2.2).
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Table 2: Average values of ΥM and the values of E(ΥM ) for the confidence set for B.

n Original

M = 1 M = 2 M = 5

avg exp
1st Approach 2nd Approach 1st Approach 2nd Approach

(M = 0) avg exp avg exp avg exp avg exp

10 37.55 214.29 219.96 90.62 92.84 85.74 87.56 54.83 55.28 51.61 51.94

20 22.76 102.91 103.29 53.50 53.79 52.20 52.47 32.58 32.69 32.50 32.57

50 18.73 78.10 77.43 42.58 42.34 43.13 42.86 27.34 27.17 27.11 26.94

100 17.74 73.44 73.34 40.11 40.09 40.27 40.24 25.28 25.27 25.54 25.53

200 17.41 69.81 69.72 39.07 39.01 38.62 38.56 25.09 25.07 25.08 25.06

n

M = 10 M = 20

1st Approach 2nd Approach 1st Approach 2nd Approach

avg exp avg exp avg exp avg exp

10 44.57 44.78 43.86 43.95 41.04 41.08 40.24 40.27

20 27.06 27.13 27.56 27.61 25.25 25.31 25.03 25.08

50 22.98 22.82 22.66 22.50 20.90 20.77 20.66 20.53

100 21.51 21.51 21.61 21.61 19.50 19.50 19.29 19.28

200 20.78 20.77 20.79 20.78 18.94 18.94 19.15 19.14

4 An Application Using the Current Population Survey Data

In this section we provide an application based on some real data and compare the in-

ference based on the original data with the inference based on the synthetic data, according

to the procedures developed in Section 2 and also the method of Reiter (2005a). The data

are public use data from the 2000 U.S. Current Population Survey (CPS) March supple-

ment, available online from https://www.census.gov/programs-surveys/cps.html. We will

only focus on the household records. The full data has seventeen variables measured on

51,016 heads of households and it includes the variables age, race, sex and marital status

as key identifiers and a mix of other categorical and numerical variables. For the vector

y of response sensitive variables, we have selected two numerical variables, namely, total

household income (I) and household property tax (PT). After deleting all entries where at

least one of these variables are reported as 0, we were left with a sample size of 32,923.
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Table 3: Average values of ΥM and the values of E(ΥM ) for the confidence set for AB.

n Original

M = 1 M = 2 M = 5

avg exp
1st Approach 2nd Approach 1st Approach 2nd Approach

(M = 0) avg exp avg exp avg exp avg exp

10 13.36 72.57 74.49 32.62 33.42 30.61 31.26 19.56 19.72 19.00 19.12

20 8.66 39.00 39.15 20.12 20.23 20.17 20.27 12.71 12.75 12.45 12.48

50 7.44 31.23 30.97 16.67 16.58 16.79 16.69 10.70 10.63 10.55 10.48

100 7.14 28.30 28.27 15.89 15.88 16.12 16.11 10.07 10.07 10.10 10.10

200 6.92 27.76 27.72 15.80 15.78 15.56 15.54 9.72 9.72 9.85 9.84

n

M = 10 M = 20

1st Approach 2nd Approach 1st Approach 2nd Approach

avg exp avg exp avg exp avg exp

10 16.07 16.15 15.61 15.64 14.44 14.45 14.49 14.50

20 10.38 10.41 10.41 10.43 9.55 9.58 9.54 9.56

50 8.94 8.88 8.76 8.70 8.25 8.20 8.10 8.04

100 8.42 8.43 8.63 8.63 7.68 7.68 7.77 7.77

200 8.40 8.40 8.16 8.16 7.64 7.63 7.56 7.56

The example addressed below, using the proposed exact methods developed in Subsections

2.1 and 2.2, illustrates the capabilities of these methods. We will assume the normality of

the fifth root of the two response variables I and PT. As we may observe in Figure 1, the

marginal distribution of the transformed variables is approximately normal. Anyway, as it

is shown by the results in the supplementary material, even if these variables would not be

normally distributed, the procedures in Section 2 will still perform adequately.

We take the n = 32, 923 households as a random sample, and I and PT as confidential

variables. We will use the following set of covariates:

N: number of people in household;

L: number of people in the household who are less than 18 years old;

A: age for the head of household;
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Figure 1: Smothed Empirical distributions of response variables PT and I

E: education level for the head of the household(coded to take values 31-46);

M: marital status for the head of the household (coded to take values 1-7);

R: race of the head of the household (coded to take values 1-4);

S: sex of the head of the household (coded to take values 1,2).

For further details, namely on the coding of the variables, we refer to the Current

Population Survey March 2000 technical documentation (available at

http://www.census.gov/prod/techdoc/cps/cpsmar00.pdf) and to Klein and Sinha (2015a).

As such, in this application, x, the vector of explanatory variables, is defined as

x =
(

1,N,L,A, I(E = 32), ..., I(E = 46), I(M = 2), ..., I(M = 7),

I(R = 2), ..., I(R = 4), I(S = 2)
)′
, (16)

where the indicator variables for the first code present in the sample for each variable is

taken out in order to make the model matrix full rank, and where I(E = 32) is the indicator

variable for E = 32, i.e. for individuals that have completed 1st, 2nd, 3rd or 4th grade,

and so on. The model matrix X = (x1, · · · ,xn) has p = 29 rows and n = 32, 923 columns,

with rank equal to 29. Using the plug-in sampling method, we generate a single synthetic

dataset. The realizations of the unbiased estimators B∗ and S∗ of B and Σ, are respectively
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shown in Table 4 and in expression (17), along with the realizations of the original data

estimators B̂ and S. These estimates are respectively denoted by B̃∗, S̃∗,
˜̂
B and S̃, with

S̃∗ =

 0.6576 0.2090

0.2090 1.2905

 , S̃ =

 0.6626 0.2130

0.2130 1.2898

 . (17)

We see that the point estimates of B̂ based on the synthetic data and the original data

tend to be in agreement. We also find that the two estimates of Σ, S̃ and S̃∗, tend to have

a general agreement.

As remarked in Moura (2016, Sec. 5.1) estimates obtained from Plug-in synthetic gen-

erated data seem to be more in agreement with the ones obtained from the original data

than the ones obtained from synthetic data obtained from PPS.

We now present inferences on regression coefficients obtained by applying the method-

ology from Section 2 to analyze the singly imputed synthetic data and multiply synthetic

data, considering M = 2 and M = 5. For this purpose, we use the statistics T , TM , Tcomb

and TR,M defined in Section 2 and their empirical distributions (105 simulation size) to

test the significance of the model, for γ = 0.05. For M = 1 the computed value of the

statistic T was 4.96468, which is larger than the determined cut-off point for this case,

δ2,32923,29;0.05 = 5.14914 × 10−6, with a corresponding p-value approximately equal to 0,

therefore, rejecting the non-significance of the model, that is, assuming that the explana-

tory variables in x have a significant role in determining the values of the response variables

in y. For M = 2 and M = 5, one finds similar p-values, with the computed values of TM ,

for the first procedure, equal to 4.94839 and 5.06947, and the computed values of Tcomb, for

the second procedure, equal to 4.94420 and 5.06190. If we perform the same test on the

original data, we obtain for TO in (14) the computed value of 4.93432, that is also larger

than the determined cut-off point 1.27984 × 10−6, with a p-value approximately equal to

0, also rejecting the non-significance of the model. For Reiter’s adapted procedure the

p-values obtained were also approximately equal to zero both for M = 2 and M = 5.
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Table 4: Estimates of the regression coefficients from the synthetic data and from the original data.

explanatory SyntheticData (B̃∗) OriginalData (
˜̂
B)

variable
I PT I PT

Intercept 3.33024 7.56007 3.24037 7.52088

N 0.11642 0.51872 0.11527 0.52155

L −0.08285 −0.53486 −0.08429 −0.53651

A 0.00087 −0.01440 0.00132 −0.01505

I(E=32) −0.06863 −0.11734 0.08377 −0.07970

I(E=33) −0.03361 −0.15427 0.03402 −0.03844

I(E=34) 0.05408 0.05322 0.13688 0.14479

I(E=35) 0.05304 0.11157 0.08928 0.23425

I(E=36) 0.11955 0.24970 0.14576 0.33577

I(E=37) 0.07023 0.23027 0.16636 0.29644

I(E=38) 0.20794 0.38589 0.21098 0.38226

I(E=39) 0.28300 0.72827 0.35955 0.79781

I(E=40) 0.36835 1.03459 0.44939 1.11411

I(E=41) 0.33921 1.06392 0.44562 1.10290

I(E=42) 0.49522 1.33937 0.57402 1.33862

I(E=43) 0.52201 1.59578 0.60579 1.67726

I(E=44) 0.76442 1.87793 0.88662 1.99260

I(E=45) 0.79513 2.36940 0.89977 2.50898

I(E=46) 0.81286 2.42916 0.91233 2.46191

I(M=2) −0.29167 −0.18976 −0.20503 −0.10286

I(M=3) −0.07052 −0.41459 −0.06588 −0.44057

I(M=4) −0.03956 −0.47224 −0.05187 −0.46352

I(M=5) −0.07136 −0.32840 −0.08825 −0.35516

I(M=6) −0.03477 −0.63850 −0.06795 −0.66138

I(M=7) −0.00992 −0.58561 −0.03941 −0.57123

I(R=2) −0.09089 −0.14000 −0.07882 −0.12586

I(R=3) −0.29051 −0.39652 −0.25237 −0.38992

I(R=4) −0.07131 0.05753 −0.02879 0.05517

I(S=2) 0.02176 −0.10572 0.01507 −0.10844

In figure 2, one can see a histogram associated with the empirical distribution of TM

for M = 1 (105 simulation size).

We further considered the test of the null hypothesis H0 : AB = 0, using

A =

(
02×3

∣∣∣(1 0 0
0 0 1

)∣∣∣ 02×23

)
and the statistics TM,C and Tcomb,C in (5) and (11), and also
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Figure 2: Histogram of the Empirical values of TM for M = 1

the adapted procedure of Reiter (2005a). In the latter we replaced vec(B∗j) by vec(AB∗j),

vec(B) by vec(AB) and took Uj = S∗j ⊗ (A(XX′)−1A′) (j = 1, . . . ,M). For M = 1 the

computed value of TM,C is 1.02081×10−7 with a p-value of 0.00408, while for M = 2 we

have a computed value of TM,C equal to 2.07415×10−7 and a computed value of Tcomb,C

of 2.07240×10−7, to both of which corresponds a p-value of 0.00001. For M = 5 were

obtained computed values of 3.47938×10−7 and 3.47419×10−7 respectively for TM,C and

Tcomb,C, with corresponding p-values of approximately 0. Reiter’s adapted procedure gave

p-values of 0.00016 for M = 2 and approximately zero for M = 5.

Also for this case, we may note that for all procedures the p-values are very close to zero

as also is the p-value obtained from the original data, when using (15). As a consequence,

it is interesting to observe that all p-values lead to the same conclusion, the rejection of

the non-significance of the set of regression coefficients, and that the p-values obtained for

M=1 are not very far from the ones obtained for M=2. Comparing the two multiple

imputation procedures developed we observe that they present very similar p-values. Also,

with the increase of the value of M the p-values get smaller, that is, closer to the p-values

obtained with the original data, which although it may be seen as an advantage, it comes

at the expense of a decrease in confidentiality.

Alternatively, it is possible to construct individual confidence intervals for all regression
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coefficients by using Result 5 in Section 2.1 and Result 4 in Section 2.2, based on Corollaries

2.3 and 2.6, and whose detailed proofs may be found in Section S3 of Part II of the

supplementary material. In Subsections S3.1–S3.6 are shown the confidence intervals for

all regression coefficients derived from the original data and the synthetic datasets for M=1,

2, 5. From these confidence intervals one may observe that for increasing values of M, the

confidence intervals become smaller and smaller becoming closer and closer to the size of

the one derived from the original data. This fact concurs with the study of the radius done

in Section 3.

5 Privacy Protection of Singly Versus Multiply Im-

puted Synthetic Data

It is anticipated that singly imputed synthetic data will offer bigger protection than multiply

imputed synthetic data. Nevertheless, one needs to evaluate this level of protection. In this

section, we perform this evaluation using the CPS data referred to in the previous section.

Let us consider Vj = (v
(j)
1 , ...,v

(j)
n ), j = 1, ...,M , M synthetic datasets generated by the

Plug-in Sampling method, where v
(j)
i = (v

(j)
1i , ..., v

(j)
mi)
′, i = 1, ..., n. Assume that after

having access to the released synthetic data an ”intruder” estimates the original values

yi = (y1i, ..., ymi)
′ by ŷi = 1

M

∑M
j=1 v

(j)
i . Then we propose the following three criteria as

measures of the level of privacy protection

Γ1,ε =
1

mn

m∑
l=1

n∑
i=1

Pr

[∣∣∣∣ ŷli − yliyli

∣∣∣∣ < ε
∣∣∣Y] ;

Γ2,ε =
1

n

n∑
i=1

Pr

√√√√ 1

m

m∑
l=1

(ŷli − yli)2
y2li

< ε
∣∣∣Y
 ;

Γ3,ε = Pr

[
1

mn

m∑
l=1

n∑
i=1

∣∣∣∣ ŷli − yliyli

∣∣∣∣ < ε
∣∣∣Y] .
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Let us also consider from Γ1,ε the following quantity, for i = 1, ...n and l = 1, ..,m,

D1,ε = Pr

[∣∣∣∣ ŷli − yliyli

∣∣∣∣ < ε
∣∣∣Y]

and from Γ3,ε the

D3 =
1

mn

m∑
l=1

n∑
i=1

∣∣∣∣ ŷli − yliyli

∣∣∣∣ .
We use Monte Carlo simultation with 104 iterations to estimate the above measures for

each of the n = 32, 923 households in the CPS data set.

In Table 5, we show the values of Γ1,0.01 and Γ2,0.01 and for D1,0.01 its minimum, 1st

quartile (Q1), median, 3rd quartile (Q3) and maximum. In Table 6, we show the values of

Γ3,0.01, Γ3,0.1 and the minimum, Q1, median, Q3 and maximum of D3. Looking at Table

5, we observe that the values of the measures increase as M increases, showing that the

disclosure risk increases with the increase in the number of released synthetic data sets.

We also observe that even for M = 5, the maximum value of D1,0.01 is 0.3279, thus already

indicating a substantial disclosure risk compared to 0.1491 from the singly imputed case.

Likewise, we observe from Table 6 that if we set ε = 0.09, we have Γ3,ε = 0 for M = 1 but

Γ3,ε = 0.1886 for M = 5.

Table 5: Values of Γ1,0.01, Γ2,0.01 and a summary of the distribution of D1,0.01.

M Γ1,0.01 Γ2,0.01

D1,0.01

Min Q1 Median Q3 Max

M = 1 0.0631 0.0006 0 0.0398 0.0552 0.0854 0.1491

M = 2 0.0754 0.0010 0 0.0331 0.0697 0.0954 0.2134

M = 5 0.0879 0.0018 0 0.0110 0.0792 0.1284 0.3279
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Table 6: Values of Γ3,0.01, Γ3,0.09 and a summary of the distribution of D3.

M Γ3,0.01 Γ3,0.09

D3

Min Q1 Median Q3 Max

M = 1 0 0 0.1050 0.1202 0.1233 0.1264 0.1379

M = 2 0 0 0.0948 0.1026 0.1051 0.1072 0.1159

M = 5 0 0.1886 0.0836 0.0905 0.0921 0.0937 0.1013

6 Concluding Remarks

The data analysis methodology of Reiter (2003), Reiter (2005a) and Raghunathan et al.

(2003) are asymptotic in nature and can only be used when multiply imputed synthetic

datasets are released. Moreover, their procedures were developed to draw inference only

on scalar and vector parameters. In this paper, two exact likelihood-based solutions are

offered for the case when multiple or single synthetic datasets are released and inference

procedures are obtained for a matrix of regression coefficients under a Multivariate Linear

Regression Model when synthetic data are generated via Plug-in Sampling. Furthermore,

the authors provide an adaptation of Reiter (2005a) vector methodology to a matrix of

parameters.

The second procedure proposed for multiple synthetic data presents slightly better

performances than the first one for small sample sizes, and their performances are nearly

the same for larger sample sizes. Nevertheless, the first procedure presents a simpler way

of analyzing the synthetic datasets, thus being important to have access to both these

procedures.

Although the singly imputed synthetic data will offer bigger protection than multiply

imputed synthetic data, when releasing increasing numbers of multiple datasets, the con-

fidence regions become smaller and smaller becoming closer and closer to the size of the
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ones derived from the original data.

Simulation studies show that the two new exact methodologies developed lead to confi-

dence sets with the expected level of confidence, even for small sample sizes, both for single

and multiple imputation.

Our simulations also reveal that as the number of synthetic datasets released increases,

the inference derived from synthetic datasets comes closer to the one based on the origi-

nal data, but of course at the expense of compromising privacy, namely by increasing the

disclosure risk. Due to the increasing need to protect privacy, some entities already have

decided to not release multiple imputation synthetic datasets, releasing only a single impu-

tation dataset. The procedures developed in this work now allow the analysis of the data in

the single imputation case, encouraging imputers to consider this scenario without having

the concern about the feasibility of its analysis. We may note that one other advantage

of the single imputation is that the estimated average coverage probabilities have values

that are slightly closer to the nominal value of 0.95 than the ones obtained from multiple

imputation, mainly when considering discrete distributions for the response variables, not

forgetting that an analyst may find less confusing receiving a single dataset.

One of the advantages of using the Plug-in Sampling method is that it offers smaller

radius (distance between the center and the edge) of the confidence sets than the Posterior

Predictive Sampling (PPS) method, while also giving estimates of the parameters that are

closer to the ones obtained from the original data, although at the expense of slightly higher

levels of disclosure risk (Moura, 2016). Furthermore, the procedures developed, although

based on model (1), which may seem to be a quite restrictive framework, allowed to develop

inferential procedures with very good performances when data is generated by adaptations

of the Plug-in method that generate non-normal or discrete response variables.

In the future it would be interesting to research how the procedures developed would

perform on partial synthetic datasets generated by CART (Classification And Regression
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Tree) methodology (Reiter, 2005b) and how similar techniques and procedures to the ones

developed might be applied using LASSO (Least Absolute Shrinkage and Selection Oper-

ator) and other shrinkage and penalized regression methods.
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Appendix A Proofs of Theorems and Corollaries

Some matrix identities and matrix calculations required in the proof of Theorem 2.1.

1. If the matrices A and B are positive-definite then

(i) A−1 −A−1(A−1 + B−1)−1A−1 =A−1(A−1 + B−1)−1B−1 and

(ii) (A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A.

2. Let S and Σ be symmetric, then

(C−X)S−1(C−X)′ + (X−D)Σ−1(X−D)′

=
[
X− (CS−1 + DΣ−1)(S−1 + Σ−1)−1

]
(S−1 + Σ−1)

[
X− (CS−1 + DΣ−1)(S−1 + Σ−1)−1

]′
+ CS−1C′ + DΣ−1D′ − (CS−1 + DΣ−1)(S−1 + Σ−1)−1(CS−1 + DΣ−1)′.

3. Taking the last three terms of the previous sum, and using the identities from item

1, we have,

CS−1C′ −CS−1(S−1 + Σ−1)−1S−1C′ + DΣ−1D′ −DΣ−1(S−1 + Σ−1)−1Σ−1D′

−CS−1(S−1 + Σ−1)−1Σ−1D′ −DΣ−1(S−1 + Σ−1)−1S−1C′

= C(S + Σ)−1(C′ −D′) + D(S + Σ)−1(D′ −C′) = (C−D)(S + Σ)−1(C−D)′.

Proof of Theorem 2.1. : From (2), given (B̂,S), we have,

B
∗
M |(B̂,S) ∼ Npm(B̂,

1

M
S⊗ (XX′)−1)

and for S
∗
M in (3), from the fact that (n−p)S∗j |S ∼ Wm(S, n−p), and these are independent

for j = 1, . . . ,M ,

M(n− p)S∗M |S ∼ Wm(S,M(n− p)). (A.1)

Given the independence of B
∗
M and S

∗
M , conditional on (B̂,S), the conditional joint pdf

of (B
∗
M ,S

∗
M) is proportional to

exp

{
−1

2
tr
(
MS−1

[
(B
∗
M − B̂)′XX′(B

∗
M − B̂) + (n− p)S∗M

])}
× |S

∗
M |

M(n−p)−m−1
2

|S|
M(n−p)+p

2

, (A.2)
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while, given the independence of B̂ and S, defined in the Introduction after (1), the joint

pdf of (B̂,S) is proportional to

exp

{
−1

2
tr
(
Σ−1

[
(B̂−B)′XX′(B̂−B) + (n− p)S

])} |S|n−p−m−1
2

|Σ|n2
. (A.3)

Therefore, we obtain the joint pdf of (B
∗
M ,S

∗
M , B̂,S) by multiplying the two joint pdf’s

(A.2) and (A.3).

Since

tr{MS−1(B
∗
M − B̂)′(XX′)(B

∗
M − B̂) + Σ−1(B̂−B)′(XX′)(B̂−B)}

= tr{M(B
∗
M − B̂)S−1(B

∗
M − B̂)′(XX′) + (B̂−B)Σ−1(B̂−B)′(XX′)},

where, from the identities in 1–3 above,

M(B
∗
M − B̂)S−1(B

∗
M − B̂)′ + (B̂−B)Σ−1(B̂−B)′ =

=
[
B̂− (MB

∗
MS−1+ BΣ−1)(MS−1+ Σ−1)−1

]
(MS−1+ Σ−1)[

B̂− (MB
∗
MS−1+ BΣ−1)(MS−1 + Σ−1)−1

]′
+ (B

∗
M −B)(

1

M
S + Σ)−1(B

∗
M −B)′,

integrating out B̂, we obtain the joint pdf of (B
∗
M ,S

∗
M ,S) proportional to

exp

{
−1

2
tr

[
(Σ +

1

M
S)−1(B

∗
M−B)′(XX′)(B

∗
M−B) +M(n− p)S−1S∗M+(n− p)Σ−1S

]}
× |S∗M |

M(n−p)−m−1
2 × |S|

−M(n−p)−n+2p+m+1
2

|Σ|n2
× |Σ−1 +MS−1|−p/2,

(A.4)

and integrating out S, we obtain the result in the body of the Theorem for the joint pdf of

B
∗
M and S

∗
M .

In (A.4), S
∗
M and B

∗
M are separable, showing that they are independent, with,

B
∗
M |S ∼ Npm(B, (Σ + 1

M
S)⊗ (XX′)−1) and M(n− p)S∗M |S ∼ Wm(S,M(n− p)).
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Proof of Corollary 2.2. :

From the result in Theorem 2.1, (B
∗
M − B)′|S ∼ N(0, (XX′)−1 ⊗ (Σ + 1

M
S)), and by

Theorem 2.4.1 in Kollo and Rosen (2005) we have that, for p ≥ m,

(B
∗
M −B)′(XX′)(B

∗
M −B)|S ∼ Wm(Σ +

1

M
S, p).

Therefore, for

H = (Σ +
1

M
S)−

1
2 (B

∗
M −B)′(XX′)(B

∗
M −B)(Σ +

1

M
S)−

1
2

and

G = M(n− p)S−
1
2 S
∗
MS−

1
2 ,

from Theorem 2.4.2 in Kollo and Rosen (2005) and Subsection 7.3.3 in Anderson (2003),

from the distribution of S
∗
M , we have H|S ∼ Wm(Im, p) and G|S ∼ Wm(Im,M(n − p)),

that, given the conditional independence of B
∗
M |S and S

∗
M |S, are two independent random

variables.

Since we may write

TM |S =
|(B∗M −B)′(XX′)(B

∗
M −B)|

|(n− p)S∗M |
|S =

|MΣ + S|
|S|

× |H|
|G|
|S,

where, given S, |G| ∼
∏m

l=1 χ
2
M(n−p)−l+1 and |H| ∼

∏m
l=1 χ

2
p−l+1, with the chi-square ran-

dom variables in each product independent, we end up with a product of independent

F-distributions. So, conditionally on S, we have

TM |S
st∼

m∏
l=1

[
p− l + 1

M(n− p)− l + 1
Fp,l

]
× |S−1(MΣ + S)|,

where Fp,l ∼ Fp−l+1,M(n−p)−l+1.

Note that (n−p)S ∼ Wm(Σ, n−p), thus implying 1
n−pS

−1 ∼ W−1
m ((n−p)Σ−1, n−p), or

1
n−pΣ

1/2S−1Σ1/2 ∼ W−1
m (Im, n− p), which shows that the distribution of |S−1(MΣ + S)| =

|MΣ1/2S−1Σ1/2 + Im| does not depend on Σ, concluding the proof.
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Proof of Corollary 2.3. The proof is identical to the proof of Corollary 2.2 replacing, con-

ditional on B̂ and S, the joint pdf of (B
∗
M ,S

∗
M) by the joint pdf of (∆∗M ,D

′S
∗
MD), where

∆∗M = AB
∗
MD, noting that we have

∆∗M |S ∼ Nkr

(
∆,D′

(
Σ +

1

M
S

)
D⊗A(XX′)−1A′

)
and

M(n− p)D′S∗MD|S ∼ Wm(D′SD,M(n− p)).

Proof of Theorem 2.4. The proof is identical to the proof of Theorem 2.1, replacing, con-

ditional on B̂ and S, the joint pdf of (B
∗
M ,S

∗
M) by the joint pdf of (B

∗
M ,Scomb), noting that

(see Moura (2016, Sec. 2.3.2))

(Mn− p)Scomb|S ∼ Wm(S,Mn− p). (A.5)

Proof of Corollary 2.5. The proof is identical to the proof of Corollary 2.2, replacing, condi-

tional on S, S
∗
M by Scomb and the corresponding degrees of freedom, M(n−p) byMn−p, and

taking into account that from Theorem 2.4 we have that (Mn−p)Scomb|S ∼ Wm(S,Mn−p)

is independent of B
∗
M |S.

Proof of Corollary 2.6. The proof is identical to the proof of Corollary 2.2, replacing, con-

ditional on B̂ and S, the joint pdf of (B
∗
M ,S

∗
M) by the joint pdf of (∆∗M ,D

′ScombD), where

∆∗M = AB
∗
MD, noting that we have

∆∗M |S ∼ Nkr

[
∆,D′

(
Σ +

1

M
S

)
D⊗A(XX′)−1A′

]
and

(Mn− p)D′S∗MD|S ∼ Wm(D′SD,Mn− p).
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Appendix B
B.1 Details on Results in Subsection 2.1 and Remark 2.2

In this Appendix, some details about the derivations of Results 1 and 2 in Subsection 2.1

are provided.

Details of Result 1:

E(B
∗
M) = (XX′)−1X

1

M

M∑
j=1

E(V′j) = (XX′)−1X
1

M

M∑
i=1

E(X′B̂) = B

and

V ar(B
∗
M) = E(V arB∗M|B̂,S(B

∗
M|B̂,S)) + V ar(EB

∗
M|B̂,S

(B
∗
M|B̂,S)) =

M + 1

M
Σ⊗ (XX′)−1.

Details of Result 2: Noting that M(n− p)S∗M |S ∼ Wm(S,M(n− p)) and that (n− p)S ∼

Wm(Σ, n− p) then, immediately, E(S
∗
M |S) = E(S) = Σ.

Details of Remark 2.2: Let us consider H and G as we did in Appendix A for the particular

case of the single imputation case, i.e. for M = 1, and let us consider B∗ = B
∗
1 and S∗ = S

∗
1,

since the generalization for the multiple case is straightforward. We will begin to decompose

all the four statistics in order to make them assume the same kind of form and then prove

why all of them are non-pivotal. The first statistic is

T (1) =
|S∗|

|S∗ + (B∗ −B)′(XX′)(B∗ −B)|

that we can decompose as

T (1) =
|S||(n− p)S−1/2S∗S−1/2|

(n− p)m|S∗ + (Σ + S)1/2(Σ + S)−1/2(B∗ −B)′(XX′)(B∗ −B)(Σ + S)−1/2(Σ + S)1/2|

=
|G|

|G + (n− p)S−1/2(Σ + S)1/2H(Σ + S)1/2S−1/2|
.
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Now let us consider the following statistics

T (2) = (n− p)tr
[
H× (Σ + S)1/2S−1/2 ×G−1 × S−1/2(Σ + S)1/2

]
,

T (3) = tr{H× [H + (Σ + S)−1/2S1/2 × (n− p)G× S1/2(Σ + S)−1/2]−1}

and T (4) = λ1 where λ1 denotes the largest eigenvalue of

(n− p)H× (Σ + S)1/2S−1/2 ×G−1 × S−1/2(Σ + S)1/2.

From T (1) we can observe that a term of the denominator is

S−
1
2 (Σ + S)

1
2 H(Σ + S)

1
2 S−

1
2 |S ∼ Wm(S−

1
2 (Σ + S)S−

1
2 , p) ≡ Wm((S−

1
2 ΣS−

1
2 + I), p),

and in the other statistics there are similar terms. We can also observe that all of the terms

involve a product similar to S−
1
2 (Σ + S)

1
2 that cannot be simplified the same way we could

do when using the determinant as in the statistic TM used in this paper.

Thus, in order to prove that these statistics are dependent on Σ, we can see the empirical

distributions of T (1), T (2), T (3) and T (4) when we consider a simple case where m = 2, p = 3,

n = 100 and Σ =
(
1 ρ
ρ 1

)
with ρ = {0.2, 0.4, 0.6, 0.8} for a simulation size of 104, in Figure 3.

After making the above simulations we can observe from its distributions and cut-off

points (γ = 0.05) that these four statistics are non-pivotal.

B.2 Details on Result 1 in Subsection 2.2

Noting that (Mn− p)Scomb|S ∼ Wm(S,Mn− p) and that (n− p)S ∼ Wm(Σ, n− p) then,

immediately, E(Scomb) = E(S) = Σ.

B.3 Proof of Remark 2.3

We may write

Var(S
∗
M) = E

[
Var(S

∗
M |S)

]
+ Var

[
E(S

∗
M |S)

]
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Figure 3: Empirical distributions and cut-off points (γ=0.05) of T (1), T (2), T (3) and T (4) for ρ =

{0.2,0.4,0.6,0.8}.

and

Var(Scomb) = E [Var(Scomb|S)] + Var [E(Scomb|S)] ,

where, given the conditional distributions of S
∗
M and Scomb, given S, in (A.1) and (A.5) in

Appendix A, we have

Var
[
E(S

∗
M |S)

]
= Var [E(Scomb|S)] = Var(S)

and as such, to prove that Var(S
∗
M) ≥ Var(Scomb) we only need to prove that

E
[
Var(S

∗
M |S)

]
≥ E [Var(Scomb|S)] ,

or, equivalently, that

E
[
Var(S

∗
M |S)

]
E [Var(Scomb|S)]

=

1
M2(n−p)2E

[
Var(M(n− p)S∗M |S)

]
1

(Mn−p)2E [Var((Mn− p)Scomb|S)]
≥ 1 . (B.1)
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We know that if A ∼ Wp(Σ, ν) then Var(vec(A)) = ν(Ip2 + K)(Σ ⊗ Σ) where K

is a commutation matrix of order p2×p2 (Muirhead, 2005, pg. 90), so that, given the

distributions of M(n− p)S∗M |S and (Mn− p)Scomb|S in (A.1) and (A.5), the two expected

values on the right hand side of (B.1) have a common factor. On the numerator this factor

appears multiplied by M(n−p), while on the denominator it appears multiplied by Mn−p,

so that we may write

E
[
Var(S

∗
M |S)

]
E [Var(Scomb|S)]

=

1
M(n−p)

1
Mn−p

=
Mn− p
M(n− p)

which will be larger than 1 for M ≥ 2 and equal to 1 for M = 1.

B.4 Details on Results in Section 3

Lastly, we provide some details about the derivations of the results in Section 3.

Details of Expect Values in Section 3 : Recall that (n − p)S ∼ Wm(Σ, n − p), thus im-

plying that E(|(n − p)S|) = |Σ|E(
∏m

i=1 χ
2
n−p−i+1) = (n−p)!

(n−p−m)!
|Σ|, since

∏m
i=1 χ

2
n−p−i+1 is

a product of independent χ2 variables. Also recalling that, conditionally on S, we have

M(n− p)S∗M ∼ Wm(S,M(n− p)) and (Mn − p)Scomb ∼ Wm(S,Mn − p), thus implying

that, conditionally on S,

E(|(n− p)S∗M |) =
1

Mm(n− p)m
× (Mn−Mp)!

(Mn−Mp−m)!
× |(n− p)S|

and

E(|(n− p/M)Scomb|) =
1

Mm(n− p)m
× (Mn− p)!

(Mn− p−m)!
× |(n− p)S|.

Combining the result of E(|(n − p)S|) with each of the synthetic expected values, condi-

tionally on S, we end up with the expression for E(ΥM) found in Section 3.
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Part I – Analysis Under Non-Ideal Conditions

S1 Non-normal error distributions - continuous vari-

ables

In this section we briefly discuss the issue of robustness of our proposed synthetic data

analysis methods when errors are non-normal, that is, we still assume model (1), with the

error term E not normally distributed. In the sequel we consider two types of deviations

from normality: t-type (keeping symmetry) and skew-normal type.

S1.1 t-Distribution

Regarding a multivariate t-type distribution, we generate yi : m× 1 as

yi = B′xi + Σ1/2ti

√
ν − 2

ν
, for i = 1, 2, . . . , n (S.1)

where ti = zi
√

ν
η

and zi’s are iid with each component distributed as N(0, 1) independent

of η ∼ χ2
ν . This results in the yi’s being independent multivariate t-distributed vectors. In

Table S1 we display the results of a simulation study under a similar scenario as in Section

3, except that the original data are now generated from the regression model (S.1) whose

error term has a multivariate t-distribution. We observe in Table S1, that the average

coverage probability of the confidence regions of our proposed procedures is approximately

equal to the nominal value of 0.95. Moreover, we observe that for sufficiently large n the

coverage probability of the procedures of Reiter (2005) is also approximately equal to 0.95

for the cases where M ≥ 5.
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S1.2 Skew-Normal Distribution

Under the skew-normal distribution (Azzalini, 1985; Henze, 1986), we generate yi as

yi = B′xi + Σ1/2zi (S.2)

where the m components of zi are iid with each component distributed as (s − µs)/σs.

Here s ∼ Skew-normal(0, 1, λ), that is, a skew-normal distribution with location 0, scale

1 and shape equal to λ, with µs = E(s) =
√

2
π

[
λ√
1+λ2

]
and σs =

√
1− 2

π

(
λ2

1+λ2

)
. Under

this data generation scheme, yi’s will have a skew-normal distribution. The parameter λ

represents the extent of deviation from symmetry. In Table S2 are displayed the results

of a simulation study under a similar scenario as in Section 3, except that the original

data are now generated from regression model (S.2) whose error term has the skew-normal

distribution. We may observe in Table S2 that the coverage probability of the confidence

regions of our proposed procedures is again approximately equal to the nominal value

of 0.95. We may also observe that again for sufficiently large values of n the coverage

probability of the procedures of Reiter (2005) is again approximately equal to 0.95, for

M ≥ 5.

S2 Non-normal error distributions - discrete and other

non-continuous variables

In this section we propose to show that our exact inference methods in Section 2 still

perform well when the original variables are discrete or random variables with a spike at

zero.

The following cases will be considered, regarding the distribution for the sensitive orig-

inal variables: Binomial distribution, Poisson distribution, and a distribution with a spike

at zero.
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In all simulations we will consider that the original data is composed of two sensitive

variables (m = 2) which will be independent of the non-sensitive variables. We will consider

p = 3 non-sensitive variables, one of which will have all elements equal to 1, and the other

will be generated as iid N(0, 1), and held fixed for the entire simulation. The inclusion of

a non-sensitive variable with all elements equal to 1 has to be made in this case since the

sensitive variables will have expected values which are non-null.

For each case we generate m = 2 variables with the given discrete or spike at zero

distribution, which we then suppose that are sensitive variables. From these variables we

will synthesize m variables using the Plug-in sampling method and a multivariate regression

model similar to model (1).

Let us denote by w
(j)
hi the i-th value of the generated h-th synthetic variable in the j-th

partially synthetic dataset (i = 1, . . . , n;h = 1, . . . ,m; j = 1, . . . ,M).

Then, for each case where we use a discrete distribution for the “original” sensitive

variables we will follow two different approaches: (i) taking as the random sample of our

synthetic variables, either the closest integer value to the value w
(j)
hi , that is, taking, for

h = 1, . . . ,m, i = 1, . . . , n and j = 1, . . . ,M ,

y
(j)
hi =


⌊
w

(j)
hi + 1/2

⌋
, if w

(j)
hi ≥ 0

0 , if w
(j)
hi < 0

(S.3)

where bxc denotes the floor of the value x, as the i-th value for our h-th synthetic variable

in the j-th imputed dataset, or (ii) we will simply take

y
(j)
hi = w

(j)
hi , h = 1, . . . ,m; i = 1, . . . , n; j = 1, . . . ,M , (S.4)

obtaining in this case a non-integer value, which anyway has been obtained from the original

sensitive variables with a discrete distribution. We will call ‘approach 1’ the situation where

we adopt (S.3) and ‘approach 2’ the situation where we adopt (S.4).
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In the following Subsections, based on Monte Carlo simulations with 104 iterations, we

evaluate the average coverage probability of our procedures and Reiter’s adapted procedure

when the released synthetic data is created using the two approaches referred above. Sim-

ilarly to what was done in Section 3, we obtain confidence regions for B and for AB=C,

respectively with A=I3 and A=(02×1|I2), setting the level of the confidence region as 0.95.

The simulations carried out were done in a similar manner to the one used in Section

3 of the paper, with m = 2 and p = 3, with the difference that we now use a B parameter

matrix of the form

B =


µ1 µ2

0 0

0 0


where µh = E(yh) (h = 1, 2), since now the expected value of the discrete random variables

is different from zero. We also used zeros for the other parameters in B since we choose to

model the sensitive variables only through their mean values. The matrix Σ used was

Σ =

σ2
1 0

0 σ2
2


since the two original sensitive variables were generated independently.

We understand that if the average coverage probability shows adequate values in these

cases this is a good indication that similar behavior would be found for all cases.

S2.1 Binomial distribution

We assume that the original response variables are binomial distributed. Thus, we generate

Y = (y1,y2) by independently generating y1 and y2 from Binomial distributions, as

yh,i ∼ B(n∗, ph) , h = 1, 2; i = 1, . . . , n

with ph ∈ (0, 1) and n∗ ∈ N.
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In Tables S3 and S4, which correspond to approaches 1 and 2, considering different

values of n, n∗ and ph (h = 1, 2), we may observe that the average coverage probability

still presents values that are close to the nominal value of 0.95, and it may be important

to notice that it is for the single imputation case that the results seem to be closer to 0.95.

S2.2 Poisson distribution

Now let us consider that the two response variables are originally Poisson distributed, by

independently generating y1 and y2 from Poisson distributions, as

yh,i ∼ P (λh)

with λh,∈ R+, for i = 1, . . . , n and h = 1, 2.

In Tables S5 and S6, corresponding respectively to approaches 1 and 2, for different

values of n and λh, we may observe that the average coverage probability still presents

values that are close to the nominal value of 0.95, and that one more time it is noticeably

the single imputation case that seems to present the best results.

S2.3 Distribution with a spike at zero

The idea is to simulate original data where the response variables have a percentage of values

all equal zero and the remaining percentage has some random continuous distribution with

values different from zero. With that objective in mind, we will consider that the sensitive

variables are the product of a Bernoulli distributed variable and a Normal variable. We

start by independently generating yh as

yh,i ∼ Bernoulli(ph)×N(µh, σ
2
h)

with ph ∈ (0, 1), µh ∈ R and σ2
h ∈ R+, for i = 1, . . . , n and h = 1, 2. By generating the

original data this way it is expected to obtain, for each variable, an average of n×ph values

that are equal to zero.
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To generate the Plug-in synthetic version ignoring the original format one as only to

proceed as in Section 2. In order to create a synthetic dataset where the variable for-

mat maintains the original format, we propose the following procedure of generating the

synthetic data:

1. Create two additional original variables y†1 and y†2 where y†h,i = 0 if yh,i = 0 and

y†h,i = 1 if yh,i 6= 0

2. Consider the original data Y = (y1,y2) replaced by Y† = (y1,y
†
1,y2,y

†
2)

3. Generate V†j = (v
(j)
1 ,v

†(j)
1 ,v

(j)
2 ,v

†(j)
2 ), proceeding as in Section 2

4. Consider the new version of the synthetic data Vj = (w
(j)
1 ,w

(j)
2 ) where

w
(j)
h = v

(j)
h v

†(j)
h ,

for h = 1, 2.

In Tables S7 and S8 we may observe that the average coverage probabilities still present

values that are quite close to the nominal value of 0.95, for different values of n, ph, µh and

σh.
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Table S1: Average coverage probabilities for B and AB when error distribution is multivariate t-type

(where vec(B) and vec(AB) stand for the adapted Reiter procedure and B(1), AB(1) and B(2), AB(2)

stand respectively for the first and second new inferential procedures)

(a) Average coverage for B

n ν M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

10

3 0.944 0.822 0.944 0.945 0.742 0.946 0.944 0.735 0.944 0.944 0.739 0.943 0.943
5 0.946 0.828 0.944 0.947 0.743 0.948 0.946 0.735 0.945 0.946 0.742 0.945 0.946

10 0.951 0.830 0.951 0.949 0.753 0.953 0.950 0.751 0.950 0.950 0.750 0.951 0.951
15 0.950 0.828 0.951 0.950 0.751 0.950 0.949 0.744 0.949 0.950 0.747 0.950 0.948
20 0.950 0.827 0.947 0.948 0.752 0.948 0.948 0.743 0.948 0.947 0.747 0.948 0.948

50

3 0.948 0.960 0.951 0.952 0.931 0.952 0.951 0.930 0.954 0.953 0.932 0.953 0.952
5 0.948 0.953 0.947 0.948 0.927 0.951 0.950 0.926 0.950 0.949 0.929 0.951 0.950

10 0.951 0.952 0.949 0.950 0.925 0.951 0.950 0.921 0.949 0.948 0.924 0.950 0.948
15 0.950 0.950 0.949 0.950 0.928 0.950 0.949 0.924 0.952 0.951 0.924 0.950 0.949
20 0.949 0.956 0.952 0.953 0.929 0.955 0.955 0.924 0.952 0.950 0.929 0.952 0.951

200

3 0.950 0.966 0.948 0.947 0.943 0.951 0.951 0.940 0.949 0.949 0.944 0.948 0.949
5 0.954 0.965 0.950 0.948 0.943 0.946 0.946 0.939 0.948 0.948 0.943 0.946 0.947

10 0.952 0.963 0.950 0.948 0.947 0.948 0.948 0.942 0.947 0.947 0.942 0.947 0.948
15 0.950 0.963 0.950 0.949 0.947 0.951 0.951 0.942 0.950 0.950 0.944 0.947 0.948
20 0.948 0.964 0.951 0.950 0.944 0.951 0.952 0.939 0.950 0.950 0.942 0.949 0.950

(b) Average coverage for AB

n ν M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

10

3 0.943 0.956 0.944 0.944 0.777 0.945 0.944 0.776 0.944 0.944 0.772 0.943 0.943
5 0.944 0.958 0.946 0.946 0.778 0.945 0.945 0.781 0.944 0.944 0.776 0.942 0.943

10 0.949 0.965 0.948 0.949 0.790 0.951 0.952 0.797 0.950 0.949 0.787 0.949 0.950
15 0.952 0.967 0.951 0.951 0.798 0.953 0.953 0.799 0.950 0.950 0.789 0.951 0.951
20 0.949 0.962 0.951 0.949 0.791 0.949 0.948 0.794 0.948 0.948 0.787 0.948 0.949

50

3 0.948 0.999 0.950 0.950 0.933 0.952 0.952 0.935 0.953 0.952 0.933 0.954 0.952
5 0.949 0.999 0.950 0.951 0.934 0.952 0.951 0.932 0.952 0.950 0.933 0.953 0.952

10 0.952 0.999 0.952 0.952 0.930 0.953 0.951 0.928 0.951 0.950 0.927 0.949 0.947
15 0.955 0.999 0.955 0.955 0.935 0.953 0.952 0.935 0.954 0.952 0.932 0.951 0.951
20 0.948 0.999 0.948 0.948 0.935 0.952 0.951 0.934 0.950 0.949 0.934 0.951 0.950

200

3 0.950 1.000 0.953 0.952 0.943 0.951 0.952 0.944 0.954 0.951 0.943 0.952 0.951
5 0.957 1.000 0.953 0.952 0.949 0.950 0.951 0.947 0.953 0.951 0.946 0.952 0.952

10 0.952 1.000 0.955 0.954 0.944 0.948 0.948 0.942 0.949 0.948 0.942 0.948 0.947
15 0.952 1.000 0.952 0.952 0.945 0.952 0.953 0.946 0.952 0.949 0.944 0.951 0.950
20 0.948 1.000 0.953 0.952 0.947 0.952 0.953 0.947 0.954 0.951 0.946 0.953 0.952
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Table S2: Average coverage probabilities for B and AB when error distribution is skew-normal (where

vec(B) and vec(AB) stand for the adapted Reiter procedure and B(1), AB(1) and B(2), AB(2) stand

respectively for the first and second new inferential procedures)

(a) Average coverage for B

n ν M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

10

10 0.944 0.817 0.942 0.941 0.738 0.944 0.942 0.731 0.942 0.941 0.734 0.942 0.940
-10 0.949 0.819 0.942 0.942 0.736 0.944 0.942 0.728 0.945 0.944 0.729 0.944 0.943
100 0.944 0.815 0.942 0.941 0.739 0.943 0.942 0.730 0.941 0.943 0.731 0.942 0.942
-100 0.950 0.816 0.944 0.944 0.735 0.944 0.942 0.726 0.943 0.942 0.730 0.944 0.942

50

10 0.942 0.947 0.941 0.944 0.917 0.945 0.945 0.913 0.941 0.944 0.917 0.946 0.945
-10 0.955 0.954 0.950 0.951 0.922 0.946 0.945 0.913 0.942 0.945 0.918 0.944 0.943
100 0.943 0.948 0.942 0.944 0.918 0.946 0.945 0.914 0.944 0.946 0.916 0.944 0.944
-100 0.953 0.953 0.951 0.952 0.923 0.946 0.945 0.913 0.943 0.945 0.917 0.944 0.943

200

10 0.952 0.971 0.953 0.952 0.950 0.957 0.956 0.943 0.953 0.953 0.943 0.949 0.950
-10 0.948 0.964 0.947 0.946 0.947 0.949 0.949 0.943 0.953 0.952 0.948 0.953 0.954
100 0.953 0.969 0.953 0.952 0.947 0.956 0.956 0.945 0.953 0.953 0.941 0.950 0.952
-100 0.950 0.963 0.950 0.948 0.948 0.949 0.949 0.946 0.950 0.950 0.947 0.953 0.954

(b) Average coverage for AB

n ν M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

10

10 0.950 0.964 0.950 0.950 0.798 0.950 0.950 0.796 0.949 0.948 0.793 0.950 0.950
-10 0.953 0.965 0.952 0.950 0.792 0.950 0.950 0.798 0.951 0.950 0.791 0.950 0.950
100 0.948 0.967 0.950 0.950 0.795 0.950 0.950 0.799 0.952 0.950 0.791 0.950 0.951
-100 0.953 0.965 0.952 0.951 0.791 0.951 0.950 0.797 0.950 0.950 0.789 0.948 0.949

50

10 0.946 0.999 0.944 0.945 0.927 0.946 0.944 0.928 0.949 0.947 0.927 0.950 0.948
-10 0.950 0.999 0.950 0.950 0.928 0.948 0.948 0.926 0.950 0.948 0.924 0.948 0.947
100 0.945 0.999 0.946 0.946 0.926 0.947 0.946 0.928 0.950 0.948 0.926 0.951 0.949
-100 0.951 1.000 0.953 0.953 0.928 0.947 0.946 0.926 0.948 0.947 0.924 0.948 0.947

200

10 0.950 1.000 0.955 0.954 0.949 0.953 0.954 0.947 0.951 0.950 0.946 0.956 0.955
-10 0.951 1.000 0.951 0.951 0.944 0.946 0.947 0.947 0.951 0.949 0.945 0.950 0.950
100 0.953 1.000 0.955 0.954 0.949 0.951 0.953 0.947 0.953 0.951 0.949 0.954 0.952
-100 0.951 1.000 0.952 0.950 0.943 0.948 0.948 0.944 0.952 0.950 0.946 0.951 0.950
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Table S3: Average coverage probabilities for B and AB when the original response variables are Binomial

and the Plug-in response variables are left as continuous, for p1 = 0.3 and p2 = 0.7 (where vec(B) and

vec(AB) stand for the adapted Reiter procedure and B(1), AB(1) and B(2), AB(2) stand respectively

for the first and second new inferential procedures)

(a) Average coverage for B

n n∗ M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

20

4 0.948 0.935 0.952 0.951 0.870 0.951 0.952 0.871 0.958 0.958 0.878 0.962 0.962

10 0.953 0.926 0.944 0.942 0.855 0.946 0.944 0.853 0.941 0.942 0.858 0.941 0.939

100

4 0.953 0.958 0.951 0.952 0.94 0.949 0.951 0.931 0.954 0.954 0.930 0.947 0.945

10 0.954 0.955 0.953 0.953 0.927 0.942 0.943 0.921 0.933 0.934 0.928 0.932 0.931

200

4 0.943 0.959 0.946 0.946 0.933 0.950 0.950 0.934 0.946 0.945 0.938 0.951 0.951

10 0.949 0.963 0.948 0.948 0.938 0.950 0.949 0.940 0.942 0.942 0.94 0.948 0.949

(b) Average coverage for AB

n n∗ M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

20

4 0.951 0.994 0.944 0.948 0.885 0.951 0.949 0.882 0.949 0.948 0.879 0.946 0.946

10 0.950 0.991 0.960 0.962 0.883 0.944 0.944 0.884 0.945 0.946 0.875 0.942 0.941

100

4 0.946 1.000 0.944 0.945 0.929 0.953 0.954 0.934 0.953 0.953 0.931 0.952 0.953

10 0.945 1.000 0.943 0.946 0.940 0.931 0.932 0.944 0.938 0.941 0.937 0.939 0.939

200

4 0.949 0.999 0.943 0.943 0.945 0.942 0.945 0.939 0.942 0.939 0.941 0.938 0.938

10 0.946 1.000 0.955 0.953 0.939 0.940 0.940 0.946 0.945 0.942 0.943 0.948 0.947
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Table S4: Average coverage probabilities for B and AB when the original response variables are Binomial

and the Plug-in response variables have this same type, for p1 = 0.3 and p2 = 0.7 (where vec(B) and

vec(AB) stand for the adapted Reiter procedure and B(1), AB(1) and B(2), AB(2) stand respectively

for the first and second new inferential procedures)

(a) Average coverage for B

n n∗ M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

20

4 0.959 0.946 0.964 0.964 0.917 0.969 0.969 0.914 0.969 0.970 0.917 0.970 0.970

10 0.954 0.933 0.954 0.953 0.893 0.955 0.956 0.888 0.956 0.957 0.892 0.957 0.957

100

4 0.956 0.970 0.958 0.959 0.955 0.961 0.962 0.956 0.965 0.965 0.958 0.963 0.963

10 0.955 0.968 0.958 0.958 0.950 0.956 0.957 0.949 0.955 0.955 0.952 0.958 0.957

200

4 0.956 0.971 0.962 0.962 0.956 0.961 0.961 0.956 0.958 0.958 0.960 0.962 0.962

10 0.952 0.968 0.953 0.952 0.953 0.958 0.958 0.953 0.958 0.958 0.957 0.958 0.959

(b) Average coverage for AB

n n∗ M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

20

4 0.962 0.998 0.964 0.965 0.933 0.969 0.969 0.934 0.966 0.967 0.933 0.968 0.968

10 0.954 0.996 0.953 0.954 0.905 0.955 0.954 0.910 0.955 0.955 0.906 0.958 0.958

100

4 0.955 1.000 0.962 0.963 0.957 0.962 0.962 0.962 0.964 0.966 0.963 0.967 0.967

10 0.952 1.000 0.954 0.956 0.949 0.954 0.955 0.950 0.956 0.957 0.948 0.953 0.954

200

4 0.958 1.000 0.963 0.962 0.964 0.964 0.964 0.965 0.966 0.964 0.966 0.966 0.965

10 0.954 1.000 0.958 0.956 0.953 0.952 0.954 0.952 0.956 0.954 0.953 0.956 0.955
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Table S5: Average coverage probabilities for B and AB when the original response variables are Poisson

and the Plug-in response variables are left as continuous (where vec(B) and vec(AB) stand for the

adapted Reiter procedure and B(1), AB(1) and B(2), AB(2) stand respectively for the first and second

new inferential procedures)

(a) Average coverage for B

n λh M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

20

λ1 = 2

λ2 = 3
0.949 0.918 0.951 0.950 0.871 0.946 0.946 0.867 0.947 0.950 0.872 0.949 0.948

λ1 = 7

λ2 = 8
0.950 0.920 0.948 0.948 0.870 0.946 0.947 0.864 0.947 0.949 0.869 0.949 0.949

100

λ1 = 2

λ2 = 3
0.946 0.959 0.947 0.950 0.939 0.944 0.946 0.930 0.949 0.949 0.930 0.948 0.947

λ1 = 7

λ2 = 8
0.949 0.963 0.944 0.945 0.929 0.945 0.946 0.938 0.943 0.943 0.940 0.946 0.946

200

λ1 = 2

λ2 = 3
0.953 0.960 0.959 0.959 0.945 0.947 0.947 0.946 0.950 0.950 0.950 0.955 0.957

λ1 = 7

λ2 = 8
0.950 0.960 0.947 0.946 0.945 0.954 0.954 0.940 0.943 0.943 0.937 0.940 0.941

(b) Average coverage for AB

n λh M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

50

λ1 = 2

λ2 = 3
0.949 0.996 0.952 0.953 0.889 0.951 0.950 0.892 0.951 0.951 0.891 0.952 0.952

λ1 = 7

λ2 = 8
0.948 0.996 0.946 0.946 0.889 0.947 0.947 0.891 0.949 0.948 0.888 0.948 0.948

100

λ1 = 2

λ2 = 3
0.945 1.000 0.948 0.952 0.947 0.951 0.951 0.939 0.946 0.946 0.941 0.943 0.943

λ1 = 7

λ2 = 8
0.942 0.999 0.943 0.942 0.937 0.948 0.948 0.94 0.944 0.945 0.941 0.951 0.952

200

λ1 = 2

λ2 = 3
0.958 1.000 0.955 0.955 0.944 0.947 0.947 0.951 0.958 0.9657 0.950 0.955 0.955

λ1 = 7

λ2 = 8
0.944 1.000 0.950 0.947 0.935 0.942 0.943 0.938 0.945 0.945 0.938 0.944 0.945
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Table S6: Average coverage probabilities for B and AB when the original response variables are Poisson

and the Plug-in response variables have this same type (where vec(B) and vec(AB) stand for the adapted

Reiter procedure and B(1), AB(1) and B(2), AB(2) stand respectively for the first and second new

inferential procedures)

(a) Average coverage for B

n λh M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

20

λ1 = 2

λ2 = 3
0.954 0.926 0.958 0.956 0.887 0.954 0.955 0.883 0.956 0.957 0.890 0.959 0.958

λ1 = 7

λ2 = 8
0.953 0.924 0.952 0.952 0.876 0.948 0.948 0.869 0.950 0.952 0.874 0.952 0.953

100

λ1 = 2

λ2 = 3
0.945 0.962 0.950 0.951 0.948 0.949 0.950 0.934 0.954 0.955 0.940 0.949 0.949

λ1 = 7

λ2 = 8
0.950 0.965 0.945 0.946 0.930 0.948 0.948 0.937 0.945 0.945 0.942 0.946 0.947

200

λ1 = 2

λ2 = 3
0.953 0.960 0.950 0.948 0.940 0.957 0.956 0.952 0.950 0.950 0.949 0.953 0.953

λ1 = 7

λ2 = 8
0.947 0.961 0.942 0.941 0.944 0.950 0.950 0.941 0.948 0.947 0.944 0.947 0.948

(b) Average coverage for AB

n λh M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

20

λ1 = 2

λ2 = 3
0.952 0.997 0.958 0.958 0.906 0.958 0.957 0.912 0.958 0.959 0.910 0.960 0.960

λ1 = 7

λ2 = 8
0.950 0.996 0.947 0.947 0.894 0.949 0.947 0.896 0.950 0.950 0.890 0.951 0.950

100

λ1 = 2

λ2 = 3
0.948 0.999 0.953 0.953 0.954 0.958 0.958 0.951 0.952 0.954 0.950 0.950 0.951

λ1 = 7

λ2 = 8
0.946 0.999 0.947 0.947 0.939 0.951 0.951 0.941 0.949 0.949 0.943 0.952 0.953

200

λ1 = 2

λ2 = 3
0.955 1.000 0.958 0.958 0.956 0.953 0.954 0.959 0.960 0.957 0.957 0.956 0.956

λ1 = 7

λ2 = 8
0.947 1.000 0.949 0.948 0.942 0.945 0.946 0.943 0.949 0.947 0.942 0.950 0.949
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Table S7: Average coverage probabilities for B and AB when the original response variables have a spike

at zero and the Plug-in response variables are left as continuous, for µ1 = 20, σ1 = 1, µ2 = 150 and σ2 = 50

(where vec(B) and vec(AB) stand for the adapted Reiter procedure and B(1), AB(1) and B(2), AB(2)

stand respectively for the first and second new inferential procedures)

(a) Average coverage for B

n ph M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

50

p1 = 0.3

p2 = 0.7
0.958 0.945 0.943 0.944 0.932 0.960 0.957 0.924 0.956 0.958 0.922 0.954 0.954

p1 = 0.4

p2 = 0.6
0.956 0.959 0.950 0.948 0.948 0.958 0.957 0.936 0.958 0.959 0.930 0.957 0.957

100

p1 = 0.3

p2 = 0.7
0.945 0.949 0.943 0.942 0.931 0.940 0.941 0.924 0.947 0.947 0.929 0.947 0.945

p1 = 0.4

p2 = 0.6
0.947 0.945 0.946 0.946 0.935 0.938 0.940 0.939 0.946 0.946 0.930 0.941 0.940

200

p1 = 0.3

p2 = 0.7
0.950 0.963 0.954 0.951 0.933 0.950 0.951 0.945 0.948 0.948 0.946 0.953 0.953

p1 = 0.4

p2 = 0.6
0.947 0.962 0.955 0.953 0.948 0.955 0.957 0.946 0.958 0.958 0.950 0.957 0.957

(b) Average coverage for AB

n ph M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

50

p1 = 0.3

p2 = 0.7
0.946 0.999 0.956 0.956 0.947 0.963 0.96 0.941 0.963 0.959 0.926 0.957 0.956

p1 = 0.4

p2 = 0.6
0.952 0.999 0.948 0.947 0.947 0.949 0.948 0.934 0.946 0.946 0.932 0.945 0.943

100

p1 = 0.3

p2 = 0.7
0.941 0.999 0.946 0.947 0.937 0.939 0.939 0.940 0.945 0.947 0.937 0.947 0.948

p1 = 0.4

p2 = 0.6
0.946 0.999 0.944 0.944 0.936 0.945 0.945 0.930 0.938 0.938 0.933 0.943 0.945

200

p1 = 0.3

p2 = 0.7
0.942 0.999 0.943 0.943 0.941 0.944 0.944 0.953 0.945 0.946 0.953 0.948 0.947

p1 = 0.4

p2 = 0.6
0.944 0.999 0.952 0.952 0.944 0.951 0.953 0.949 0.954 0.951 0.950 0.955 0.955
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Table S8: Average coverage probabilities for B and AB when the original response variables have a spike

at zero and the Plug-in response variables have this same type, for µ1 = 20, σ1 = 1, µ2 = 150 and σ2 = 50

(where vec(B) and vec(AB) stand for the adapted Reiter procedure and B(1), AB(1) and B(2), AB(2)

stand respectively for the first and second new inferential procedures)

(a) Average coverage for B

n ph M = 1

M = 2 M = 5 M = 10 M = 20

vec B B vec B B vec B B vec B B

(B) (1) (2) (B) (1) (2) (B) (1) (2) (B) (1) (2)

50

p1 = 0.3

p2 = 0.7
0.940 0.936 0.940 0.942 0.899 0.944 0.942 0.899 0.943 0.945 0.903 0.944 0.942

p1 = 0.4

p2 = 0.6
0.944 0.949 0.948 0.949 0.918 0.952 0.951 0.916 0.950 0.952 0.920 0.950 0.950

100

p1 = 0.3

p2 = 0.7
0.926 0.928 0.922 0.922 0.874 0.915 0.916 0.864 0.920 0.921 0.867 0.922 0.919

p1 = 0.4

p2 = 0.6
0.932 0.935 0.927 0.928 0.893 0.923 0.924 0.887 0.926 0.926 0.89 0.929 0.928

200

p1 = 0.3

p2 = 0.7
0.903 0.894 0.890 0.884 0.795 0.879 0.880 0.784 0.874 0.876 0.775 0.871 0.874

p1 = 0.4

p2 = 0.6
0.913 0.906 0.902 0.900 0.822 0.878 0.877 0.804 0.868 0.868 0.803 0.865 0.865

(b) Average coverage for AB

n ph M = 1

M = 2 M = 5 M = 10 M = 20

vec AB AB vec AB AB vec AB AB vec AB AB

(AB) (1) (2) (AB) (1) (2) (AB) (1) (2) (AB) (1) (2)

50

p1 = 0.3

p2 = 0.7
0.966 1.000 0.970 0.971 0.970 0.975 0.974 0.974 0.979 0.978 0.974 0.981 0.980

p1 = 0.4

p2 = 0.6
0.964 1.000 0.971 0.971 0.967 0.974 0.974 0.970 0.976 0.975 0.971 0.977 0.976

100

p1 = 0.3

p2 = 0.7
0.963 1.000 0.971 0.972 0.976 0.974 0.973 0.980 0.976 0.977 0.981 0.976 0.976

p1 = 0.4

p2 = 0.6
0.963 1.000 0.968 0.969 0.976 0.973 0.973 0.980 0.974 0.975 0.98 0.976 0.977

200

p1 = 0.3

p2 = 0.7
0.966 1.000 0.974 0.973 0.976 0.976 0.978 0.980 0.974 0.973 0.979 0.977 0.977

p1 = 0.4

p2 = 0.6
0.965 1.000 0.973 0.973 0.973 0.973 0.974 0.975 0.978 0.978 0.971 0.980 0.980
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Part II – Individual confidence intervals for
Regression coefficients

S3 Detailed proofs of Result 5 in Subsection 2.1 and

Result 4 in Subsection 2.2

To infer about ABD = ∆ : k × r where A : k × p, B : p ×m, D : m × r with r ≤ k, we

start from its natural point estimator

∆∗M = AB
∗
MD,

and propose to use the statistic

TM,∆ =
|(∆∗M −∆)′[A(XX′)−1A′]−1(∆∗M −∆)|

|(n− p)D′S∗MD|
.

A more detailed proof of the distribution of TM,∆, may be obtained by writing

TM,∆ = T
(1)
∆ × T

(2)
∆ =

|(∆∗M −∆)′[A(XX′)−1A′]−1(∆∗M −∆)|
|D′(Σ + 1

M
S)D|

×
|D′(Σ + 1

M
S)D|

|(n− p)D′S∗MD|
.

Recalling that we have

B
∗
M |S ∼ Npm

(
B,

(
Σ +

1

M
S

)
⊗ (XX′)−1

)
,

we obtain

∆∗M |S ∼ Nkr

(
∆,D′

(
Σ +

1

M
S

)
D⊗A(XX′)−1A′

)
.

Analogous to what was done in Corollary 2.2, we may conclude that

(∆∗M −∆)′[A(XX′)−1A′]−1(∆∗M −∆)|S ∼ Wr

(
D′
(

Σ +
1

M
S

)
D, k

)
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and hence

T
(1)
∆ =

|(∆∗M −∆)′[A(XX′)−1A′]−1(∆∗M −∆)|
|D′(Σ + 1

M
S)D|

|S ∼
r∏
l=1

χ2
k−l+1,

which will be independent of S.

Let us write T
(2)
∆ as

T
(2)
∆ =

|D′SD|
|M(n− p)D′S∗MD|

× |D
′(MΣ + S)D|
|D′SD|

.

Recalling that M(n− p)S∗M |S ∼ Wm(S,M(n− p)), we may obtain

|M(n− p)D′S∗MD|/|D′SD||S ∼
r∏
l=1

χ2
M(n−p)−l+1,

which will also be independent of S.

Lastly, it is easy to show by standard arguments that

|D′(MΣ + S)D|
|D′SD|

∼ |W
∗ +M(n− p)Ir|
|W∗|

∼ |Ir +M(n− p)W∗−1|,

where W∗ ∼ Wr(Ir, n− p), which is independent of S.

Combining the above terms, we conclude that

TM,∆
st∼

{
r∏
l=1

k − l + 1

M(n− p)− l + 1
Fk,l

}
|M(n− p)W∗−1 + Ir|

where Fk,l ∼ Fk−l+1,M(n−p)−l+1.

Taking r = 1 and k = 1, and making A : 1 × p a matrix of zeros except for A1,g = 1,

and D : m × 1 a matrix of zeros except for Dh,1 = 1, for g = 1, ..., p and h = 1, ..., p we

may observe that

TM,∆ = TM,B(g,h)
=

(B
∗
M(g,h) −B(g,h))[A(XX′)−1A′]−1(B

∗
M(g,h) −B(g,h))

(n− p)D′S∗MD
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therefore concluding that the (1− α) confidence interval for B(g,h) will be given by

B
∗
M(g,h) ±

√
q∗M,1−α(n− p)D′S∗MDA(XX′)−1A′

where in fact, D′S
∗
MD = S

∗
M,(h,h) and A(XX′)−1A′ = (XX′)−1(g,g), with q∗M,1−α being the

value of the 1− α cut-off point of the distribution of TM,∆, for g = 1, .., p and h = 1, ...,m.

Analogously, if we consider the following statistic

Tcomb,∆ =
|(∆∗M −∆)′[A(XX′)−1A′]−1(∆∗M −∆)|

|(n− p
M

)D′S∗combD|

associated to second procedure, we have

Tcomb,∆
st∼

{
r∏
l=1

k − i+ 1

Mn− p− l + 1
Fk,l

}
|M(n− p)W∗−1 + Ir|,

where W∗ ∼ Wr(Ir, n− p) and Fk,l ∼ Fk−l+1,Mn−p−l+1.

Therefore, we will have the (1− α) confidence interval for B(g,h) given by, for Tcomb,∆,

B(g,h) = B∗comb(g,h) ±
√
q∗comb,1−α

(
n− p

M

)
S∗comb(h,h)(XX′)−1(g,g).

In the next subsections we present the confidence intervals for each of the individual

coefficients in B based on the original data, the single synthetic dataset (M=1) and the

multiple synthetic datasets (M=2 and M=5) where minB1 and minB2 are the lower bounds,

and maxB1 and maxB2 are the upper bounds of the confidence intervals for each of the

coefficients in B1 and B2, which are the vectors of coefficients respectively for the first and

second sensitive variables in Section 4, which are the total household income (I) and the

property tax (PT), relative to the explanatory variables in expression (16) in Section 4, that

is, the 28 explanatory variables or covariates (the 3 continuous explanatory variables, and

the indicator variables for the other 4 categorical explanatory variables) and the intercept,

and where ˜̂B1 and ˜̂B2 are the estimates of the same coefficients.
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For the original data we use the statistic

TO,∆ =
|(AB̂D−∆)′(A(XX′)−1A′)−1(AB̂D−∆)|

|(n− p)D′SD|
st∼

r∏
l=1

k − l + 1

n− p− l + 1
Fk,l,

where Fk,l ∼ Fk−l+1,n−p−l+1, in order to compare the results obtained from the original

data with the ones obtained from the synthetic data.
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S3.1 Individual regression coefficients confidence intervals for the

original data



minB1 maxB1 minB2 maxB2

3.0276 3.45314 7.22404 7.81773

0.101763 0.128775 0.50271 0.540397

−0.100943 −0.0676293 −0.55975 −0.513273

0.000592196 0.00205233 −0.0160693 −0.0140322

−0.140275 0.307819 −0.392277 0.232881

−0.181448 0.249481 −0.339044 0.262165

−0.0719615 0.345724 −0.146577 0.436157

−0.124093 0.302649 −0.0634389 0.53193

−0.065135 0.356647 0.0415413 0.629991

−0.0445564 0.377282 0.00218244 0.59071

−0.0126063 0.434573 0.0703166 0.694198

0.155254 0.563845 0.512783 1.08283

0.244623 0.654163 0.828421 1.39979

0.237687 0.653551 0.812801 1.39299

0.365105 0.782933 1.04715 1.63009

0.400888 0.810689 1.39139 1.96312

0.680126 1.09312 1.7045 2.28069

0.686246 1.1133 2.21108 2.80688

0.696918 1.12775 2.16138 2.76245

−0.432626 0.0225628 −0.420386 0.214671

−0.152141 0.020387 −0.560916 −0.320213

−0.0876056 −0.0161402 −0.513375 −0.41367

−0.118923 −0.057579 −0.397948 −0.312365

−0.143437 0.0075315 −0.766689 −0.556065

−0.0741748 −0.00465169 −0.619728 −0.522733

−0.113329 −0.0443148 −0.174004 −0.0777186

−0.341987 −0.162744 −0.514953 −0.264881

−0.08713 0.0295535 −0.0262251 0.136566

−0.00459359 0.0347371 −0.135873 −0.0810009



,



˜̂B1
˜̂B2

3.24037 7.52088

0.115269 0.521554

−0.0842859 −0.536512

0.00132226 −0.0150507

0.0837721 −0.0796979

0.0340165 −0.0384396

0.136881 0.14479

0.0892781 0.234245

0.145756 0.335766

0.166363 0.296446

0.210983 0.382257

0.35955 0.797806

0.449393 1.11411

0.445619 1.1029

0.574019 1.33862

0.605789 1.67726

0.886624 1.9926

0.899771 2.50898

0.912332 2.46191

−0.205032 −0.102857

−0.0658772 −0.440565

−0.0518729 −0.463522

−0.0882509 −0.355157

−0.0679526 −0.661377

−0.0394132 −0.571231

−0.0788219 −0.125861

−0.252366 −0.389917

−0.0287882 0.0551704

0.0150718 −0.108437


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S3.2 Individual regression coefficients confidence intervals for the

single synthetic data

minB1 maxB1 minB2 maxB2

3.02817 3.6323 7.13692 7.98322

0.0972511 0.1356 0.491859 0.545581

−0.106496 −0.059202 −0.567982 −0.50173

−0.000170873 0.00190206 −0.0158549 −0.012951

−0.386709 0.249444 −0.562915 0.328241

−0.339504 0.272278 −0.58278 0.274238

−0.242414 0.350569 −0.362125 0.468556

−0.249879 0.355959 −0.312773 0.535917

−0.179851 0.418947 −0.16971 0.669118

−0.229205 0.369672 −0.189196 0.649742

−0.109485 0.525368 −0.0587802 0.830556

−0.0070404 0.57303 0.321972 1.13457

0.0776444 0.659063 0.627344 1.44183

0.0440082 0.634403 0.650395 1.47745

0.198631 0.791815 0.923888 1.75485

0.231117 0.812905 1.18828 2.00328

0.471254 1.05758 1.46725 2.28861

0.491991 1.09827 1.94475 2.79406

0.507036 1.11868 2.00075 2.85757

−0.614778 0.0314465 −0.642398 0.262868

−0.192984 0.0519521 −0.586147 −0.243027

−0.090293 0.0111654 −0.54331 −0.401182

−0.114903 −0.027814 −0.389401 −0.267403

−0.141936 0.0723915 −0.788623 −0.488382

−0.0592764 0.0394245 −0.654749 −0.516484

−0.139882 −0.041904 −0.208622 −0.0713688

−0.417745 −0.163276 −0.574755 −0.218281

−0.154133 0.0115208 −0.0584952 0.173561

−0.0061631 0.0496741 −0.144825 −0.066605



,



˜̂B1
˜̂B2

3.33024 7.56007

0.116426 0.51872

−0.0828492 −0.534856

0.000865592 −0.0144029

−0.0686325 −0.117337

−0.0336128 −0.154271

0.0540774 0.0532158

0.0530399 0.111572

0.119548 0.249704

0.0702339 0.230273

0.207941 0.385888

0.282995 0.728269

0.368354 1.03459

0.339206 1.06392

0.495223 1.33937

0.522011 1.59578

0.764416 1.87793

0.795129 2.3694

0.812856 2.42916

−0.291666 −0.189765

−0.0705159 −0.414587

−0.0395638 −0.472246

−0.0713583 −0.328402

−0.0347721 −0.638503

−0.00992597 −0.585616

−0.0908932 −0.139996

−0.290511 −0.396518

−0.0713061 0.0575331

0.0217555 −0.105715


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S3.3 Individual regression coefficients confidence intervals for the

multiple M=2 synthetic data (1st procedure)

minB1 maxB1 minB2 maxB2

2.96109 3.48503 7.13854 7.87099

0.0930352 0.126294 0.495816 0.542311

−0.0994441 −0.0584271 −0.560381 −0.503041

0.000358738 0.00215653 −0.0158025 −0.0132893

−0.202296 0.34942 −0.489447 0.28183

−0.190543 0.340038 −0.455128 0.286603

−0.0662091 0.448067 −0.205374 0.513563

−0.124584 0.400842 −0.181933 0.552591

−0.0390392 0.480281 −0.0560079 0.66998

−0.100476 0.418913 −0.0854874 0.640597

0.0225152 0.573105 −0.0228145 0.746887

0.138073 0.641151 0.436303 1.13959

0.228236 0.732483 0.742801 1.44772

0.205758 0.71779 0.772304 1.4881

0.346188 0.860639 0.994694 1.71388

0.38443 0.888998 1.30263 2.008

0.646802 1.1553 1.61589 2.32676

0.64891 1.17472 2.08452 2.81958

0.671446 1.2019 2.11805 2.8596

−0.552546 0.00790641 −0.710236 0.0732532

−0.184376 0.0280502 −0.557329 −0.260367

−0.116768 −0.0287761 −0.541284 −0.418275

−0.132051 −0.0565214 −0.376457 −0.270869

−0.135489 0.0503911 −0.835584 −0.575731

−0.0697217 0.0158787 −0.622451 −0.502785

−0.121066 −0.0360918 −0.194518 −0.0757282

−0.374165 −0.153471 −0.544733 −0.236212

−0.143336 0.000330931 −0.050877 0.149963

−0.0027869 0.0456391 −0.142886 −0.0751888



,



˜̂B1
˜̂B2

3.22306 7.50477

0.109665 0.519064

−0.0789356 −0.531711

0.00125763 −0.0145459

0.0735619 −0.103808

0.0747474 −0.0842629

0.190929 0.154095

0.138129 0.185329

0.220621 0.306986

0.159219 0.277555

0.29781 0.362036

0.389612 0.787945

0.48036 1.09526

0.461774 1.1302

0.603414 1.35429

0.636714 1.65531

0.901054 1.97132

0.911813 2.45205

0.936675 2.48883

−0.27232 −0.318491

−0.0781627 −0.408848

−0.072772 −0.479779

−0.0942861 −0.323663

−0.0425487 −0.705658

−0.0269215 −0.562618

−0.0785787 −0.135123

−0.263818 −0.390472

−0.0715024 0.0495431

0.0214261 −0.109038


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S3.4 Individual regression coefficients confidence intervals for the

multiple M=2 synthetic data (2nd procedure)

minB1 maxB1 minB2 maxB2

2.96171 3.48441 7.13942 7.87011

0.0930745 0.126255 0.495872 0.542255

−0.0993956 −0.0584755 −0.560312 −0.50311

0.000360862 0.00215441 −0.0157995 −0.0132923

−0.201644 0.348768 −0.488519 0.280903

−0.189916 0.339411 −0.454237 0.285711

−0.0656015 0.447459 −0.20451 0.512699

−0.123963 0.400221 −0.18105 0.551708

−0.0384256 0.479667 −0.055135 0.669107

−0.099862 0.418299 −0.0846144 0.639724

0.0231657 0.572454 −0.0218891 0.745962

0.138667 0.640557 0.437149 1.13874

0.228832 0.731888 0.743649 1.44687

0.206363 0.717185 0.773165 1.48724

0.346796 0.860032 0.995559 1.71301

0.385026 0.888402 1.30348 2.00715

0.647403 1.1547 1.61674 2.3259

0.649532 1.17409 2.08541 2.81869

0.672073 1.20128 2.11894 2.85871

−0.551883 0.00724418 −0.709294 0.0723112

−0.184125 0.0277992 −0.556972 −0.260724

−0.116664 −0.02888 −0.541136 −0.418423

−0.131962 −0.0566106 −0.37633 −0.270996

−0.135269 0.0501715 −0.835271 −0.576044

−0.0696206 0.0157776 −0.622307 −0.502929

−0.120965 −0.0361922 −0.194375 −0.0758711

−0.373904 −0.153732 −0.544362 −0.236583

−0.143166 0.000161176 −0.0506355 0.149722

−0.00272968 0.0455819 −0.142805 −0.0752702



,



˜̂B1
˜̂B2

3.22306 7.50477

0.109665 0.519064

−0.0789356 −0.531711

0.00125763 −0.0145459

0.0735619 −0.103808

0.0747474 −0.0842629

0.190929 0.154095

0.138129 0.185329

0.220621 0.306986

0.159219 0.277555

0.29781 0.362036

0.389612 0.787945

0.48036 1.09526

0.461774 1.1302

0.603414 1.35429

0.636714 1.65531

0.901054 1.97132

0.911813 2.45205

0.936675 2.48883

−0.27232 −0.318491

−0.0781627 −0.408848

−0.072772 −0.479779

−0.0942861 −0.323663

−0.0425487 −0.705658

−0.0269215 −0.562618

−0.0785787 −0.135123

−0.263818 −0.390472

−0.0715024 0.0495431

0.0214261 −0.109038


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S3.5 Individual regression coefficients confidence intervals for the

multiple M=5 synthetic data (1st procedure)

minB1 maxB1 minB2 maxB2

2.93058 3.39889 7.17972 7.83333

0.0972081 0.126935 0.498923 0.540413

−0.0968526 −0.0601912 −0.559855 −0.508687

0.000700045 0.00230693 −0.0159042 −0.0136615

−0.108209 0.38492 −0.423626 0.264626

−0.147025 0.327213 −0.381087 0.2808

−0.0115419 0.448123 −0.160998 0.480549

−0.0618431 0.407787 −0.0978739 0.557582

−0.0053142 0.458858 0.00350566 0.651344

−0.0116139 0.45262 −0.0418757 0.606048

0.0441611 0.536283 0.0454834 0.73233

0.204335 0.653991 0.48795 1.11553

0.29911 0.749811 0.803562 1.4326

0.286226 0.743884 0.800312 1.43906

0.410814 0.870635 1.02998 1.67174

0.451483 0.90247 1.3587 1.98813

0.724857 1.17936 1.67296 2.3073

0.73176 1.20173 2.18023 2.83616

0.727331 1.20146 2.13127 2.79301

−0.489139 0.0117984 −0.561753 0.137396

−0.168175 0.0216926 −0.529872 −0.264877

−0.0989116 −0.0202637 −0.548395 −0.438628

−0.121477 −0.0539678 −0.401783 −0.307562

−0.145168 0.0209728 −0.824159 −0.592279

−0.066873 0.00963738 −0.614174 −0.507389

−0.115578 −0.0396281 −0.163004 −0.0570012

−0.344065 −0.146807 −0.568873 −0.293563

−0.116207 0.0122035 −0.0401409 0.13908

−0.00421745 0.0390661 −0.1346 −0.0741894



,



˜̂B1
˜̂B2

3.16474 7.50652

0.112072 0.519668

−0.0785219 −0.534271

0.00150349 −0.0147829

0.138355 −0.0794999

0.0900943 −0.0501434

0.21829 0.159775

0.172972 0.229854

0.226772 0.327425

0.220503 0.282086

0.290222 0.388906

0.429163 0.801739

0.524461 1.11808

0.515055 1.11969

0.640725 1.35086

0.676976 1.67342

0.952109 1.99013

0.966745 2.5082

0.964395 2.46214

−0.23867 −0.212178

−0.0732414 −0.397375

−0.0595876 −0.493511

−0.0877223 −0.354672

−0.0620976 −0.708219

−0.0286178 −0.560782

−0.0776033 −0.110003

−0.245436 −0.431218

−0.0520018 0.0494693

0.0174243 −0.104394


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S3.6 Individual regression coefficients confidence intervals for the

multiple M=5 synthetic data (2nd procedure))

minB1 maxB1 minB2 maxB2

2.93001 3.39946 7.17893 7.83412

0.0971719 0.126972 0.498873 0.540463

−0.0968972 −0.0601466 −0.559917 −0.508625

0.000698089 0.00230888 −0.0159069 −0.0136588

−0.108809 0.38552 −0.424461 0.265461

−0.147602 0.327791 −0.38189 0.281603

−0.0121014 0.448682 −0.161776 0.481327

−0.0624147 0.408359 −0.0986693 0.558377

−0.00587915 0.459423 0.00271958 0.65213

−0.0121789 0.453185 −0.0426619 0.606834

0.0435621 0.536882 0.0446499 0.733163

0.203788 0.654538 0.487188 1.11629

0.298562 0.75036 0.802799 1.43336

0.285669 0.744441 0.799537 1.43983

0.410254 0.871195 1.0292 1.67252

0.450934 0.903019 1.35793 1.9889

0.724303 1.17991 1.67219 2.30807

0.731188 1.2023 2.17944 2.83696

0.726754 1.20204 2.13047 2.79381

−0.489748 0.0124081 −0.562601 0.138245

−0.168407 0.0219237 −0.530194 −0.264555

−0.0990073 −0.0201679 −0.548528 −0.438494

−0.121559 −0.0538856 −0.401897 −0.307447

−0.14537 0.021175 −0.82444 −0.591997

−0.0669662 0.00973051 −0.614303 −0.50726

−0.115671 −0.0395357 −0.163132 −0.0568725

−0.344305 −0.146567 −0.569207 −0.293229

−0.116363 0.0123598 −0.0403584 0.139297

−0.00427013 0.0391188 −0.134673 −0.0741161



,



˜̂B1
˜̂B2

3.16474 7.50652

0.112072 0.519668

−0.0785219 −0.534271

0.00150349 −0.0147829

0.138355 −0.0794999

0.0900943 −0.0501434

0.21829 0.159775

0.172972 0.229854

0.226772 0.327425

0.220503 0.282086

0.290222 0.388906

0.429163 0.801739

0.524461 1.11808

0.515055 1.11969

0.640725 1.35086

0.676976 1.67342

0.952109 1.99013

0.966745 2.5082

0.964395 2.46214

−0.23867 −0.212178

−0.0732414 −0.397375

−0.0595876 −0.493511

−0.0877223 −0.354672

−0.0620976 −0.708219

−0.0286178 −0.560782

−0.0776033 −0.110003

−0.245436 −0.431218

−0.0520018 0.0494693

0.0174243 −0.104394


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