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Abstract

Before releasing survey data, statistical agencies usually perturb the original

data to keep each survey unit’s information confidential. One significant concern is

identity disclosure, which occurs when an intruder correctly identifies the records of

a survey unit by matching the values of some key (or pseudo-identifying) variables.

Nayak, Zhang and You (2018) developed a post-randomization method for a strict

identification risk control in releasing survey microdata. The procedure also well

preserves the observed frequencies and hence statistical estimates in case of simple

random sampling. We show that in general surveys, the procedure may induce

considerable bias in commonly used survey weighted estimators. We propose a

modified procedure that better preserves weighted estimates. The procedure is

illustrated and empirically assessed with an application to a publicly available U.S.

Census Bureau data set.
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1. Introduction

Many statistical agencies collect and release data to assist research, planning and pol-

icy making. However, agencies also need to keep each survey unit’s data confidential.

Thus, the released data should inform about the population, but not about any survey

participant. In particular, one should not be able to identify the records of any survey

unit in the released data. Anonymization by removing all direct identifiers, such as name,

social security number and address, is inadequate for avoiding identity disclosure, because

an intruder might correctly identify the records of a target unit by matching externally

available values of some variables, called pseudo-identifiers or key variables. So, agencies

usually release a perturbed version of the original data to control disclosure.

In this paper, we shall consider only identity disclosure by key variable matching. For

discussions about other scenarios and forms of disclosure and various data perturbation

methods, including grouping, data swapping, cell suppression, random noise mixing and

post-randomization, we refer interested readers to the books: Willenborg and de Waal

(2001), Duncan et al. (2011) and Hundepool et al. (2012). The perturbed data usually

dilute, suppress, and even distort some features of the original data. So, for real appli-

cation, perturbation methods should be chosen after examining the trade-offs between

confidentiality protection and data utility loss; see Duncan and Stokes (2004), Karr et al.

(2006) and Cox et al. (2011).

Identity disclosure is one of the most serious forms of confidentiality violation. For

categorical key variables, many researchers, e.g., Bethlehem et al. (1990), Greenberg and

Zayatz (1992), Chen and Keller-McNulty (1998), Skinner and Elliot (2002) and Shlomo

and Skinner (2010), have explored this topic and proposed several identification risk mea-
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sures. For example, Bethlehem et al. (1990) defined identification risk as the conditional

probability that a unit is population unique given that it is sample unique. Shlomo and

Skinner (2010) defined it as the probability that for a sample unique unit, a unique match

in released data is a correct match. These measures depend on unknown population level

frequencies and hence are difficult to use for assessing and controlling disclosure risk.

Recently, Nayak, Zhang and You (2018), henceforth NZY, proposed a novel approach

to measuring and controlling identification risk, without having to estimate any unknown

parameter. For a brief review, let X denote the cross-classification of all key variables and

c1, ..., ck denote its categories. Let Z be a randomized version ofX, whose values constitute

a perturbed data set for public release. Also, let Tj and Sj denote the frequencies of cj in

the original and perturbed data, respectively, and let T = (T1, ..., Tk)
′ and S = (S1, ..., Sk)

′.

Suppose an intruder wants to identify the records of a target unit B in the released data.

Let X(B) denote B’s value of X, and suppose X(B) = cj. NZY assumed that the intruder

knows X(B) and that B is in the sample and then identifies B with a randomly selected

unit from the units in the released data that match X(B). Note that Sj is the number of

matches found for B in released data, and if Sj = 0, the intruder does not declare any

match. Thus, B can be correctly matched only if X(B) is not changed during perturbation.

Under the above scenario, NZY proposed to assess B’s identification risk by

Rj(a) = P (CM |X(B) = cj, Sj = a), (1.1)

where CM denotes the event that B is correctly matched and a is a positive integer.

Then, they suggested to control (1.1) for all survey units (i.e., all cj) and all a > 0. Thus,
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as a precise and stringent disclosure control goal, they proposed to ensure that

Rj(a) ≤ ξ for all j = 1, . . . , k, and all integers a ≥ 1, (1.2)

where ξ is specified by the data agency.

One difficulty in dealing with (1.1) is that Rj(a) depends on the unknown popula-

tion frequencies, and NZY avoided that by further conditioning on T. Specifically, they

considered

Rj(a, t) = P (CM |X(B) = cj, Sj = a,T = t), (1.3)

which is determined only by the randomization probabilities and thus can be calculated

without knowing the population frequencies. NZY ensured (1.2) by guaranteeing

Rj(a, t) ≤ ξ for all a > 0 , j = 1, . . . , k and for all t. (1.4)

They also argued that in most applications, moderately large values of ξ should be used,

as intruders should have substantial evidence for declaring matches and (1.3) is calculated

under a very conservative assumption that the intruder knows that his target unit is in

the sample.

NZY developed a post-randomization method to ensure (1.4) for ξ > 1/3. We shall de-

scribe the main parts of the procedure later. They also demonstrated that the procedure

affects the relative frequencies of various marginal and joint cells very little. However,

it should be noted that comparing relative frequencies based on the original and a per-

turbed data set is meaningful when the data are collected using simple random sampling

(SRS), where sample relative frequencies are standard estimates of corresponding relative
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frequencies in the population. For general surveys, one should use the survey weights to

estimate population level counts and relative frequencies. The main goals of this paper

are to examine the NZY procedure’s effects on weighted counts and propose a modified

procedure for better preserving the customary weighted estimates.

In Section 2, we briefly review the central parts the NZY procedure and examine its

effects on weighted counts through an example. In Section 3, we discuss certain challenges

and ideas for modifying the NZY procedure for application to general surveys. In Section

4, we describe our proposed procedure. In Section 5, we present an illustrative example

and an empirical evaluation of our procedure. Section 6 is devoted to some concluding

remarks.

2. Effects of the NZY Procedure on Weighted Counts

In this section, we briefly describe the essential parts of the NZY procedure, for 1/3 <

ξ < 1/2, and explore its effects on weighted counts. The NZY procedure has two main

parts: creating post-randomization blocks (PRBs) and post-randomizing key variable

values within each block. The PRBs are formed by partitioning the data by groups of

cells of key variables and then taking all units in all sensitive cells within each partition

set. A cell is non-sensitive if its frequency is sufficiently large to make the disclosure

risk of the units in that cell less than ξ even if their values are not perturbed. For

example, for 1/3 < ξ < 1/2, any cell with frequency 3 or more is non-sensitive, and all

singleton and doubleton cells are sensitive. As all perturbations occur within the PRBs,

data partitioning is a vital tool for controlling the nature and magnitude of changes to

the original values. A simple approach is to partition the data by the cells of the cross-
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classification of coarsened versions of some of the key variables. The following example of

NZY, which we shall adopt also to evaluate our proposed method, illustrates the technique.

The NZY example concerns the U.S. Census Bureau’s 2013 person-level Public Use

Microdata Sample (PUMS) for the state of Maryland, available at

https://www.census.gov/programs-surveys/acs/data/pums.html. The sample size is 59,033

and the data set contains the values of several demographic and economic variables. NZY

used five key variables: gender (2), age (92), race/ethnicity (9), marital status (5) and

Public Use Microdata Area (PUMA) (44), where the number of categories of each variable

is given in parentheses. These five variables shall be denoted X1, . . . , X5, respectively.

Their cross-classification yields 364,320 cells. The PUMS data set yields only 25,406

nonempty cells, of which 13,662 are singleton and 4,777 are doubleton cells.

In NZY, the data are partitioned using the cross-classification of the following three

(coarsened) variables: X∗1 = gender, X∗2 = age given in the 7 intervals 0 to 17, 18 to 24,

25 to 34, 35 to 44, 45 to 54, 55 to 64, and 65 and above, and X∗3 = race shown in the three

categories white, black and ‘other races.’ The cross-classification gives 42 partition sets.

For example, all females of ‘other races’ in the age group 18 - 24 constitute one partition

set. All units in the singleton and doubleton cells of the original key variables in each

partition set form one PRB. The number of cells in the 42 PRB’s ranged between 124 and

1480. The post-randomization step, described below, keeps each perturbed value within

its PRB. Consequently, the above partitioning preserves gender, allows marital status and

PUMA to change freely, keeps age within the broader categories of X∗2 and retains race,

if it is white or black.

The NZY procedure perturbs data using post-randomization. The general idea was

introduced in Gouweleeuw et al. (1998) and has been investigated further by Van den Hout
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and Van der Heijden (2002), Van den Hout and Elamir (2006), Cruyff et al. (2008), Shlomo

and De Waal (2008), Nayak and Adeshiyan (2016) and others. To describe the NZY post-

randomization, which is applied independently to each PRB, let m denote the number of

cells in a PRB and for notational simplicity, suppose the cells are c1, . . . , cm. Typically,

m is much smaller than k, the number of cells in complete cross-classification. Then, the

true category of each unit is randomized independently with transition probabilities

pij = P (Z = ci|X = cj) =


1− θ

tj
, if i = j;

θ
(m−1)tj

, if i 6= j,

(2.1)

where θ is a design parameter whose value is chosen to meet our disclosure control goal.

We shall use P = ((pij)) to denote transition probability matrix. NZY called the above

scheme IFPR (inverse frequency post-randomization), as the probability that it changes

the category of a unit is inversely proportional to the frequency of the unit’s category.

When a category is changed, the new category is chosen at random from the remaining

categories in the PRB.

To satisfy (1.4), for 1/3 < ξ < 1/2, the NZY procedure uses a suitable value of θ,

based on the following results; see NZY for derivations and proofs. Under any post-

randomization (including none), Rj(a, t) ≤ 1/3 if tj ≥ 3 or a ≥ 3. So, for 1/3 < ξ < 1/2,

only the units in singleton and doubleton cells need perturbation, and (1.4) needs to be

guaranteed only for a = 1, 2. Also, for a general P ,

Rj(1, t) =
[
tj +

1− pjj
pjj

m∑
i 6=j

pji
1− pji

ti

]−1

(2.2)
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and for IFPR, Rj(1, t) ≤ h(θ), where

h(θ) =


1−θ

1−θ+θ2 , if θ ≤ 2
3
,

2−θ
4−2θ+θ2

, if θ > 2
3
,

which is a strictly decreasing function of θ, with h(0) = 1 and h(1) = 1/3. Moreover,

for any given θ, Rj(2, t) ≤ Rj(1, t) if m ≥ (1 − θ)−1. Let θ0(ξ) denote the solution of

h(θ) = ξ. The NZY procedure satisfies (1.4) by using θ = θ0(ξ) and including at least

d(1− θ0(ξ))−1e cells in each PRB.

In general, survey weights are used to estimate population frequencies and proportions.

For a given characteristic A, i.e., a subset of the sample space of the survey variables, let

F (A) and π(A) denote the frequency and proportion, respectively, of A in the population.

Let n denote the sample size and wi denote the survey weight of unit ui. The Horvitz-

Thompson estimator uses the inverse of the selection probability of ui for wi. In practice,

wi’s are also calibrated to account for nonresponse. Then, customary estimators of F (A)

and π(A) are:

f̂(A) =
n∑
i=1

wiI(ui ∈ A) and π̂(A) = f̂(A)÷
n∑
i=1

wi. (2.3)

We shall refer to f̂(A) as a weighted count (or frequency). In SRS, all weights are equal

and consequently π̂(A) = (1/n)
∑n

i=1 I(ui ∈ A).

As the NZY procedure does not alter the survey weights, it may affect the weighted

counts more than the unweighted counts. In the NZY example, we examined this for

some variables, and the results for ‘race’ from one perturbed data set are given in Table
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1. Recall that due to our data partitioning, race remains unchanged if it is white or

black. So, we do not include those two categories. We also omit the ‘Alaska native alone’

category as the original data contains only 1 unit in that category. In Table 1, t and f

denote the raw and weighted counts in the original data, whereas t∗ and f ∗ denote the

corresponding counts in a perturbed data set. The table also gives the relative absolute

differences: ∆t = |t− t∗|/t and ∆f = |f − f ∗|/f .

Table 1: Effects of NZY procedure on raw and weighted counts of Race categories.

Race t t∗ ∆t f f ∗ ∆f

American Indian alone 97 92 0.0515 11235 10589 0.0356
American Indian and Alaska native 42 46 0.0952 4820 3210 0.2689

Asian 3461 3345 0.0335 354215 376384 0.0564
Native Hawaiian and other Pacific 20 21 0.0500 2443 3400 0.0794

Some other race alone 1349 1337 0.0089 210331 177567 0.1380
Two or more races 1623 1652 0.0179 168669 180626 0.0660

In Table 1, the values of ∆f are mostly larger than the corresponding values of ∆t.

It is seen that the NZY procedure affects the weighted counts substantially although the

raw counts do not change much. The most drastic change occurred for the ‘America

Indian and Alaska native’ category, where the raw count increased by 9.52% but the

weighted count decreased by 26.89%. For the ‘some other race alone’ category, which

contained 1349 units, the perturbed weighted frequency deviated by 13.8%, whereas the

raw frequency changed by only 0.89%. We also observed similar phenomena for other key

variables. These findings indicate that the NZY procedure should be modified suitably

for applying to general surveys.
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3. Preserving Weighted Counts

The NZY procedure attempts to retain data utility in two ways, by data partitioning

and using an unbiased post-randomization. Specifically, IFPR implies that E(Sj|T) =

Tj, j = 1, . . . , k, i.e., the expected frequency of any cell after perturbation is the same as

its frequency in the original data. For any cell that is included in any PRB, the expected

number of units that move out of the cell is the same as the expected number of units that

move into the cell, both being θ. This greatly helps to preserve raw frequencies. However,

even if the same number of units move out and move in, their total weights may differ

substantially. Consequently, IFPR is expected to be less effective for preserving weighted

counts.

If the survey weights differ only due to stratification, the matter can be handled easily

by applying the NZY procedure within each stratum. For general surveys, a natural idea

is to use a post-randomization procedure that changes the weighted counts unbiasedly, as

Gouweleeuw et al. (1998) suggested. Suppose a PRB consists of m cells ci(i = 1, . . .m)

with raw and weighted frequencies ti and fi, respectively. Also let t = (t1, . . . , tm)′ and

f = (f1, . . . , fm)′. Then, P is unbiased with respect to f if P f = f . If P chosen satisfying

this condition, the expected weighted frequency of any cell after post-randomization will

equal its original weighted frequency. Analogous to (2.1), a solution of P f = f is

pij = P (Z = ci|X = cj) =


1− θ

fj
, if i = j;

θ
(m−1)fj

, if i 6= j.

(3.1)

Here, the design parameter θ can be assigned any value in [0,minj{fj}]. However, as we
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show next, it may not be possible to guarantee (1.4) using any P of the above form.

Consider the situation where all m cells in a PRB are singletons, i.e., ti = 1, i =

1, . . . ,m. This implies that fi = wi, i = 1, . . . ,m. For notational simplicity, suppose

w1 ≤ ... ≤ wm. Let t∗ = (1, . . . , 1)′. Then using (3.1) in (2.2), we find that under (3.1),

the identification risk of the unit in cm, when it is matched uniquely (i.e., a = 1), is

Rm(1, t∗) =
[
tm +

1− pmm
pmm

m−1∑
i=1

pim
1− pim

ti

]−1

=
[
1 +

θ

wm − θ

m−1∑
i=1

θ

(m− 1)wi − θ

]−1

.

We can verify that Rm(1, t∗) decreases as θ increases and it increases with each wi. So,

we obtain a lower bound for Rm(1, t∗) by taking θ = w1 (the largest possible value of θ)

and wi = w1 for i 6= m, viz.

Rm(1, t∗) ≥
[
1 +

w1

wm − w1

m−1∑
i=1

w1

(m− 1)w1 − w1

]−1

=
[
1 + (

wm
w1

− 1)−1m− 1

m− 2

]−1

.

Now, it follows that for any 0 < ξ < 1, Rm(1, t∗) > ξ if

wm
w1

> 1 +
(m− 1

m− 2

)( ξ

1− ξ

)
. (3.2)

The right side of (3.2) is a decreasing function of m and the inequality implies, for

example, Rm(1, t∗) > 0.5 if (wm/w1) > 3 and m ≥ 3. For the PUMS data set used in

our example, the survey weights differ substantially and (3.2) holds frequently even for

ξ = 0.5. Actually, the ratio of the largest to smallest survey weights was much larger than

11



3 in many PRBs. Thus, while (3.1) is useful for perturbing weighted counts unbiasedly, it

is not adequate for ensuring (1.4) for practical values of ξ, say ξ ≤ 0.5. The difficulty stems

from the facts that unbiasedness is with respect to weighted counts whereas identification

risks depend on raw counts.

We propose to use (2.1) to control disclosure risks, but refine data partitioning to

better preserve the weighted counts. A natural idea is to further split the data by survey

weights so that the survey weights are fairly homogeneous within each PRB. However,

it causes cell splitting, as discussed next, which increases perturbation rates and reduces

disclosure risk. In the NZY procedure, the PRBs are defined essentially by the singleton

and doubleton cells of the key variables. These cells are grouped and all units falling in

the cells within a group form one PRB. As a result, the two units in a doubleton cell fall

in one PRB and each unit’s category is changed with probability θ/2. If a PRB is further

divided into multiple PRBs by survey weights, two units in a doubleton cell (originally)

may fall in two different PRBs, each appearing as a singleton unit within its own PRB,

in which case the category of each unit will be changed with probability θ (instead of θ/2

in the NZY procedure).

Next, we use an example to elaborate cell splitting and its effects. Suppose that the

left panel of Table 2 shows one PRB in the NZY procedure. It consists of 11 units, falling

in 8 cells, c1, . . . , c8. For each unit, the left panel shows its original category (X), survey

weight (w) and cell frequency (t). The survey weights form two well separated clusters,

centered around 100 and 200. To form weight homogeneous PRBs, the original PRB is

split into two PRBs, by weight clusters, as shown in the right panel of Table 2, where t′

shows cell frequency within the PRB. Consider post-randomizing the original categories

within each of the two new PRBs using (2.1). Here, the originally doubleton units 2
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Table 2: An example of PRB splitting by survey weight.

unit X w t
1 c1 100 1
2 c2 101 2
3 c2 200 2
4 c3 200 1
5 c5 99 2
6 c5 199 2
7 c6 100 2
8 c6 102 2
9 c7 201 1
10 c8 101 2
11 c8 200 2

unit X w t′

1 c1 100 1
2 c2 101 1
5 c5 99 1
7 c6 100 2
8 c6 102 2
10 c8 101 1

unit X wi T ′

3 c2 200 1
4 c3 200 1
6 c5 199 1
9 c7 201 1
11 c8 200 1

and 3 (in cell c2) appear as uniques within their own PRBs, and thus move out of c2

with probability θ. However, units 7 and 8 in c6 fall in one PRB and will be changed

with probability θ/2. Perturbing some doubleton units with probability θ instead of θ/2

further reduces identification risk. Thus, the choice of θ as the solution of h(θ) = ξ is

expected to be conservatively large, as we shall see in our example in Section 5.

4. Proposed Method

The five-step procedure proposed below guarantees (1.2) in a general survey for any

given ξ ∈ (1/3, 1/2) and a set of categorical key variables, specified by the data agency.

Essentially, we modify the PRB forming process in the NZY procedure, to reduce its

effects on statistical estimates. In particular, the first three steps of the two procedures

are the same, which we state concisely and refer interested readers to NZY for additional

discussion.
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Step 1. For given ξ, calculate θ0(ξ) by solving h(θ) = ξ, and m0 = d{1− θ0(ξ)}−1e.

These two values are used in steps 4 and 5 below.

Step 2. Choose a set C of categorical survey variables for post-randomization. This

set should contain all key variables. It may also contain some non-key variables to avoid

edit failures. Let XC denote the cross-classification of all variables in C.

Step 3. Partition the data set by groups of similar cells of XC such that the number of

singleton and doubleton cells (of XC) in each partition set is at least m0. One convenient

approach, suggested by NZY, is to suitably coarsen each variable in C and use their cross-

classification. This amounts to a rectangular partition of the sample space of the variables

in C. However, the subsequent steps of the proposed procedure work as well for any data

partitioning.

Step 4. We form the PRBs in this step. Within each partition set, we take all units

falling in singleton and doubleton cells of XC and divide those units into relatively weight

homogeneous PRBs, each containing at least m0 cells. For simplicity, we suggest a rank-

based splitting procedure, but other approaches may also be used. First, we rank the

units by ascending survey weights, breaking ties at random so that each rank corresponds

to only one unit. Then, from the ranked list, take the first 2m0 units to form one PRB,

next 2m0 units to form another PRB and so on until we are left with less than 4m0 units,

which are put in the last PRB. Thus, each PRB contains at least 2m0 units and hence at

least m0 cells.

Step 5. Post-randomize the XC values within each PRB using (2.1) and cell frequencies

within the PRB. Specifically, if a PRB contains m non-empty cells, say c1, ..., cm, and

the frequency of ci (i = 1, . . . ,m) within the PRB is t′i, then we apply the transition

probabilities pjj = 1 − θ0/t
′
j and pij = θ0/[(m − 1)t′j] for i 6= j, where θ0 is as calculated
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in Step 1.

We want to discuss a few points about the above procedure. As noted earlier, one

may use other data partitioning methods in Step 3. A sequential approach with varying

segmentation may be useful in some application. For instance, in the NZY example, one

might first partition the data by gender and three race groups, white, black and ‘other

races’ and then futher divide each group by suitable age intervals for the group. The data

set contains 37201 whites, 15239 blacks and 6593 ‘other races.’ The 7 age intervals of

X∗2 may be appropriate for the two smallest groups, characterized by males and females

of ‘other races.’ The black male and black female groups are larger and one may use

smaller age intervals. For white by gender groups, one may use even smaller age intervals.

Alternatively, one may partition each group by wide age intervals and then further divide

large subgroups by other variables, e.g., marital status.

There is a trade-off between steps 3 and 4. The scope for forming weight homogeneous

PRBs, in Step 4, decreases as the resulting partition set sizes in Step 3 decrease. Recall

that in our procedure, each PRB contains at least 2m0 units. A finer partition in Step 3

yields a greater control on the magnitude of possible changes to the original data values,

but it reduces the scope for achieving homogeneity of survey weights due to smaller

partition sizes. For instance, the data partitioning in the NZY example guarantees that

any original age between 0 and 17 will remain within this interval after perturbation.

A finer partition, say by dividing the interval 0 to 17 into 0 to 9 and 10 to 17, yields

a tighter control on possible changes to age, but also creates two smaller partition sets,

which may not be further divided by small survey weight intervals while meeting the

minimum PRB size requirement. In practice, one may optimize steps 3 and 4 through

some experimentation.
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One may also consider interchanging steps 3 and 4, i.e., first partition the data by fixed

or quantile intervals of survey weights and then by coarsened versions of key variables.

However, we found this approach problematic in our empirical investigation. Specifically,

it yielded some PRBs with less than m0 cells. The problem can be avoided by partition-

ing the data appropriately (and differently) in each survey weight class. However, that

requires much human intervention, which is costly and inconvenient.

5. An Example

In this section, we present results from an application of our procedure to the 2013 Mary-

land PUMS, described in Section 2. For direct comparison, we adopt the disclosure control

goal and data partitioning of NZY, as reviewed in section 2. Specifically, we take the same

five key variables (gender, age, race, marital status and PUMA) and ξ = .395, and cor-

respondingly θ0 = 0.8 and m0 = 5. We shall examine effects of our procedure on both

identification risks and survey weighted statistical estimates.

First, we describe the distribution of survey weights of the 59,033 persons in the data

set. The average weight is about 100 and the total weight is 5,928,814, which is also

an estimate of the population size. The weight distribution is highly positively skewed.

Figure 1 shows the histogram of all weight that are 500 or less, which account for 99.7%

of all sampling units. The modal class of the histogram is (60, 70). We also found that

84.44% of all weights are between 50 and 150, and 91.74% are below 200. The boxplot in

Figure 2 depicts the 177 weights that are above 500. These constitute 0.3% of all units,

and their total weight is 107,300, which represents 1.8% of the population. The wide

variation and high skewness of the survey weights contributed to the weak performance

16



of the NZY procedure, noted in Section 2.

Figure 1: Histogram of survey weights that are 500 or lower.

Figure 2: Boxplot of survey weights above 500.

To apply our procedure, we first partitioned the data, as in NZY, into 42 sets by the

cross-classification of gender, X∗2 and X∗3 , as described in Section 2. Within each partition

set, we took all units in singleton and doubleton cells of XC. Recall that for ξ = 0.395,

only those units need perturbation. The number of singleton and doubleton cells in the
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42 partition sets ranged between 124 and 1480. As described in step 4, we arranged

all singleton and doubleton units within each partition set by increasing order of survey

weight, breaking ties at random. Then, we formed PRBs by taking 10 consecutive units,

starting with the first, until less than 20 units remained left, which were assigned to one

PRB. Thus, each PRB contains at least 10 units and hence at least 5 cells (as no cell

contains more than 2 units). Recall that (1.2) is guaranteed to hold for ξ = 0.395 if each

PRB contains at least 5 cells and θ0 = 0.8. Finally, we post-randomized all XC values

within each PRB, as stated in Step 5, with θ0 = 0.8. As in Sholomo and Skinner (2010)

and NZY, some results from one perturbed data set are reported below. However, we

observed similar results when we repeated the post-randomization in Step 5.

5.1. Empirical Identification Risk

Our procedure changed the XC-category of 10,938 (or 80.06%) of the 13,662 singleton

units and 7,542 (or 78.94%) of the 9,554 doubleton units. In contrast, the NZY procedure

changed the XC-category with probabilities 0.8 and 0.4 for singleton and doubleton units,

respectively. In our case, the perturbation rate (78.94%) for doubleton units is much

larger, as many of those units are treated as singleton units (within their PRBs) due

to further partitioning by survey weights. As one would expect, and seen below, the

increased perturbation rate lowered identification risks.

For presenting the empirical identification risks, we shall use τ and τ ∗ to denote the

number of matches for a unit in the original and perturbed data, respectively. In a

perturbed data set, a unit’s probability of correct match is 0 if its category is changed,

and 1/τ ∗ otherwise. (Note that τ ∗ ≥ 1 if its category remains unchanged.) We calculated
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this probability for all 23,216 originally singleton and doubleton units. Table 3 gives

their averages over certain classes. The corresponding values from NZY are given in

parentheses.

Table 3: Empirical identification risks.

τ = 1 τ = 2
τ ∗ = 1 0.2168 (0.2315) 0.1258 (0.3933) 0.1882 (0.2849)
τ ∗ = 2 0.1997 (0.1961) 0.1032 (0.3477) 0.1505 (0.2827)

0.1362 (0.1348) 0.0965 (0.3027)

In Table 3, the row and column headings describe the cases considered. Thus, for

example, empirical identification risks are 0.1362 for originally singleton units (τ = 1),

0.1882 for uniquely matched units in perturbed data (τ ∗ = 1), and 0.1258 for originally

doubleton units with unique matches in perturbed data (τ = 2, τ ∗ = 1). The empirical

risks under NZY and the new procedure in the column τ = 1 are very similar. This is

not surprising because both procedures change the category of each singleton unit with

the same probability (0.8). The risks for doubleton units, in the column τ = 2, are

substantially lower under our procedure. The same is also seen for τ ∗ = 1 and τ ∗ = 2.

The values in Table 3 also show that the NZY procedure better controls the risks for

singleton units than doubleton units. In contrast, under our procedure, identification

risks for singleton units are larger than that for doubleton units. Also, for our procedure,

the largest risk in Table 3 is 0.2168 (when τ = 1, τ ∗ = 1), which is much smaller than

ξ = .395. Thus, one may use a suitably smaller θ to improve data utility while meeting

the disclosure control goal.
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5.2. Effects on Estimates of Population Frequencies

We shall now examine effects of our procedure on (weighted) estimates of population level

frequencies, as described in Section 2, and also on estimates of their sampling variance,

which are calculated as follows. For each person i in the PUMS data set, the U.S.

Census Bureau gives one survey weight (wi) and 80 replicate weights, wij, i = 1, . . . , n, j =

1, . . . , 80. The population total, τY , of a survey variable Y is estimated by τ̂Y =
∑n

i=1wiYi.

The variance of τ̂Y is estimated by

V̂ (τ̂Y ) =
1

80

80∑
i=1

(τ̂Y j − τ̂Y )2, (5.1)

where τ̂Y j =
∑n

i=1wijYi. For categorical variables, in above formulas Yi is replaced by

appropriate indicator functions as in (2.3). For further details about calculation of survey

weights, replicate weights and variance estimation we refer the reader to U.S. Census

Bureau (2006), Fay (1984), Fay and Train (1995), Wolter (2007) and Ash (2014).

Table 4 gives some results for six race categories. We omit the ‘White’ and ‘Black’

categories as those are kept unchanged during perturbation and the ‘Alaska native alone’

category as it contained only 1 unit. In Table 4, f represents the (weighted) estimates

of population frequencies from the original data, as reported earlier in Table 1, and the

estimates under our procedure are denoted by f̃ . Similarly, σ̂ and σ̃ denote the esti-

mated standard deviations, based on the replicate weight method as described by (5.1),

calculated from the original and our perturbed data sets, respectively.

The values in Table 4 show that |f − f̃ |/f is noticeably smaller than |f − f ∗|/f ,

given in Table 1, for all but the ‘American Indian Alone’ category. Thus, our procedure

improves the accuracy of statistical estimates. For the three large race categories (with f
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Table 4: Estimated frequencies of Race categories

Race f f̃ |f−f̃ |
f

σ̂ σ̃

American Indian alone 11235 9882 0.1204 742 545
American Indian and Alaska native 4820 5582 0.1581 422 476

Asian 354215 359347 0.0145 1620 3115
Native Hawaiian and other Pacific 2443 2474 0.0123 321 334

Some other race alone 210331 206418 0.0186 5139 3894
Two or more races 168669 168073 0.0035 3791 2354

over 160,000), f and f̃ are quite close. Our procedure (and also NZY) affects categories

with small frequencies substantially, as almost all units in such categories are single or

doubleton and are randomized. As Table 1 shows, the three smallest frequencies are 20,

42 and 97, and two of their corresponding categories have fairly large relative difference,

|f − f̃ |/f , in Table 4.

We may also note that for a small category, the absolute difference between the esti-

mates of its relative frequency based on the original and our perturbed data is very small.

For example, our estimates of the proportion of persons in the population falling in the

‘American Indian Alone’ category are p̂ = 11235÷5928814 = 0.0019 based on the original

data, and p̃ = 9882÷ 5928814 = 0.0017 based on our perturbed data, as the total weight

is 5928814. Here, the absolute difference is |p̂− p̃| = 0.0002.

In Table 4, the values of σ̂ and σ̃ differ noticeably, even for large categories. Thus,

data perturbation has a stronger effect on variance estimates. Theoretically, the variance

of an estimator based on perturbed data is larger than that of a corresponding estimator

based on the original data. We leave variance estimation from perturbed data as a future

research project, which may also require a close examination of replicate weights and the

stability of (5.1).
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Table 5 reports analogous results for the categories of marital status. There, all relative

differences, |f− f̃ |/f , are quite small and the estimated standard deviations, σ̂ and σ̃, are

also fairly close. We believe that a primary reason for this feature is the absence of very

small categories. We also compared estimated age distributions based on the original and

perturbed data sets. The plots of the two distributions were nearly identical and hence

are not shown here.

Table 5: Estimates of marital status frequencies

Marital Status f f̃ |f−f̃ |
f

σ̂ σ̃

Married 2,250,297 2,256,196 0.0026 7396 6796
Widowed 270,321 266,229 0.0151 2127 2232
Divorced 480,035 472,311 0.0161 4368 4147

Separated 114,783 120,778 0.0522 1842 2304
Never married 2,813,378 2,813,300 0.0000 6237 5605

We also examined effects of our procedure on estimates of joint distributions. For

direct comparison, we explored the 14 joint distributions that were examined by NZY.

Those correspond to certain sets of variables chosen from the five key variables (sex, age,

race, marital status (mar) and puma) and two non-key variables: class of workers (work)

and education level (edu), which have 9 and 8 categories, respectively. We measure the

effects of data perturbation using the total variation distance (TVD). For a given set of

variables, let pi and ri denote the estimates of the relative frequency of the i-th cell based

on the original and a perturbed data set, respectively. The TVD is a global measure of

the difference between the two estimated distributions and it is given by

TV D =
1

2

∑
i

|pi − ri|,
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where the sum is over all cells.

Table 6: Total variation distance showing effects of data perturbation on estimates of
joint distributions

Variables NZY Our Cells Variables NZY Our Cells
race, mar 0.0138 0.0043 45 puma, work 0.0433 0.0376 396
race, puma 0.0296 0.0157 396 puma, edu 0.0412 0.0355 352
race, edu 0.0128 0.0086 72 sex, race, mar 0.0152 0.0072 90
race, work 0.0106 0.0037 81 sex, race, edu 0.0134 0.0095 144
mar, edu 0.0153 0.0122 40 mar, race, edu 0.0295 0.0220 360
mar, work 0.0162 0.0095 45 sex, race, work 0.0091 0.0043 162

The first and fifth columns of Table 6 state the variable considered. The TVDs between

the estimated distributions (i.e., weighted relative frequencies) based on the original and

NZY perturbed data are given under ‘NZY’ columns. The corresponding values for our

procedure, i.e., the TVDs between estimated distributions based on the original and our

perturbed data, are reported under ‘Our’ columns. The ‘Cells’ columns show the number

of cells in the cross-classification of the variables considered. In all cases, our TVD values

are quite small and they are smaller, often substantially, than corresponding NZY values.

As expected, TVD increases when a new variable is added to a variable set. For example,

for both procedures, the TVD for {race, mar} is smaller than the TVDs for {sex, race,

mar} and {mar, race, edu}. Table 6 also shows that TVD tends to increase with the

number of cells.

5.3. Effects on a Logistic Regression

The released data are often used for modeling and prediction. To get a sense of effects

of data perturbation on such analysis, we examined a logistic regression. Specifically, we
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modeled employment status (Y , with Y = 1 if employed and 0 otherwise) using gender

(X1), age (X2) and education (W ) as covariates. We let X1 = 1 if a unit is female and 0

otherwise. Education is an ordinal variable with 8 categories: grade 6 or less, grade 7-12

but no high school diploma, high school diploma, some college but not degree, Associate

degree, Bachelor’s degree, Master’s or professional degree, and Doctorate degree. We

treated it as a discrete variable, assigning W = 0 for grade 6 or less through W = 7 for

Doctorate degree. For model fitting we used data from all units with X2 ≥ 18, i.e., from

all work eligible persons. Recall that due to our data partitioning, a perturbed age falls

between 0 and 17 if and only if the original age is in that interval. Thus, work eligible

people in the original and perturbed data are the same.

Let ~X = (X1, X2,W ) and π( ~X) = P (Y = 1| ~X) denote the conditional probability of

a person being employed given X. We assume the logistic regression model

log
( π( ~X)

1− π( ~X)

)
= β0 + β1X1 + β2X2 + β3W.

Let β̂i and β̃i denote the estimated coefficient of Xi from original and perturbed data,

respectively. By applying the ‘glm’ function in R with weights, we obtained:

(β̂0, β̂1, β̂2, β̂3) = (−1.946,−0.3793,−2.025× 10−3, 0.8276),

(β̃0, β̃1, β̃2, β̃3) = (−1.961,−0.3822,−0.924× 10−3, 0.8197).

Clearly, the estimates obtained from the original and perturbed data are very close.

Logistic regression parameters are interpreted conveniently in terms of odds and odds

ratio (see e.g., Agresti, 2011). In our example, for given ~X, the odds of ‘employed’ is
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π( ~X)/(1 − π( ~X)). One interpretation of βi, is that eβi is the proportional increment of

odds of ‘employed’ as the variable associated with βi increases by one unit while all other

covariates remain unchanged. Table 7 gives the odds ratio estimates from the original

and perturbed data, respectively. Not surprisingly, our data perturbation affects odds

ratio estimates negligibly. Note that gender and education affect employment status

substantially, as the corresponding odds ratios are markedly different from 1. Recall that

gender was coded as X1 = 1 if female and 0 if male. So, the odds of employment for

females is about 68% of the odds for males.

Table 7: Estimated odds ratios

Intercept Gender Age Education
Original 0.1429 0.6844 0.9980 2.2877
Perturbed 0.1407 0.6823 0.9990 2.2700

6. Discussion

The NZY paper developed a novel approach to measuring and controlling identification

risk in releasing microdata. In this paper, we demonstrated that while that procedure

preserves raw cell frequencies fairly well, it may distort survey weighted frequencies consid-

erably, which are commonly used to estimate population frequencies. This is mainly due

to the fact that the NZY procedure is unbiased with respect to raw frequencies, but not

weighted frequencies. On the other hand, as we showed, an unbiased post-randomization

with respect to weighted frequencies may not be adequate for limiting identification risks.

We presented a post-randomization method that limits identification risk rigorously and

better preserves survey weighted statistical estimates. We illustrated the procedure with
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application to a real data set.

As we discussed earlier, the proposed procedure may be overly conservative as it treats

many doubleton units as singletons. So, one may reduce the perturbation probabilities

suitably to enhance data utility while meeting the disclosure control goal. For example,

in the application in Section 5, Table 3 shows that the largest risk (0.2168) is much

smaller than ξ = .395, the specified upper bound. Thus, the choice of θ0 = 0.8 is overly

conservative. A natural approach to calculating a suitably smaller value is to choose θ

such that the identification risk in the worst case does not exceed ξ. In our application, the

worst case is τ = 1, τ∗ = 1, for which NZY proved that identification risks are bounded

above by h∗(θ) = (1 − θ)/(1 − θ + θ2). So, a practical value of θ may be obtained by

solving h∗(θ) = ξ. For ξ = .395, this yields θ = 0.69.

We should mention that De Waal and Willenborg (1997) discussed a scenario for target

matching using survey weights, which postulates that each unit is uniquely indexed by

survey weight and the intruder is able to reconstruct that mapping. However, as Fienberg

(2010) noted, that scenario is very unlikely due to the complexity of weight calculations

in most practical surveys. Also, in stratified sampling (where survey weights are easily

calculated), we suggest to use the NZY procedure within each stratum and then combine

stratum level estimates appropriately. Thus, we believe that keeping the survey weights

unchanged should not cause much disclosure concern.
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