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Abstract

The U.S. Census Bureau conducts a variety of experiments to prepare for a full-scale de-
cennial census and investigate possible improvements to operations. The Census Bureau is
investigating possible strategies for sending mail to motivate recipients to self-respond. It is
suspected that the choice of mailing strategy affects the distribution of call volumes to the Cen-
sus Bureau’s telephone helplines. For staffing purposes, more uniform call volumes throughout
the week are desirable. In this work, we consider formal statistical methods to compare call
volumes resulting from several recent experiments, and determine whether one mailing strategy
yields a more uniform call distribution than others.

1 Introduction

Beginning with the 1990 Census, a telephone questionnaire assistance operation has accompanied
each decennial census. These operations included helpline agents representing the U.S. Census
Bureau who fielded support questions and assisted the public in completing paper forms. An
automated interactive voice response system was added after the 1990 Census to augment live
agents. Since the 2000 Census, agents were additionally able to conduct interviews and collect
census data by phone, although it has not been marketed as a response option. For the 2020
Census, the Census Bureau will mail letters and postcards to each household in the country to
request participation in the census, and will encourage responses on a large scale through the
internet (U.S. Census Bureau, 2017). Telephone helplines will be highlighted in mailings, both as
a means to assist with internet response and to serve as a mode of response themselves. From the
perspective of the Census Bureau, an ideal distribution of helpline calls would be where a uniform
volume of calls is received throughout the week for the duration of the operation. One reason to
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prefer a more uniform distribution is that fewer helpline staff could potentially be hired and be
given a more constant workload over the course of the operation.

The schedule of mailings influences when calls tend to occur and is an aspect of census design
which Census Bureau can control. Chesnut (2003) and Zajac (2012) discuss call volumes received
during the 2000 and 2010 Decennial Census, respectively, and note how they were affected by the
mailing schedule. Helplines received 7.9 million calls in the 1990 Census, 6 million calls in the 2000
Census, and 4.5 million calls in the 2010 Census. The increased emphasis on data collection by
internet and phone suggests that an increased volume of calls could be expected in the 2020 Census.
Although volumes of calls have changed over the decades, patterns of calls to the helpline have not
changed drastically (Nichols et al., 2018). Higher call volumes occur on the expected delivery date
of mailed census notification letters and postcards. The first peaks occur after the initial mailout
and second mailout, and another peak occurs the week of Census Day. There is also a trend in
which Mondays and Tuesdays are the highest call volume days, with a gradual decline in call volume
throughout the week and a large dropoff over the weekend. This pattern is more exaggerated when
mail arrives on a Monday, as was the case in the 2000 Census (Chesnut, 2003). The volume of
calls diminishes after both Census Day and the arrival of all mailed notifications have occurred.
Expecting these patterns to continue with an increased volume for the 2020 Census, the Census
Bureau is considering plans to stagger mailing of census notifications so that they are delivered on
different days of the week, anticipating that calls to the helpline will be more uniform throughout
the week and thus easier to staff efficiently (Nichols et al., 2018). Note that other aspects of a
mailing schedule—such as potential impact to response rates—are important to the Census Bureau
as well; however, the remainder of this report focuses on call uniformity.

The Census Bureau conducts experiments throughout the decade to prepare for the decennial
census. Several experiments for the 2020 Census have sent mailings to invite an internet response,
and have recorded instances of subsequent calls to the helplines. These experiments employed
various mailing schedules, providing an opportunity to compare strategies and see if any have led
to call volumes which are statistically closer to a uniform distribution.

To our knowledge, inference comparing the closeness of two discrete distributions to a dis-
crete uniform distribution is not standard. Many conventional tests are primarily designed to
detect departure from equality; examples include chi-square tests for equality of proportions and
Kolmogorov-Smirnov tests for equality of continuous distributions. However, the equality of two
distributions is not the primary interest in our application. We consider use of Kullback-Leibler
(K-L) divergence, which is seen to be equivalent to comparing the entropy of one distribution to
the other. Procedures to test statistical hypotheses and compute related confidence intervals are
presented, making use of basic results from large sample theory. These procedures are applied to
call volume data from three census experiments.

Cover and Thomas (2006) introduces K-L distance, entropy, and related concepts, and discusses
fundamental applications in information theory. K-L divergence and entropy have found use in
many areas of the statistics literature, including: to justify information criteria in assessing model
fits (Konishi and Kitagawa, 2008), to obtain variational approximations to complicated distributions
such as the posterior in Bayesian analysis (Ormerod and Wand, 2010; Blei et al., 2017), and as a
basis for statistical inference (Pardo, 2006; Girardin and Lequesne, 2017). Paninski (2008) proposed
a method to test whether a single multinomial distribution departs from discrete uniform; this work
is based on a sparse setting with many categories and relatively few observations. Dorfinger et al.
(2011) use entropy as a measure of uniformity to classify in real time whether traffic in computer
networks is encrypted or not. Their approach makes a decision based on the difference between
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the estimated entropy of an observed payload and that of a uniformly distributed random payload
of the same length. Liu and Wang (2004) and Cohen et al. (2006) consider an increasing convex
ordering among discrete distributions; when this ordering holds, one particular consequence is that
one of the distributions has a larger entropy than the other and is therefore closer to uniform.

The rest of the paper proceeds as follows. Section 2 discusses testing and confidence interval
procedures to compare the closeness of two discrete distributions to uniformity. Section 3 presents
basic simulation studies to validate the methods. Section 4 introduces the call volume data and
gives results of the data analysis. Finally, Section 5 concludes the paper. Tables and figures are
given at the end of the paper. This paper is a companion to Nichols et al. (2018), which presents
an analysis of a recent census experiment that includes our findings.

2 Methodology

Suppose p = (p1, . . . , pk) and q = (q1, . . . , qk) are probability distributions on categories labeled
(1, . . . , k). In our application, (1, . . . , k) represent days of the week (Sun,Mon, . . . ,Sat) with k = 7,
and p and q are probabilities of a census participant calling the helpline on those days (given that
the call will occur during that week). In general, we can consider p and q to be probability vectors
on any k categories.

Let D(p, q) =
∑k
j=1 pj log(pj/qj) denote the Kullback-Leibler (K-L) divergence, which is often

used to measure the distance between two probability distributions. Also, let ē = (1/k . . . , 1/k)
denote the probabilities for the discrete uniform distribution. We will say that q is a “more uniform”
distribution than p if q is closer to the discrete uniform distribution than p; in other words, if

D(p, ē) > D(q, ē)

⇐⇒

 k∑
j=1

pj log pj −
k∑
j=1

pj log(1/k)

 >
 k∑
j=1

qj log qj −
k∑
j=1

qj log(1/k)


⇐⇒

k∑
j=1

pj log pj >

k∑
j=1

qj log qj

⇐⇒ E(p) < E(q). (2.1)

Here, E(p) = −
∑k
j=1 pj log pj is the entropy of the distribution with probabilities p. Let ej denote

the jth column of the k × k identity matrix. For any distribution p on (1, . . . , k), it is well known
that

E(p) ≤ E(ē) = log k,

E(p) ≥ E(ej) = 0, for any j = 1, . . . , k;

so that entropy is minimized by a point mass and maximized by the discrete uniform distribution.
Suppose p and q are parameterized by θ which depends on the choice of model, to be discussed
later in this section. Let g(θ) = E(q)−E(p) represent the difference in entropy. Motivated by (2.1),

3



we will consider testing hypotheses of the form

H0 : g(θ) = 0 vs. H1 : g(θ) 6= 0, (2.2)

H0 : g(θ) ≤ 0 vs. H1 : g(θ) > 0, (2.3)

H0 : g(θ) ≥ 0 vs. H1 : g(θ) < 0. (2.4)

If H0 is rejected in (2.3), for example, we conclude that q is a distribution with higher entropy, or
equivalently that q is closer to the discrete uniform distribution. Note that these hypotheses are
invariant to the order of elements in both p and q; this is desirable for our call volume application
because we are primarily interested in comparing flatness of distributions, and not whether volumes
have simply shifted to different days of the week. In addition to hypothesis testing, we consider
point estimates and confidence intervals for the quantity g(θ).

Remark 2.1. We make note of several points before proceeding.

a. As a guide to interpret the size of the effect g(θ), recall that 0 ≤ E(p) ≤ log k for any p, so
that − log k ≤ g(θ) ≤ log k.

b. Let Ea(·) denote the entropy function where logarithms are taken under base a. Here, Ea(q)−
Ea(p) = [log a]−1g(θ), so that the change of base only serves to scale our quantity of interest
by a constant. Then, without loss of generality, we will consider natural logarithms for the
remainder of the paper.

c. It is possible to compare the entropy of two discrete distributions with different numbers of
support points. If p = (p1, . . . , pk1), q = (q1, . . . , qk2), and ek = (1/k, . . . , 1/k), we obtain the
analog to (2.1) that D(p, ēk1) > D(q, ēk2) ⇐⇒ E(p)− log k1 < E(q)− log k2.

Let X ∼ Multk(m,p) denote that random variable X has a multinomial distribution

P(X = x) =
m!

x1! · · ·xk!
px1
1 · · · p

xk

k , where

x ∈
{

(z1, . . . , zk) : zj ∈ {0, 1, . . . ,m}, z1 + · · ·+ zk = m
}
.

Consider the comparison of two census experiments where a total of I mailing schedules were
attempted among the two experiments. For the ith mailing schedule, let Ji denote the total number
of weeks of the experiment. In our application, all Ji are equal and represented by a common J .
Define Xij = (Xij1, . . . , Xijk) as the call counts observed on (Sun, Mon, . . . , Sat) on the jth week
for the ith mailing schedule, for i = 1, . . . , I and j = 1, . . . , J . We will assume that

Xij
ind∼ Multk(mij ,pij), (2.5)

where pij = (pij1, . . . , pijk) is the day-of-week distribution and mij =
∑k
`=1Xij` is the total call

count on the jth week for the ith mailing schedule. Note that model (2.5) regards total call counts
for week j of mailing schedule i as fixed, but the day of week in which calls occur as independent
multinomial (random) trials. We will specifically consider two scenarios:

S1. Two census experiments with I = 2 and one mailing schedule used in each experiment.
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S2. Two census experiments with I = 3; one mailing schedule was used in the first experiment
and two were used in the second experiment. Here we assume that i = 1 corresponds to the
first experiment and i ∈ {2, 3} corresponds to the second.

All experiments under consideration consist of J = 5 weeks of data, and we will compare experiments
on a week-by-week basis. Under Scenario S1, we are interested in

gj(θ) = E(p2j)− E(p1j), j = 1, . . . , J.

For Scenario S2, let qj = (qj1, . . . , qjk) be the overall day-of-week distribution for calls from the
jth week of the second experiment. To combine data from the two mailing schedules, let πj be the
probability of receiving a call from a respondent in the first mailing schedule, so that 1− πj is the
probability of receiving a call from a respondent in the second mailing schedule. By the law of total
probability,

qj` = P{Call occurs on day-of-week `}
= P{Call occurs on day-of-week ` | Caller is from Mailing Schedule 1}×

P{Caller is from Mailing Schedule 1}+
P{Call occurs on day-of-week ` | Caller is from Mailing Schedule 2}×
P{Caller is from Mailing Schedule 2}

= πjp2j` + (1− πj)p3j`.

Then we may write qj = πjp2j + (1− πj)p3j , and our ultimate quantities of interest are

gj(θ) = E(qj)− E(p1j), j = 1, . . . , J.

The πj are unknown and therefore will be replaced by an estimate π̂j = m2j/(m2j + m3j). Our
analysis will be carried out conditionally on the mij for the sake of tractability; however, modeling
the mij as observed quantities would likely express additional variability in the results and therefore
may be interesting to consider.

In order to discuss statistical procedures, let us generally write

gj(θ) = E(c1p1j + · · ·+ cIpIj)− E(d1p1j + · · ·+ dIpIj), j = 1, . . . , J,

for given coefficients c = (c1, . . . , cI) and d = (d1, . . . , dI) which are distributions on {1, . . . , I}.
We do not encounter a situation where two census experiments use data from a common mailing
schedule; therefore, we will have cidi = 0 for i = 1, . . . , I. In a multinomial analysis, one of our
day-of-week categories is redundant because

∑k
`=1Xij` = mij and

∑k
`=1 pij` = 1. Without loss of

generality, we will consider the first category as the redundant one, and writeX−ij = (Xij2, . . . , Xijk)

and p−ij = (pij2, . . . , pijk). Under model (2.5), the unknown parameter may be written as θ =

(p−11, . . . ,p
−
1J , . . . ,p

−
I1, . . . ,p

−
IJ), and its maximum likelihood estimator θ̂ replaces each p−ij with

p̂−ij = X−ij/mij . As discussed in Lehmann (2004, p. 314), we have a large sample normal distribution

θ̂ ∼̇ N(θ,Σ), where

Σ = Blockdiag
(
m−111

[
Diag(p−11)− p−11p

−>
11

]
, . . . ,m−1IJ

[
Diag(p−IJ)− p−IJp

−>
IJ

] )
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is an IJ(k − 1) × IJ(k − 1) covariance matrix. Furthermore, the delta method (Lehmann, 2004,
p. 315) gives the large sample distribution

gj(θ̂) ∼̇ N(gj(θ), σ2
gj(θ)

), σ2
gj(θ)

=

[
∂gj(θ)

∂θ

]>
Σ

[
∂gj(θ)

∂θ

]
,

for j = 1, . . . , J . After some algebra, we obtain the IJ(k − 1)× 1 gradient vector

∂gj(θ)

∂θ
=


ej ⊗

[
c1∇E

(∑I
i=1 cip

−
ij

)
− d1∇E

(∑I
i=1 dip

−
ij

)]
...

ej ⊗
[
cI∇E

(∑I
i=1 cip

−
ij

)
− dI∇E

(∑I
i=1 dip

−
ij

)]
 ,

where ∇E(p−) = (− log(p2/p1), . . . ,− log(pk/p1))>, ej is the jth column of a J×J identity matrix,
and ⊗ denotes the matrix Kronecker product.

Remark 2.2. Some insight into the behavior of g(θ) can be seen from its gradient. Consider
Scenario S1 with J = 1 and suppress the j index; we have

∂g(θ)

∂θ
=

(
−∇E(p−1 )
∇E(p−2 )

)
=
(

log(p12/p11), . . . , log(p1k/p11),− log(p22/p21), . . . ,− log(p2k/p21)
)>
.

Because the gradient separates into a component involving only p1 and similar one involving only p2,
it suffices to comment only on the former. When p1 ≈ (1/k, . . . , 1/k), it is seen that −∇E(p−1 ) ≈ 0;
therefore, g(θ) increases very slowly to its maximum of log k as p1 approaches a discrete uniform
distribution. On the other hand, when p1 → e2, then −∇E(p−1 ) → (0,∞, . . . ,∞); therefore,
when p1 is close to a point mass, small changes in p1 result in very large changes in some of the
components of g(θ).

Under the null hypothesis, the restriction gj(θ) = 0 gives

Z =
gj(θ̂)√
σ2
gj(θ̂)

∼̇ N(0, 1).

Denoting α as the desired significance level for a test and zα as the α quantile of the N(0, 1)
distribution, we obtain the usual tests for g(θ) based on normality: reject H0 in hypothesis (2.2)
if |Z| > zα/2, reject H0 in hypothesis (2.3) if Z > zα, or reject H0 in hypothesis (2.4) if Z < zα.

We can also obtain the usual level 1− α confidence limits for g(θ): the confidence interval g(θ̂)±
zα/2σg(θ̂), the lower confidence limit g(θ̂)− zασg(θ̂), and the upper confidence limit g(θ̂) + zασg(θ̂).

Code for all procedures has been implemented in the R programming language (R Core Team, 2018).

3 Simulations

We present several simulations to study properties of the procedures discussed in Section 2. Here,
we consider a setting based on Scenario S1 and a setting based on S2, taking J = 1 in both. We
consider empirical rejection rates of hypothesis (2.3) with significance level α = 0.05, as well as the
empirical coverage and “width” for level 1− α = 0.95 lower confidence limits for g(θ).
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3.1 Scenario S1

Consider the setting of Scenario S1 and suppose

p1 :=



p11
p12
p13
p14
p15
p16
p17


=

1

28



1
2
3
4
5
6
7


≈



0.0357
0.0714
0.1071
0.1429
0.1786
0.2143
0.2500


and p2 =



p14
p15
p16

p17 − δ
p11 + δ
p12
p13


≈



0.1429
0.1786
0.2143

0.2500− δ
0.0357 + δ

0.0714
0.1071


,

where 1/28 is the normalizing constant needed to transform the vector (1, 2, . . . , 7) to a probability
distribution. Here we consider the effect on g(θ) when p2 is a permutation of p1 except that the most
frequent category donates some of its probability mass to the least frequent category. Restricting
our attention to hypothesis (2.3), H0 is true when δ = 0 because p1 is exactly a permutation of
p2. H0 is also true for δ < 0, where p2 becomes a more peaked distribution than p1. The value of
g(θ) = E(p2)−E(p1) increases to its maximum as δ increases from zero to 0.1071428, but decreases
as δ is increased further; see Figure 1a. The following steps are repeated 1,000 times:

1. Draw X1 ∼ Multk(m,p1) and X2 ∼ Multk(m,p2).
2. Compute the Z-statistic and lower confidence limit L based on X1 and X2.

The empirical rejection rate is obtained from the proportion of rejections of the test Z > zα. The
empirical coverage of the lower confidence limit is obtained by the proportion of instances where
L ≤ g(θ). The empirical width of the confidence limit is computed by averaging the individual
widths g(θ)− L. This was repeated for each

δ ∈ { − 0.02,−0.01,−0.005,−0.002,−0.001,−0.0005,−0.0002,−0.0001, 0,

0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.14},
and m ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000}.

Tables 1, 2, and 3 present results for empirical rejection rate, empirical coverage, and empirical
width respectively.

Results are mostly as expected, but some interesting features can be noted. Table 1 shows that
the rejection rate reaches the nominal level of 0.05 as the sample size increases and δ approaches
0 from below. The power of the test increases when δ approaches the value 0.1071428 (which
maximizes g(θ)), with the increase being faster as the sample size is taken larger. We notice
some oscillations in the power; for example, when δ = 0, the rejection rate reduces from 0.0490
at m = 2000 to 0.0460 at 5000. Table 2 shows that coverage probability for the confidence limit
approaches the nominal 0.95 level as sample size becomes large, for all values of δ. Oscillations in
coverage probability can be seen, for example, when δ = 0.0002 and m increases from 500 to 5000.
Empirical width shown in Table 3 appears to be decreasing for all δ as sample size is increased.
However, for fixed δ widths appear to become smaller as g(θ) is taken larger.

Regarding the oscillations, our Z-statistic is closely related to the Wald statistic used for infer-
ence on p in the situation X ∼ Binomial(m, p). Brown et al. (2001) discuss at length how coverage
probabilities for confidence intervals based on the Wald statistic exhibit an oscillating behavior
as m and p vary. For example, with p fixed, coverage probability will meet the nominal level for
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some m and fail to meet the nominal level for some larger m. Brown et al. (2001) suggest several
alternative intervals based on the binomial data, and more recently Franco et al. (2014) and Kott
(2017) compare binomial intervals in the setting of complex surveys. Alternative intervals could
also be considered in our setting.

3.2 Scenario S2

Now consider the setting of Scenario S2 and let

p1 =
1

28



1
2
3
4
5
6
7


≈



0.0357
0.0714
0.1071
0.1429
0.1786
0.2143
0.2500


,

q = πp2 + (1− π)p3 with π = 1/2, p2 = p1, and

p3 = (1− δ)p1 + δ
1

28



7
6
5
4
3
2
1


=

1

28



(1− δ)1 + δ7
(1− δ)2 + δ6
(1− δ)3 + δ5
(1− δ)4 + δ4
(1− δ)5 + δ3
(1− δ)6 + δ2
(1− δ)7 + δ1


.

Focusing on hypothesis (2.3), H0 is true when δ = 0 so that p1 = q. The value of g(θ) = E(q)−E(p)
increases to its maximum when δ = 1, where

q =
1

28

[
π(1, . . . , 7) + (1− π)(7, . . . , 1)

]
=

1

7
(1, . . . , 1)

is the discrete uniform distribution. Figure 1b displays a plot of g(θ) for δ ∈ (0, 1). The following
steps are repeated 1,000 times:

1. Draw m2 ∼ Binomial(m,π) and let m3 = m−m2.
2. Draw X1 ∼ Multk(m,p1), X2 ∼ Multk(m2,p2), and X3 ∼ Multk(m3,p3).
3. Compute the Z-statistic and lower confidence limit L based on X1, X2, X3, and π̂ =
m2/(m2 +m3).

Scenario 2 is otherwise similar to Scenario 1, except that we consider

δ ∈ {0, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}
and m ∈ {50, 100, 200, 500, 1000, 2000, 5000}.

We avoided the smallest sample sizes from Scenario 1 which occasionally resulted in m2 = 0 or
m3 = 0.

Tables 4, 5, and 6 present results for empirical rejection rate, empirical coverage, and empirical
width respectively. As in Scenario 1, results here are mostly as expected, with similar oscillations in
rejection rate and coverage. The effect size g(θ) becomes substantially larger here than in Scenario
1 for the larger choices of δ; see Figure 1b.
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4 Data Analysis

Our objective is now to determine the effect of mailing strategy on the uniformity of volumes of
calls to the helpline. Namely, we consider a staggered strategy where respondents are randomly
partitioned into several groups which are sent mailings on different schedules, as well as more
traditional strategies where all respondents are sent mailings on the same schedule. It is thought
that a staggered strategy leads to a more uniform distribution of calls than an unstaggered strategy.
To explore this theory, we make use of datasets from three census experiments in which mailings were
sent to a target population and subsequent calls to census helplines were recorded. Each of these
operations is referred to as a National Census Bureau Survey (NCBS) in mailing materials. The
2016 September NCBS (Eggleston and Coombs, 2017) and 2016 June NCBS (Coombs, 2017) are two
experiments where an unstaggered mailing strategy was utilized. A staggered mailing schedule was
used in the 2017 March NCBS (Nichols et al., 2018); study participants were randomly assigned into
either a Monday Mailout group, to whom three out of four mailings were initiated on Mondays, or
a Thursday Mailout, where three out of four mailings were initiated on Thursdays. Table 7 displays
the schedules for each mailing in the three experiments. In these studies, no live agents were present
to answer the helpline and callers instead received a prerecorded message. Callers’ identities were
not recorded, so the data do not distinguish whether multiple calls were made by the same caller.

To compare uniformity of call volumes between the three experiments, we first examine plots of
call frequencies. Figures 2, 3, and 4 present daily call volumes for the three studies. Mailing dates
are marked in each plot. Receipt times of the mailings were not known precisely; however, spikes
in call volumes can be observed about three days after each mailing, or on the following workday
if the third day happened to fall on a weekend. Even with a staggered mailout, Figure 2 exhibits
spikes on Mondays for both mailing schedules, as well as on the expected delivery date of Thursday
for the Monday Mailout group. Because the expected delivery day is Monday for the Thursday
Mailout group, call volumes primarily spike on Mondays and decrease throughout the rest of the
week. For the 2016 June NCBS, spikes can again be seen either on Mondays or three days after a
mailing if that day fell on a weekday. A similar pattern can be seen in the 2016 September NCBS;
note that the Labor Day holiday was observed on September 5, 2016, so the expected Monday spike
in call volume shifted to the next day (September 6). Figures 5, 6, 7, and 8 present call frequencies
summed by day of week. Figure 5 shows Monday and Thursday Mailout groups separately, while
Figure 6 combines them. It appears that the combined distribution in Figure 6 is flatter than either
Figure 7 or Figure 8. Figure 8 has a large spike occurring on Monday, and therefore appears to be
the lowest entropy—or furthest from uniform—distribution.

For each census experiment, we designate day 1 as the day of the first mailing. For the 2017
March NCBS, where there are two mailing schedules, day 1 is the day of the very first mailing,
Monday May 6. We then designate week 1 as days 1–7, week 2 as days 8–14, and so forth. We
consider weeks 1–5 in each census experiment, and disregard calls which occurred in week 6 or
later because call activity becomes sparse. For each pair of census experiments, we compare the
entropy for week j of the first experiment to week j of the second experiment, for j = 1, . . . , 5. It is
possible to consider other methods of designating weeks, such as counting each Sunday as the start
of a new week; however, our main interest is in call behavior relative to the mailing schedule. We
also considered dropping weekends or consolidating Saturday and Sunday into a single “weekend”
category, but decided to keep weekends intact. Changing designations of weeks could substantially
change results, but such a choice should not be based on the observed data. Table 8 reports the
weekly call counts for each experiment. It is also possible to compare different weeks from pairs of
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experiments, but this yields a large number of possible comparisons. According to our definition
of weeks, there is very little opportunity to receive calls in week 1 of the 2017 March NCBS for
the Thursday Mailout group (7 calls). Therefore, if increased entropy is observed in week 1 for the
2017 March NCBS, it is likely due to some factor other than the staggered mailing schedule.

4.1 2016 September NCBS versus 2017 March NCBS

Our first comparison is between the 2016 September NCBS and 2017 March NCBS call volumes,
which falls into Scenario S2. Take X1j to be the call frequencies observed (Sunday, Monday,
. . . , Saturday) on the jth week of the 2016 September NCBS. Accordingly, X2j and X3j are call
frequencies on the jth week of the 2017 March NCBS for the Monday Mailout and Thursday Mailout
groups, respectively. Estimates for πj are given in Table 8. We test hypothesis (2.3) for each week
j = 1, . . . , 5, which can be written as follows.

[Test 1] H0: “The day-of-week distribution in week j resulting from the 2016 September
NCBS mailing schedule has larger or equal entropy than the day-of-week distribution
resulting from the 2017 March NCBS mailing schedule” versus H1: “Not”.

Therefore, rejection of H0 for week j means that the 2017 March NCBS mailing strategy leads to
a more uniform distribution of calls during that week.

Table 9a gives results of testing this hypothesis for weeks 1–5. Recall that quantity g(θ) is
bounded, so that −1.94591 ≤ g(θ) ≤ 1.94591 for any θ. The Census Bureau uses α = 0.10 as
its standard significance level for hypothesis testing. H0 can be rejected for weeks 1–4, but there
is insufficient evidence to reject during week 5. The Z-statistic is a rather large negative value
in week 5, suggesting that there is evidence that the 2016 September NCBS call distribution had
higher entropy during that time. Table 10a displays the estimated probabilities p̂1j and q̂j for
weeks j = 1, . . . , 5. We notice in week 1 that the 2017 March NCBS had a higher estimated entropy
despite very low call probabilities on Monday and Tuesday; recall that it is very unlikely for Monday
Mailout group respondents to receive the first mailing by this Monday or Tuesday, and impossible
for the Thursday Mailout group. In week 5, large peaks are observed for the 2017 March NCBS
on Monday and Tuesday. Many calls occurring on these peak days are from the Thursday Mailout
group, as seen in Figure 2, whose final mailing was initiated the previous Thursday (March 30).
However, calls are also contributed from the Monday Mailout group, whose final mailing was the
previous Monday (March 27).

4.2 2016 June NCBS versus 2017 March NCBS

Our second comparison is between the 2016 June NCBS versus 2017 March NCBS call volumes,
which falls into Scenario S2. Take X1j to be the frequencies of the 2016 June NCBS calls observed
on (Sunday, Monday, . . . , Saturday). Take X2j and X3j to be the day-of-week frequencies of
2017 March NCBS calls for the Monday Mailout and Thursday Mailout treatments, respectively.
Estimates for πj are given in Table 8. We test hypothesis (2.3) for each week j = 1, . . . , 5, which
can be written as follows.

[Test 2] H0: “The day-of-week distribution in week j resulting from the 2016 June NCBS
mailing schedule has larger or equal entropy than the day-of-week distribution resulting
from the 2017 March NCBS mailing schedule” versus H1: “Not”.
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Here, rejection of H0 for week j means that the 2017 March NCBS mailing strategy leads to a more
uniform distribution of calls during that week.

Table 9b gives results of testing this hypothesis for weeks 1–5. Table 10b displays the estimated
probabilities p̂1j and q̂j for weeks j = 1, . . . , 5. There is strong evidence to reject H0 for weeks 2,
3, and 4, but insufficient evidence to reject during weeks 1 and 5 at significance level α = 0.10 .
Recall that the Thursday Mailout group had little opportunity to call during week 1, so the results
for this week are primarily based on the Monday Mailout group.

4.3 2016 June NCBS versus 2016 September NCBS

Our third comparison is between the 2016 September NCBS and 2016 June NCBS call volumes,
which matches Scenario S1. Take X1j to be the frequencies of 2016 June NCBS calls observed on
(Sunday, Monday, . . . , Saturday) and X2j to be the frequencies of 2016 September NCBS calls.
Because both experiments used a single mailing strategy for all respondents, we assume a null
hypothesis that neither strategy leads to a significantly more uniform call distribution. Therefore,
we test hypothesis (2.2) for each week j = 1, . . . , 5, which can be written as follows.

[Test 3] H0: “The day-of-week distribution in week j resulting from the 2016 June NCBS
mailing schedule has equal entropy to the day-of-week distribution resulting from the
2016 September NCBS mailing schedule” versus H1: “Not”.

Here, rejection of H0 for week j means that the two mailing strategies do not lead to an equally
uniform distribution of calls during that week.

Table 9c gives results of testing this hypothesis for weeks 1–5, and Table 10c displays the
estimated probabilities p̂1j and p̂2j for weeks j = 1, . . . , 5. The test can be rejected at significance
level α = 0.10 for all five weeks, although the evidence is much stronger in weeks 3 and 5. The
Z-statistics are positive for weeks 2–5, indicating a larger entropy for the 2016 September NCBS
except during week 1.

5 Discussion

In this work, we compared pairs of discrete distributions to infer which is closer to a discrete uniform
distribution. We developed procedures using basic large sample theory and applied them to call
volume data from several census experiments. Our analysis found that the staggered strategy—the
one used in the 2017 March NCBS—yielded a significantly higher entropy than the two unstaggered
experiments toward the middle of the study period, after both the Monday and Thursday Mailout
groups received the first mailing. However, the two unstaggered strategies—the 2016 September
NCBS and the 2016 June NCBS— also yielded significantly different entropies when compared to
each other; this demonstrates that other aspects of mailing schedule design, aside from staggering,
affect uniformity of calls from week to week. After the final mailing is sent, the choice of mailing
schedule is expected to have a diminishing effect on call uniformity, as the overall volume of calls
diminishes as well. One way to attenuate starting and ending differences among census experiments
would be, say, to combine weeks 1 and 2 into a “beginning period”, label week 3 as a “middle period”,
and combine weeks 4+ into an “ending period”; the methodology could be applied to the three
periods instead of the individual weeks without any changes.

Although there appears to be evidence that staggering increases call uniformity, a designed
experiment would help to distinguish this apart from other factors. The three available experiments
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were carried out at different time periods on populations which may also be considered different.
Mailing strategies could be compared more reliably on a common population and time period.
Furthermore, variations of mailing strategy treatments could be more carefully controlled to study
their individual effects.

We noted in Remark 2.2 that changes in the quantity g(θ) are smaller when the component
distributions are closer to uniform. Differences in this setting may therefore be difficult to detect
with the Z-statistic, which may warrant investigation of alternative distance measures. Alternative
distance measures might also be considered if one is thought to better express the cost of departure
from uniformity than K-L divergence.

While our model was based on independent multinomial observations, we could consider a re-
gression model with appropriate covariates. Here, it becomes necessary to check model adequacy—
e.g. via goodness-of-fit testing—before proceeding with inference on g(θ). However, were a suffi-
ciently good predictive model available, it could be used to optimize over a class of mailing strategies
and identify which one(s) achieved an optimal uniformity. This could be an objective in future anal-
yses of Census Bureau experiments, as a step beyond usual statistical inference.
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Figure 1: The value of g(θ) for: (a) δ ∈ (−0.03571429, 0.25), when p1 and p2 are as prescribed in
Section 3.1, and (b) δ ∈ (0, 1), when p1 and q are as prescribed in Section 3.2.
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Table 1: Empirical rejection rate of one-sided test from simulation study for Scenario 1.

δ g(θ) m = 10 20 50 100 200 500 1000 2000 5000

-0.0200 -0.0468 0.1340 0.0850 0.0460 0.0150 0.0050 0.0000 0.0000 0.0000 0.0000
-0.0100 -0.0212 0.1600 0.1070 0.0480 0.0290 0.0120 0.0070 0.0060 0.0010 0.0000
-0.0050 -0.0101 0.1590 0.1180 0.0690 0.0380 0.0310 0.0190 0.0160 0.0100 0.0020
-0.0020 -0.0040 0.1930 0.1270 0.0760 0.0550 0.0390 0.0350 0.0280 0.0330 0.0180
-0.0010 -0.0020 0.1620 0.1350 0.0780 0.0530 0.0470 0.0380 0.0370 0.0380 0.0360
-0.0005 -0.0010 0.1920 0.1140 0.0760 0.0400 0.0420 0.0450 0.0430 0.0450 0.0470
-0.0002 -0.0004 0.1620 0.1080 0.0640 0.0600 0.0320 0.0370 0.0550 0.0450 0.0390
-0.0001 -0.0002 0.1410 0.1160 0.0800 0.0450 0.0490 0.0380 0.0440 0.0530 0.0440
0.0000 0.0000 0.1640 0.1100 0.0800 0.0510 0.0450 0.0550 0.0430 0.0490 0.0460
0.0001 0.0002 0.1810 0.1250 0.0890 0.0600 0.0490 0.0570 0.0430 0.0490 0.0670
0.0002 0.0004 0.1730 0.1070 0.0680 0.0440 0.0490 0.0430 0.0370 0.0560 0.0640
0.0005 0.0010 0.1740 0.1140 0.0740 0.0660 0.0680 0.0520 0.0510 0.0520 0.0630
0.0010 0.0019 0.1620 0.1450 0.0870 0.0560 0.0510 0.0550 0.0530 0.0600 0.0710
0.0020 0.0038 0.1930 0.1450 0.0820 0.0650 0.0630 0.0660 0.0680 0.0840 0.1080
0.0050 0.0093 0.1690 0.1290 0.0860 0.0720 0.0680 0.0810 0.1300 0.1650 0.2810
0.0100 0.0180 0.1900 0.1460 0.0950 0.0820 0.0810 0.1630 0.2160 0.3580 0.6180
0.0200 0.0333 0.1840 0.1580 0.1390 0.1390 0.1730 0.3260 0.5200 0.7870 0.9850
0.0500 0.0669 0.2340 0.1910 0.2030 0.2490 0.4810 0.8170 0.9780 0.9990 1.0000
0.1000 0.0900 0.2600 0.2460 0.2520 0.4050 0.7230 0.9770 0.9990 1.0000 1.0000
0.1400 0.0828 0.2540 0.2120 0.2560 0.3800 0.6110 0.9530 0.9980 1.0000 1.0000

Table 2: Empirical coverage rate of lower confidence limit from simulation study for Scenario 1.

δ g(θ) m = 10 20 50 100 200 500 1000 2000 5000

-0.0200 -0.0468 0.8220 0.8760 0.9170 0.9440 0.9530 0.9500 0.9430 0.9430 0.9450
-0.0100 -0.0212 0.8280 0.8770 0.9340 0.9330 0.9440 0.9580 0.9520 0.9450 0.9530
-0.0050 -0.0101 0.8350 0.8730 0.9180 0.9450 0.9360 0.9580 0.9510 0.9520 0.9440
-0.0020 -0.0040 0.8050 0.8700 0.9220 0.9410 0.9520 0.9440 0.9570 0.9500 0.9540
-0.0010 -0.0020 0.8380 0.8630 0.9180 0.9430 0.9470 0.9550 0.9570 0.9540 0.9480
-0.0005 -0.0010 0.8080 0.8840 0.9230 0.9580 0.9550 0.9520 0.9560 0.9470 0.9440
-0.0002 -0.0004 0.8380 0.8920 0.9350 0.9390 0.9680 0.9620 0.9420 0.9530 0.9600
-0.0001 -0.0002 0.8590 0.8840 0.9200 0.9550 0.9510 0.9620 0.9540 0.9470 0.9550
0.0000 0.0000 0.8360 0.8900 0.9200 0.9490 0.9550 0.9450 0.9570 0.9510 0.9540
0.0001 0.0002 0.8190 0.8750 0.9120 0.9400 0.9510 0.9440 0.9580 0.9540 0.9380
0.0002 0.0004 0.8270 0.8930 0.9320 0.9570 0.9520 0.9580 0.9660 0.9480 0.9400
0.0005 0.0010 0.8260 0.8890 0.9270 0.9350 0.9330 0.9500 0.9540 0.9540 0.9500
0.0010 0.0019 0.8380 0.8560 0.9140 0.9460 0.9550 0.9530 0.9540 0.9520 0.9520
0.0020 0.0038 0.8090 0.8580 0.9210 0.9360 0.9460 0.9500 0.9530 0.9500 0.9500
0.0050 0.0093 0.8410 0.8790 0.9230 0.9450 0.9590 0.9580 0.9470 0.9490 0.9460
0.0100 0.0180 0.8330 0.8730 0.9270 0.9450 0.9610 0.9420 0.9520 0.9480 0.9490
0.0200 0.0333 0.8430 0.8780 0.9080 0.9430 0.9530 0.9460 0.9480 0.9580 0.9540
0.0500 0.0669 0.8320 0.8860 0.9080 0.9400 0.9530 0.9550 0.9660 0.9510 0.9580
0.1000 0.0900 0.8310 0.8680 0.9190 0.9580 0.9630 0.9490 0.9450 0.9490 0.9480
0.1400 0.0828 0.8330 0.8830 0.9180 0.9480 0.9410 0.9510 0.9530 0.9480 0.9500
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Table 3: Empirical width of lower confidence limit from simulation study for Scenario 1.

δ g(θ) m = 10 20 50 100 200 500 1000 2000 5000

-0.0200 -0.0468 0.2639 0.2319 0.1647 0.1142 0.0817 0.0508 0.0358 0.0246 0.0156
-0.0100 -0.0212 0.2634 0.2417 0.1711 0.1152 0.0786 0.0503 0.0357 0.0242 0.0156
-0.0050 -0.0101 0.2706 0.2345 0.1590 0.1175 0.0795 0.0499 0.0353 0.0248 0.0151
-0.0020 -0.0040 0.2697 0.2302 0.1669 0.1166 0.0808 0.0484 0.0349 0.0242 0.0157
-0.0010 -0.0020 0.2773 0.2291 0.1629 0.1152 0.0787 0.0490 0.0347 0.0245 0.0153
-0.0005 -0.0010 0.2490 0.2516 0.1635 0.1196 0.0790 0.0512 0.0345 0.0247 0.0148
-0.0002 -0.0004 0.2841 0.2428 0.1655 0.1124 0.0809 0.0492 0.0357 0.0246 0.0158
-0.0001 -0.0002 0.2898 0.2485 0.1670 0.1116 0.0793 0.0491 0.0341 0.0233 0.0149
0.0000 0.0000 0.2903 0.2380 0.1629 0.1132 0.0806 0.0498 0.0345 0.0243 0.0155
0.0001 0.0002 0.2737 0.2438 0.1613 0.1106 0.0771 0.0475 0.0350 0.0235 0.0149
0.0002 0.0004 0.2757 0.2449 0.1684 0.1137 0.0802 0.0498 0.0337 0.0237 0.0152
0.0005 0.0010 0.2748 0.2416 0.1660 0.1110 0.0787 0.0483 0.0350 0.0239 0.0155
0.0010 0.0019 0.2928 0.2269 0.1629 0.1129 0.0812 0.0482 0.0345 0.0244 0.0151
0.0020 0.0038 0.2613 0.2370 0.1625 0.1152 0.0791 0.0480 0.0337 0.0243 0.0157
0.0050 0.0093 0.2782 0.2428 0.1625 0.1115 0.0789 0.0496 0.0336 0.0238 0.0150
0.0100 0.0180 0.2733 0.2334 0.1630 0.1136 0.0788 0.0471 0.0331 0.0239 0.0152
0.0200 0.0333 0.2945 0.2372 0.1513 0.1110 0.0752 0.0461 0.0334 0.0226 0.0145
0.0500 0.0669 0.2868 0.2383 0.1527 0.1079 0.0706 0.0442 0.0312 0.0217 0.0136
0.1000 0.0900 0.2776 0.2253 0.1468 0.1021 0.0676 0.0421 0.0286 0.0208 0.0128
0.1400 0.0828 0.2787 0.2392 0.1480 0.1025 0.0690 0.0422 0.0301 0.0208 0.0133

Table 4: Empirical rejection rate of one-sided test from simulation study for Scenario 2.

δ g(θ) m = 50 100 200 500 1000 2000 5000

0.0000 0.0000 0.0800 0.0540 0.0430 0.0520 0.0390 0.0470 0.0480
0.0001 0.0000 0.0700 0.0620 0.0380 0.0620 0.0580 0.0430 0.0590
0.0002 0.0001 0.0780 0.0610 0.0470 0.0550 0.0390 0.0590 0.0590
0.0005 0.0002 0.0800 0.0680 0.0540 0.0560 0.0660 0.0570 0.0520
0.0010 0.0003 0.0880 0.0470 0.0430 0.0520 0.0410 0.0410 0.0630
0.0020 0.0006 0.0680 0.0540 0.0520 0.0520 0.0560 0.0590 0.0480
0.0050 0.0015 0.0710 0.0560 0.0550 0.0710 0.0620 0.0590 0.0690
0.0100 0.0030 0.0880 0.0690 0.0650 0.0680 0.0650 0.0710 0.0880
0.0200 0.0060 0.0790 0.0530 0.0750 0.0750 0.0880 0.1120 0.1630
0.0500 0.0147 0.0930 0.0760 0.0940 0.1250 0.2020 0.2430 0.5090
0.1000 0.0283 0.1200 0.1140 0.1490 0.2560 0.4370 0.6140 0.9410
0.2000 0.0525 0.1680 0.2200 0.2920 0.6340 0.8620 0.9910 1.0000
0.5000 0.1049 0.3200 0.5500 0.8560 0.9970 1.0000 1.0000 1.0000
1.0000 0.1368 0.4520 0.8350 0.9970 1.0000 1.0000 1.0000 1.0000
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Table 5: Empirical coverage of lower confidence limit from simulation study for Scenario 2.

δ g(θ) m = 50 100 200 500 1000 2000 5000

0.0000 0.0000 0.9200 0.9460 0.9570 0.9480 0.9610 0.9530 0.9520
0.0001 0.0000 0.9300 0.9380 0.9620 0.9380 0.9420 0.9580 0.9410
0.0002 0.0001 0.9220 0.9390 0.9540 0.9450 0.9620 0.9410 0.9420
0.0005 0.0002 0.9200 0.9320 0.9460 0.9460 0.9350 0.9460 0.9500
0.0010 0.0003 0.9130 0.9530 0.9580 0.9480 0.9600 0.9600 0.9400
0.0020 0.0006 0.9320 0.9460 0.9510 0.9500 0.9450 0.9450 0.9590
0.0050 0.0015 0.9310 0.9460 0.9490 0.9370 0.9480 0.9530 0.9460
0.0100 0.0030 0.9150 0.9370 0.9480 0.9440 0.9520 0.9600 0.9500
0.0200 0.0060 0.9290 0.9570 0.9360 0.9470 0.9440 0.9490 0.9490
0.0500 0.0147 0.9240 0.9500 0.9440 0.9580 0.9490 0.9500 0.9360
0.1000 0.0283 0.9200 0.9550 0.9450 0.9580 0.9430 0.9570 0.9430
0.2000 0.0525 0.9130 0.9430 0.9510 0.9490 0.9580 0.9520 0.9390
0.5000 0.1049 0.9180 0.9470 0.9640 0.9550 0.9560 0.9450 0.9370
1.0000 0.1368 0.9120 0.9560 0.9550 0.9610 0.9560 0.9650 0.9500

Table 6: Empirical width of lower confidence limit from simulation study for Scenario 2.

δ g(θ) m = 50 100 200 500 1000 2000 5000

0.0000 0.0000 0.1556 0.1133 0.0791 0.0471 0.0353 0.0244 0.0155
0.0001 0.0000 0.1615 0.1129 0.0794 0.0472 0.0337 0.0249 0.0153
0.0002 0.0001 0.1572 0.1098 0.0782 0.0487 0.0360 0.0234 0.0153
0.0005 0.0002 0.1592 0.1160 0.0783 0.0473 0.0341 0.0245 0.0152
0.0010 0.0003 0.1562 0.1134 0.0786 0.0488 0.0354 0.0251 0.0153
0.0020 0.0006 0.1591 0.1135 0.0788 0.0493 0.0340 0.0240 0.0158
0.0050 0.0015 0.1615 0.1159 0.0807 0.0474 0.0341 0.0245 0.0150
0.0100 0.0030 0.1595 0.1122 0.0793 0.0494 0.0346 0.0244 0.0151
0.0200 0.0060 0.1621 0.1164 0.0773 0.0489 0.0344 0.0248 0.0150
0.0500 0.0147 0.1597 0.1115 0.0784 0.0487 0.0325 0.0242 0.0146
0.1000 0.0283 0.1547 0.1137 0.0769 0.0470 0.0321 0.0238 0.0145
0.2000 0.0525 0.1499 0.1043 0.0761 0.0441 0.0316 0.0215 0.0141
0.5000 0.1049 0.1401 0.0961 0.0656 0.0393 0.0271 0.0185 0.0119
1.0000 0.1368 0.1341 0.0915 0.0580 0.0358 0.0250 0.0171 0.0111
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Table 7: Schedule of mailings.

(a) The 2017 March NCBS was targeted to 8,000 recipients. Of these, half were assigned to the Monday
Mailout group, and half were assigned to the Thursday Mailout group.

Monday Mailout Group Thursday Mailout Group
Mailing Date Day of Week Date Day of Week
1 March 6, 2017 Monday March 9, 2017 Thursday
2 March 9, 2017 Thursday March 13, 2017 Monday
3 March 20, 2017 Monday March 23, 2017 Thursday
4 March 27, 2017 Monday March 30, 2017 Thursday

(b) The 2016 September NCBS was targeted to 9,000 recipients.

Mailing Date Day of Week
1 August 25, 2016 Thursday
2 September 1, 2016 Thursday
3 September 8, 2016 Thursday
4 September 15, 2016 Thursday

(c) The 2016 June NCBS was targeted to 8,000 recipients.

Mailing Date Day of Week
1 June 13, 2016 Monday
2 June 15, 2016 Wednesday
3 June 24, 2016 Friday
4 July 5, 2016 Tuesday

Table 8: Call counts by designated week of study.

2017 March
Week 2016 June 2016 Sept Mon Thu Total π̂j

1 353 490 127 7 134 0.9478
2 747 689 226 256 512 0.4414
3 757 970 151 83 234 0.6453
4 383 528 177 147 324 0.5463
5 273 129 48 145 193 0.2487

Total 2513 2739 721 627 1348
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Figure 2: Daily call volumes during 2017 March NCBS Test. Blue triangles and red pluses along
the x-axis represent mailing dates for Monday and Thursday Mailout groups, respectively.
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Figure 3: Daily call volumes during 2016 September NCBS. Black triangles along the x-axis repre-
sent mailing dates.
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Figure 4: Daily call volumes during 2016 June NCBS. Black triangles along the x-axis represent
mailing dates.
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Figure 5: Day-of-week call volumes for 2017 March NCBS Test.
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Figure 6: Day-of-week call volumes for 2017 March NCBS Test; Monday and Thursday Mailout
groups combined.
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Figure 7: Day-of-week call volumes for 2016 September NCBS.
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Figure 8: Day-of-week call volumes for 2016 June NCBS.
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Table 9: Results for inference on the quantity g(θ). Estimates, standard errors (SEs), and Z-
statistics are displayed in the first three columns. (a) and (c) give a p-value for hypothesis (2.3)
and a level 0.90 lower confidence limit for g(θ). (b) gives a p-value for hypothesis (2.2) and a level
0.90 (two-sided) confidence interval for g(θ).

(a) 2016 September NCBS to 2017 March NCBS.

Week Estimate SE Z-statistic p-value CI Lo
1 0.0823 0.0602 1.3681 0.0856 0.0052
2 0.2605 0.0402 6.4731 4.802e-11 0.2090
3 0.1480 0.0411 3.6026 0.0002 0.0953
4 0.2273 0.0453 5.0166 2.629e-07 0.1693
5 -0.3376 0.0775 -4.3563 1.0000 -0.4369

(b) 2016 June NCBS to 2017 March NCBS.

Week Estimate SE Z-statistic p-value CI Lo
1 -0.0153 0.0631 -0.2426 0.5958 -0.0962
2 0.3463 0.0379 9.1467 2.935e-20 0.2977
3 0.3905 0.0442 8.8356 4.980e-19 0.3338
4 0.3523 0.0565 6.2409 2.175e-10 0.2800
5 0.0253 0.0640 0.3956 0.3462 -0.0567

(c) 2016 June NCBS to 2016 September NCBS.

Week Estimate SE Z-statistic p-value CI Lo CI Hi
1 -0.0976 0.0451 -2.1630 0.0305 -0.1719 -0.0234
2 0.0857 0.0433 1.9782 0.0479 0.0144 0.1570
3 0.2425 0.0365 6.6499 2.934e-11 0.1825 0.3025
4 0.1250 0.0607 2.0602 0.0394 0.0252 0.2247
5 0.3629 0.0535 6.7823 1.183e-11 0.2749 0.4509
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Table 10: Estimated probabilities for data analyses. Estimates are ordered from largest to smallest
within each week. The corresponding day of week is shown to the right of each probability. The
column labeled Ê displays the entropy of the estimated probabilities.

(a) 2016 September NCBS vs. 2017 March NCBS.

Week p̂(Week) Ê
1 0.3857 Tue 0.3327 Mon 0.2388 Wed 0.0245 Sat 0.0122 Sun 0.0061 Thu 0.0000 Fri 1.2515
2 0.4224 Tue 0.3077 Wed 0.1190 Thu 0.0581 Sat 0.0421 Fri 0.0276 Sun 0.0232 Mon 1.4650
3 0.3835 Mon 0.2361 Tue 0.1247 Thu 0.1093 Wed 0.0670 Fri 0.0546 Sat 0.0247 Sun 1.6414
4 0.4545 Mon 0.2045 Tue 0.1212 Wed 0.1193 Thu 0.0473 Fri 0.0341 Sat 0.0189 Sun 1.5272
5 0.3256 Thu 0.1628 Mon 0.1550 Fri 0.1395 Tue 0.1085 Wed 0.0543 Sun 0.0543 Sat 1.7819

Week q̂(Week) Ê
1 0.3955 Fri 0.3284 Thu 0.1791 Sat 0.0522 Wed 0.0448 Sun 0.0000 Mon 0.0000 Tue 1.3338
2 0.2925 Mon 0.2054 Tue 0.1826 Wed 0.1535 Thu 0.1100 Fri 0.0311 Sat 0.0249 Sun 1.7255
3 0.3419 Thu 0.1581 Mon 0.1496 Fri 0.1026 Sat 0.0940 Tue 0.0940 Wed 0.0598 Sun 1.7894
4 0.2654 Thu 0.2099 Mon 0.1852 Fri 0.1636 Tue 0.1111 Wed 0.0340 Sat 0.0309 Sun 1.7545
5 0.4508 Mon 0.2798 Tue 0.1088 Wed 0.0622 Thu 0.0622 Fri 0.0259 Sat 0.0104 Sun 1.4443

(b) 2016 June NCBS vs. 2017 March NCBS.

Week p̂(Week) Ê
1 0.4023 Thu 0.3456 Fri 0.1133 Sat 0.0793 Wed 0.0595 Sun 0.0000 Mon 0.0000 Tue 1.3492
2 0.4565 Mon 0.2798 Tue 0.1285 Wed 0.0763 Thu 0.0469 Fri 0.0067 Sat 0.0054 Sun 1.3793
3 0.4676 Mon 0.2444 Tue 0.1321 Wed 0.0819 Thu 0.0647 Fri 0.0053 Sun 0.0040 Sat 1.3989
4 0.5431 Fri 0.1802 Sat 0.0992 Thu 0.0653 Wed 0.0522 Sun 0.0470 Tue 0.0131 Mon 1.4022
5 0.4505 Mon 0.2344 Tue 0.1465 Wed 0.1136 Thu 0.0403 Fri 0.0147 Sat 0.0000 Sun 1.4190

Week q̂(Week) Ê
1 0.3955 Fri 0.3284 Thu 0.1791 Sat 0.0522 Wed 0.0448 Sun 0.0000 Mon 0.0000 Tue 1.3338
2 0.2925 Mon 0.2054 Tue 0.1826 Wed 0.1535 Thu 0.1100 Fri 0.0311 Sat 0.0249 Sun 1.7255
3 0.3419 Thu 0.1581 Mon 0.1496 Fri 0.1026 Sat 0.0940 Tue 0.0940 Wed 0.0598 Sun 1.7894
4 0.2654 Thu 0.2099 Mon 0.1852 Fri 0.1636 Tue 0.1111 Wed 0.0340 Sat 0.0309 Sun 1.7545
5 0.4508 Mon 0.2798 Tue 0.1088 Wed 0.0622 Thu 0.0622 Fri 0.0259 Sat 0.0104 Sun 1.4443

(c) 2016 June NCBS vs. 2016 September NCBS.

Week p̂(Week) Ê
1 0.4023 Thu 0.3456 Fri 0.1133 Sat 0.0793 Wed 0.0595 Sun 0.0000 Mon 0.0000 Tue 1.3492
2 0.4565 Mon 0.2798 Tue 0.1285 Wed 0.0763 Thu 0.0469 Fri 0.0067 Sat 0.0054 Sun 1.3793
3 0.4676 Mon 0.2444 Tue 0.1321 Wed 0.0819 Thu 0.0647 Fri 0.0053 Sun 0.0040 Sat 1.3989
4 0.5431 Fri 0.1802 Sat 0.0992 Thu 0.0653 Wed 0.0522 Sun 0.0470 Tue 0.0131 Mon 1.4022
5 0.4505 Mon 0.2344 Tue 0.1465 Wed 0.1136 Thu 0.0403 Fri 0.0147 Sat 0.0000 Sun 1.4190

Week q̂(Week) Ê
1 0.3857 Tue 0.3327 Mon 0.2388 Wed 0.0245 Sat 0.0122 Sun 0.0061 Thu 0.0000 Fri 1.2515
2 0.4224 Tue 0.3077 Wed 0.1190 Thu 0.0581 Sat 0.0421 Fri 0.0276 Sun 0.0232 Mon 1.4650
3 0.3835 Mon 0.2361 Tue 0.1247 Thu 0.1093 Wed 0.0670 Fri 0.0546 Sat 0.0247 Sun 1.6414
4 0.4545 Mon 0.2045 Tue 0.1212 Wed 0.1193 Thu 0.0473 Fri 0.0341 Sat 0.0189 Sun 1.5272
5 0.3256 Thu 0.1628 Mon 0.1550 Fri 0.1395 Tue 0.1085 Wed 0.0543 Sun 0.0543 Sat 1.7819
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