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The Multivariate Linear Prediction Problem: Model-Based and

Direct Filtering Solutions

Tucker S. McElroy∗† and Marc Wildi‡

Abstract

Numerous contexts in macroeconomics, finance, and quality control require real-time estimation

of trends, turning points, and anomalies. We formulate the real-time signal extraction problem

as a multivariate linear prediction problem, present the optimal solution in terms of a known

model, and propose multivariate direct filter analysis to address the more typical situation

where the process’ model is unknown. We show how general constraints – such as level and time

shift constraints – can be imposed on a concurrent filter in order to guarantee that real-time

estimates have requisite properties, and apply the methodology to petroleum, capitalization,

and construction data.

Keywords. Frequency Domain, Seasonality, Time Series, Trends.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

In the applications of time series analysis to macroeconomics, finance, and quality control it is

essential to extract useful information about trends, turning points, and anomalies in real time.

The practitioner does not have the luxury of sifting past data for structural breaks, indicators of

regime change, or changes to volatility. Informative elections are contingent upon understanding

the dynamics of various time series at time present. Because long-term movements, as well as

aberrations, are defined in terms of the long-run behavior of a time series over past, present, and
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future, any analysis of the present state necessarily involves a degree of forecasting. This broad

topic is referred to as real-time signal extraction.

A signal is any component of a time series that is deemed useful for a particular application.

If long-term movements are of interest, the signal is a trend. If short-term fluctuations about a

longer-term mean are of interest, the signal is a cycle. If shocks (e.g., due to rare terrorist events

or natural disasters) are of interest, the signal consists of the process’ extreme values. If regular

patterns of an annual period, linked to cultural or meteorological patterns, are of interest, the signal

is a seasonal component.

However, these signals are not directly observable at time present, because in each case their

definition involves all the past and future values of a time series – since the future is unknown, we

have to rely on the present and past values. The statistical processes by which a signal is estimated

from available data is referred to as extraction, and the residual from the signal extraction is

referred to as the noise. Whereas signals can be estimated from historical, or past, sections of a

time series, when effort is focused upon time present we refer to the analysis as real-time signal

extraction. Real-time signal extraction is considerably more challenging, and useful, than historical

signal extraction. The difficulty lies in the uncertainty about the future, which is transmitted unto

the signal extraction estimates themselves.

There is a considerable body of literature addressing signal extraction (see below), but this

article focuses upon a particular methodology called Direct Filter Analysis (DFA). As the original

development of DFA (Wildi, 2008) was univariate, the methodology’s power was limited to the

information content within a single time series. But because batches of time series can be closely

linked, exhibiting correlated trends, common dynamics, or even predictive relationships, it is natural

to expect that a multivariate extension of DFA to vector time series will more greatly facilitate

informed decision making. The topic of this article is Multivariate Direct Filter Analysis (MDFA).

Many signals can be formulated as weighted linear combinations of a time series, in which case

the real-time signal extraction problem can be approached as a Linear Prediction Problem (LPP).

In order to pose an LPP, a solution criterion is needed, and Mean Squared Error (MSE) is often

used: one seeks a real-time signal extraction that has minimal MSE discrepancy with the actual

target signal. Although an LPP can then be solved, the solution depends on knowing something

about the dynamics in the time series process. The most venerable approach to understanding these

dynamics is to posit a time series model, and fit this model to the observed data. This approach,

which goes back to the work of Yule in the 1930s, is called the classic paradigm, being based upon

a Model-Based Analysis (MBA).

MBA for forecasting problems is reviewed in Brockwell and Davis (1991), and the case of signal

extraction problems is discussed in Bell and Martin (2004), as well as McElroy (2008). The multi-

variate case is discussed in McElroy and McCracken (2017) and McElroy and Trimbur (2015), for

forecasting and signal extraction respectively; also see Harvey (1989) for a state space formulation.
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Alexandrov et al. (2012) reviews trend filtering methods, while Dagum and Luati (2012), Maravall

and Pérez (2012), Tiller (2012), and McElroy (2017) provide discussions of application to seasonal

adjustment. However, there is still lacking a general multivariate solution to the LPP, which this

article firstly provides.

An attractive feature of MBA is that analytical formulas for the LPP solutions can often be

obtained, thereby facilitating computation. The philosophy underpinning the classic paradigm is

that a Data Generation Process (DGP) exists, and statistical inference attempts to identify a model

class for the DGP, fitting that model via estimating values of the parameters. While recognizing

that any such model need not be correct, i.e., exactly match the DGP itself, such models can yet

be useful to the extent to which they reflect important features in the data. Yet it is difficult

to keep a model simple – which is necessary to its utility – and at the same time be sufficiently

versatile to explain all the data’s features. For a given LPP, only a subset of the DGP’s features

are necessary to be successful in prediction. For instance, long-term forecasting stresses the low-

frequency movements of the DGP.

The full set of LPP solutions for a given time series is greatly constrained once a model is

introduced, as only a particular subset of solutions can be obtained. If the model is badly mis-

specified, the resulting LPP solution will be inadequate. This empirical disfunctionality motivated

the genesis of DFA, which essentially provides access to a much wider pool of LPP solutions. Of

course, model mis-specification is always present; the issue is whether it has a significant impact

upon the objectives of analysis. For instance, a given model’s mis-specification may have grave

repercussions for certain problem structures, while being adequate for other LPPs. The given LPP

of interest determines the gravity and impact of model mis-specification.

These topics have been treated in Wildi and McElroy (2016, 2018) in the case of univariate time

series, which discuss the basic DFA and the capabilities for customization. This article presents the

generalized treatment of the multivariate LPP in Section 3, following background on the overall

filtering framework in Section 2. Section 4 develops MDFA in its basic form, with extensions to

level and time shift constraints, and finally a general form suitable for nonstationary time series.

We present applications in Section 5 to multivariate trend estimation in Petroleum data, as well

as multivariate seasonal adjustment of Construction data. Section 6 summarizes our findings, with

proofs and additional figures in the Supplementary material.

2 Background and Framework

Let {Xt} be an N -dimensional weakly stationary time series, with autocovariance function (acf)

defined for h ∈ Z via

Γ(h) = Cov[Xt+h, Xt].

3



The spectral density function (sdf) is a Hermitian matrix-valued function of ω ∈ [−π, π], defined

as the Fourier Transform (FT) of the acf:

F (ω) =
∑
h∈Z

Γ(h) zh,

where we use the shorthand z = e−iω. Given a bounded sdf (i.e., each Fjk, the (j, k)th entry of F ,

has bounded modulus as a function of ω), the acf can be recovered via inverse FT:

Γ(h) = 〈F 〉h =
1

2π

∫ π

−π
F (ω) eiωh dω, (1)

which uses the bracket notation to define the integral of a function (of ω) multiplied by eiωh = z−h,

and the whole divided by 2π.

Datasets are typically available as a finite set of contiguous regular measurements, denoted

{x1, x2, . . . , xT }, where T is the length of sample. The data is viewed as a realization of the

corresponding random vectors {X1, X2, . . . , XT }, or alternatively as a time window of the sample

path {xt} corresponding to times 1, 2, . . . , T . Applying the vec operator to such a sample yields

the full vector X, which is given by

X = vec[X1, X2, . . . , XT ].

The covariance matrix of this NT -dimensional random vector, in the stationary case, is block

Toeplitz, Each block is N ×N , and the stth such block, for 1 ≤ s, t ≤ T , is given by Γ(s− t). Also,

from the sample we can compute the Discrete Fourier Transform (DFT) via

X̃(ω) = T−1/2
T∑
t=1

ztXt. (2)

This can be computed for any ω ∈ [−π, π], though for applications we restrict to the Fourier

frequencies.

Definition 1 Given integer T , the Fourier frequencies are a set of T numbers in [−π, π] of the

form ωj = 2πj/T for −[T/2] ≤ j ≤ [T/2] (when T is odd) and −[T/2] ≤ j ≤ [T/2]− 1 (when T is

even).

Remark 1 In the case that T is odd, there exists m such that T = 2m + 1, and in this case

−m ≤ j ≤ m. In the case that T is even, then T = 2m for some m, and −m ≤ j ≤ m− 1. Clearly,

m = [T/2] in either case.

The Fourier frequencies form the basis for a transformation of the time-domain sample X to the

frequency-domain. By restricting the DFT to Fourier frequencies, we obtain a linear transformation

from the T ×N matrix of the sample to a T ×N matrix of DFTs. To show this result, let

X = [X1, X2, . . . , XT ],
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so that vec[X ] = X. Similarly, denote the matrix of DFTs by X̃ , with jth column (1 ≤ j ≤ T ) given

by X̃(ωj−[T/2]−1). In this way, the matrix of DFTs begins with X̃(ω−[T/2]) in the first column, and

proceeds to X̃(ωT−[T/2]−1), with frequency corresponding to either [T/2] or [T/2]− 1 depending on

whether T is odd or even. Letting C denote the T × T linear transformation such that X̃ ′ = C X ′,
we see that

Cjt = T−1/2 exp{−i 2πt (j − [T/2]− 1)/T},

for 1 ≤ j, t ≤ T . This follows directly from (2). Moreover, the original sample can be recovered

from the DFT matrix by applying C−1, which equals the conjugate transpose (i.e., C is unitary).

The multivariate periodogram is defined to be the rank one Hermitian matrix

I(ω) = X̃(ω) X̃(ω)
∗
. (3)

The periodogram furnishes a basic estimate of the spectral density F of the process. There is an

empirical version of (1), where the periodogram is mapped to the sample autocovariance:

Γ̂(h) = 〈I〉h =
1

2π

∫ π

−π
I(ω) eiωh dω. (4)

This is easily verified using the definition of sample autocovariance

Γ̂(h) = T−1
T−h∑
t=1

Xt+hX
′
t

for h ≥ 0, and with Γ̂(h) = Γ̂(−h)
′

for h < 0. Conversely, the periodogram is the FT of the sample

autocovariances:

I(ω) =
∑
|h|<T

Γ̂(h) e−iωh. (5)

The lag operator on a time series is denoted L, and is defined via the action

LXt = Xt−1.

Powers of L are defined analogously, with L0 = 1 (an operator identity) and negative powers

yielding forward time shifts, i.e., leads. Matrix polynomials of L yield new operators that act upon

a time series using the linearity principle. Thus, if A(L) =
∑p

j=0 a(j)Lj for N ×N matrices a(j),

then

A(L)Xt =

p∑
j=0

a(j)Xt−j .

The latent dynamics of {Xt} can be revealed through the application of a multivariate linear filter

Ψ(L) =
∑

j∈Z ψ(j)Lj . The properties of a filter can be studied by setting L = z, thereby obtaining

the frequency response function (frf): Ψ(e−iω) =
∑

j∈Z ψ(j) e−iωj . Another quantity of interest is

the derivative of a filter, defined via ∂Ψ(L) =
∑

j∈Z j ψ(j)Lj−1. An example of Ψ(L) is provided
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by a low-pass filter that extracts long-run dynamics, such as trends and business-cycles. In general

the extracted signal is the output of the filter, i.e.,

Yt = Ψ(L)Xt =
∑
j∈Z

ψ(j)Xt−j . (6)

When ψ(j) = 0 for j < 0 the signal depends only on present and past values of the process, and

hence the filter is called causal, or concurrent. In contrast, if ψ(j) 6= 0 for j < 0 then the filter

depends on future values, and is not causal. A real-time signal is the output of a causal filter, as it

can be computed given present data at hand, in “real time.” However, many signals of interest are

defined through symmetric filters, which have the property that ψ(j) = ψ(−j) for j ≥ 1.

For applications, it is practical to use a causal filter, allowing for real-time signal estimates. We

seek a causal Ψ̂(L) =
∑

j≥0 ψ̂(j)Lj that approximates Ψ(L) on the time series of interest, i.e., the

filter error

Et = Ψ(L)Xt − Ψ̂(L)Xt (7)

should be stationary, mean zero, and have small variance. Because Et is an N -vector, we can design

a criterion that involves minimizing the trace of its covariance matrix, for example. The quest for

Ψ̂(L), such that Var[Et] is minimal, is called the linear prediction problem (LPP).

A model-based (MB) approach to the problem proceeds as follows: we can compute the optimal

Ψ̂(L) analytically, given knowledge of Ψ(L) and the spectral density of {Xt}. (If the data is

difference stationary, we can still solve the LPP, expressing it in terms of the differencing polynomial

and the Wold decomposition of the differenced process.) The univariate solution was given in Wildi

and McElroy (2016), and the multivariate solution is described below. These MB solutions to the

LPP yield a formula for Ψ̂(L), which can then be applied to generate real-time signals.

A deficiency with the MB approach is mis-specification: we must have the exact Wold decom-

position of the process. Multivariate direct filter analysis (MDFA) instead foregoes knowledge of

the exact dynamics, and attempts to minimize Var[Et] with respect to the unknown coefficients

of Ψ̂(L). One can take Ψ̂(L) belonging to some class of causal filters, and parametrize that class

via θ; then minimize the criterion with respect to θ. In order to do this, one must estimate the

process’ spectral density, and it is adequate from a theoretical perspective to use the periodogram,

as shown below. This is the basic MDFA solution to an LPP.

We mention two extensions of this basic MDFA. First, it may be of interest to constrain the

solution Ψ̂(L) in various ways – this can be done by restricting the class of causal filters. For

instance, it may be of interest to ensure that Ψ̂(L) and Ψ(L) treat constants and trend lines in

the same manner, leading to the level and time shift constraints. Second, the data process that

we analyze may be difference-stationary, in which case the periodogram is massively biased and

cannot be used as an estimator – we must modify the basic criterion, which can be accomplished

by imposing generalized level and time shift constraints, as shown below.
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3 Multivariate Linear Prediction Problems

We define the class of real-time estimation problems considered in this article.

Definition 2 A target is defined to be the output of any known linear filter acting on the data

process, i.e., {Yt} is a target time series corresponding to a given filter Ψ(L) acting on a given

observed time series {Xt} if and only if we can write for all integers t

Yt = Ψ(L)Xt.

We say that {Yt} is a scalar target if Ψ(L) is a 1×N -dimensional filter.

In practice, the target is specified by the analyst in accordance with their particular objectives.

Below we provide some common examples.

Example 1 Multi-step Ahead Forecasting. Suppose that our goal is to forecast one of the

component series h steps ahead, where h ≥ 1 is the given forecast lead. Here, suppose that the

series of interest is the first component, so that

Yt = Xt+h

for all t ∈ Z. This target corresponds to Ψ(L) = L−h 1N , where 1N is the identity matrix of

dimension N . Thus, ψ(`) is a N ×N matrix, each of which are zero except ψ(−h), which is given

by 1N .

Example 2 Ideal Low-Pass. In order to estimate a trend from a given series, conceptually we

wish to screen out all the higher frequency components in the data. With reference to the spectral

representation, if Ψ(z) is zero for all ω in a band of the higher frequencies, then {Yt} will only

be composed of low frequency stochastic sinusoids. The simplest way to achieve such an output

is to design the frf as an indicator function (denoted with a χ), involving a steep cutoff of noise

frequencies; see Baxter and King (1999). This is viewed by some as the best possible definition of

trend, and hence the filter is called the ideal low-pass. For scalar target, we have

Ψ(z) = χ[−µ,µ](ω) 1N

for some cutoff µ ∈ (0, π) that separates the pass-band from the stop-band. The coefficients are

given by

ψ(`) =
sin(`µ)

π`
1N

for ` 6= 0 and ψ(0) = µ/π e′1.
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Figure 1: Bivariate trend frequency response functions for Petroleum data, with input series by
column, and output series by row.

Example 3 Model-Based Random Walk Trend. The Local Level Model (LLM) discussed in

Harvey (1989) is capable of modeling a time series consisting of a random walk trend {µt} and a

white noise irregular {ιt}, such that Xt = µt + ιt. Both the multivariate trend and irregular are

driven by independent white noise processes, with respective covariance matrices Σµ and Σι, and

the frf for the optimal trend extraction filter (McElroy and Trimbur, 2015) is

Ψ(e−iω) = Σµ [Σµ + (2− 2 cos(ω)) Σι]
−1.

An example – based on a bivariate LLM fitted to Petroleum data discussed below – yields the frfs

plotted in Figure 1. Note that the upper left panel has a low-pass shape, but the lower right panel

passes a lot of noise. (Both cross-gains, in the off-diagonal panels, offer a small contribution.)

Example 4 Model-Based Integrated Random Walk Trend. Example 3 can be generalized

to the Smooth Trend Model (STM) developed in Harvey (1989), where now the trend {µt} is an

integrated random walk, i.e., (1− L)2µt is white noise of covariance matrix Σµ. Then the frf for

the optimal trend extraction filter – which also coincides with the multivariate Hodrick-Prescott

filter (cf. McElroy and Trimbur, 2015) – is given by

Ψ(e−iω) = Σµ

[
Σµ + (2− 2 cos(ω))2 Σι

]−1
.
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Figure 2: Bivariate trend frequency response functions for Non-Defense Capitalization data, with
input series by column, and output series by row.

The chief difference with the frf of the LLM is that the sinusoidal factor is now squared. Fitting

this model to the bivariate time series of Non-Defense Capitalization data (Shipments and New

Orders, March 992 through July 2016, in seasonally adjusted form) yields the frfs plotted in Figure

2. There is much more high-frequency content filtered out by this filter, as compared with the LLM

trend filter (cf. Figure 1); also notable, is the substantial cross-gain at business cycle frequencies

in the lower left panel.

Example 5 Model-Based Seasonal Adjustment. Flexible structural models were discussed in

McElroy (2017), with atomic components for each distinct unit root (with any conjugate roots) in

the differencing operator. For monthly data where δ(L) = (1−L)(1−L12), we obtain an integrated

random walk trend component {µt} (identical to the trend discussed in Example 4) and six atomic

seasonal components that combine into a single seasonal component {ξt} with differencing operator

U(L) = 1+L+L2 + . . .+L11, along with the irregular {ιt}. Six separate covariance matrices govern

the dynamics of the seasonal component, allowing for different degrees of smoothness at each of the

six seasonal frequencies. Fitting this model to the Housing Starts data (discussed below) results

in filter frfs with nuanced behavior – see Figure 3 for the seasonal adjustment filters. The troughs

at seasonal frequencies are typical, but note that breadth varies by series; moreover, the spectral
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Figure 3: Quadvariate seasonal adjustment frequency response functions for Housing Starts data,
with input series by column, and output series by row.

content in some of the cross-gains is pronounced (e.g., the third panel of the first row, representing

the impact of the NorthEast sector upon the seasonal adjustment filter of the South sector).

As we see from these examples, the targets of real-time signal extraction are features of the

stochastic process that are of interest to a particular user. Targets can be ad hoc (cf. Example 2)

or model-based (cf. Examples 3, 4, and 5), and may depend upon all the components of Xt.

Definition 3 The Linear Prediction Problem (LPP) seeks a linear estimate of the form (6)

such that the filter error (7) has mean zero such that the determinant of the filter error variance

Var[Et] is minimized.

The filter error variance matrix is referred to as the filter MSE. When the data process is

itself causal and linear, it is possible to give an explicit solution to the LPP in terms of the Wold

decomposition (Brockwell and Davis, 1991). All purely nondeterministic weakly stationary (mean

zero) processes have a Wold decomposition Xt = Θ(L) εt, where {εt} is WN(Σ) and Θ(L) =∑
`∈Z θ(`)L

`. When θ(`) = 0 for all ` < 0, the process is called causal. For any power series, we

introduce the notation [Θ(L)]ba =
∑b

j=a θ(j)L
j . With these preliminaries, we can state the solution

to the LPP.
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Proposition 1 Suppose that {Xt} is mean zero and weakly stationary with causal Wold decompo-

sition expressed as Xt = Θ(L) εt. Then the solution to the LPP posed by a target Yt = Ψ(L)Xt is

given by

Ψ̂(L) =
∑
`≥0

ψ(`)L` +
∑
`<0

ψ(`) [Θ(L)]∞−` L
` Θ(L)−1. (8)

Moreover, the MSE corresponding to this solution is given by

1

2π

∫ π

−π

∑
`>0

ψ(−`) z−`[Θ(z)]`−1
0 Σ [Θ(z)]`−1

0

∗∑
`>0

ψ(−`) z` dω. (9)

Remark 2 The formula (9) gives us a lower bound on the determinant of the MSE when we use

sub-optimal proxies for Ψ̂(L).

As indicated by Remark 2, the result of Proposition 1 is chiefly useful when we know Θ(L).

However, this is rarely the case in practice: a classical parametric approach involves formulating

a time series model, fitted using the Gaussian likelihood, and finally computing the LPP solution

in terms of the fitted model. Alternatively, one might consider fitting a specified model such that

the LPP MSE is minimized. A more broad nonparametric approach involves considering classes of

concurrent filters and directly minimizing the LPP MSE over this class – this is the methodology

of Direct Filter Analysis (DFA).

Illustration 1 VAR(1). Consider an LPP where the true process {Xt} is a Vector Autoregression

(VAR) of order 1. This process can be described via

Xt = ΦXt−1 + εt

for a matrix Φ that is stable, i.e., has all eigenvalues bounded by one in modulus (Lütkepohl, 2007).

It is known that the VAR(1) has the causal representation Θ(L) = (1− ΦL)−1. Because for ` < 0

[Θ(L)]∞−` =
∞∑

j=−`
Φj Lj = Φ−` L−` (1− ΦL)−1,

we find that (8) reduces to

Ψ̂(L) =
∑
`≥0

ψ(`)L` +
∑
`<0

ψ(`) Φ−`. (10)

The second term in this expression we denote by AΨ(Φ). Hence, the optimal concurrent filter is

determined by applying the filter to past data and modifying the present weight ψ(0) by adding

the quantity AΨ(Φ). In the case of h-step ahead forecasting of the first time series (Example 1),

Ψ̂(L) = AΨ(Φ) = Φh. This formula demonstrates that it is essential that Φ be stable, and if fitting

a VAR(1) we must parametrize Φ such that stability is guaranteed. (Such a parametrization is

discussed in Roy, McElroy, and Linton (2018).)

11



4 Multivariate Direct Filter Analysis

We can now discuss a more general solution to the LPP. One perspective on Proposition 1 is that it

provides a particular class of concurrent filters that arise from specified models. However, so long

as these models are mis-specified, the resulting concurrent filters will be sub-optimal. Therefore, it

may be possible to improve performance by utilizing broader classes of concurrent filters that are

not derived from a particular model. The MDFA seeks a concurrent filter Ψ̂(B) that optimizes the

determinant of the MSE in a given LPP.

4.1 Basic MDFA

Suppose that the causal filters of interest belong to a class G described by a parameter ϑ belonging

to a parameter manifold. Because we seek elements of G that will solve an LPP, i.e., be a good

concurrent approximation to Ψ(L), we use the notation

G = {Ψ̂ϑ(L) : ϑ belongs to a parameter space}. (11)

First suppose that {Xt} is weakly stationary with mean zero and spectral density F . The real-time

estimation error is given in (7), which has mean zero and N ×N variance matrix

E[EtE
′
t] = 〈

[
Ψ(z)− Ψ̂ϑ(z)

]
F
[
Ψ(z)− Ψ̂ϑ(z)

]∗
〉
0
. (12)

This suggests the criterion function detDΨ(ϑ,G) for any Hermitian function G, defined via

DΨ(ϑ,G) = 〈
[
Ψ(z)− Ψ̂ϑ(z)

]
G
[
Ψ(z)− Ψ̂ϑ(z)

]∗
〉
0
. (13)

In the following development, setting G = F yields an ideal criterion based on the process, whereas

setting G = I (the periodogram) yields an empirical criterion, providing estimates that we can

compute from data. Taking the determinant of (13) yields the MDFA criterion function. Given

a filter class G, the best possible concurrent filter is given by Γϑ(F ), where ϑ(F ) is a minimizer

of detDΨ(ϑ, F ). This ϑ(F ) is the Pseudo-True Value for the filter parameter, in analogy with

the terminology for model parameters. A case of interest arises from taking a very broad class G,

namely let G consist of all length q concurrent filters, with

ϑ′ =
[
ψ̂(0), ψ̂(1), . . . , ψ̂(q − 1)

]
. (14)

So ϑ is a qN ×N dimensional matrix. Then the criterion (13) can be rewritten as

DΨ(ϑ,G) = ϑ′B ϑ− ϑ′ b− b′ ϑ+ 〈Ψ(z)GΨ(z)∗〉0, (15)

where

b′ =
[
〈Ψ(z)G〉0, 〈Ψ(z)G〉1, . . . , 〈Ψ(z)G〉q−1

]
, (16)

and B is a block matrix, where the jkth N ×N block of is 〈G〉k−j for 1 ≤ j, k ≤ q. (Because G is

Hermitian, 〈G〉k−j is real, and it follows that b is real as well.)
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Proposition 2 The minimizer of the MDFA criterion given by the determinant of (13), with

respect to G consisting of all length q concurrent filters, is

ϑ(G) = B−1 b,

where the jkth block of B is 〈G〉k−j, and b is given by (16). The minimal value is the determinant

of

〈Ψ(z)GΨ(z)∗〉0 − b
′B−1 b. (17)

Remark 3 To implement Proposition 2 in practice, G is given by the periodogram so that 〈G〉h =

Γ̂(h) by (4). It is necessary to compute b, given by (16), and we can proceed by approximating the

integrals over a Riemann mesh corresponding to Fourier frequencies.

Example 6 One-step Ahead Forecasting. Suppose we consider the one-step ahead forecasting

of stationary time series and G corresponds to all VMA filters of order q (i.e., the filter corresponds

to a VMA(q − 1) polynomial), where

ϑ = vec[ψ̂(0)
′
, ψ̂(1)

′
, . . . , ψ̂(q − 1)

′
].

With Ψ(L) = L−1 from (13) we have

DΨ(ϑ,G) = 〈
[
z−11N − Ψ̂ϑ(z)

]
G
[
z−11N − Ψ̂ϑ(z)

]∗
〉
0

= 〈

[
1N −

q−1∑
`=0

ψ̂(`) z`+1

]
G

[
1N −

q−1∑
`=0

ψ̂(`) z`+1

]∗
〉
0

= 〈G〉0 − 2ϑ′ 〈G〉1:q + ϑ′ 〈G〉0:(q−1),0:(q−1) ϑ.

Hence the optimizer is

ϑ(G) = 〈G〉−1
0:(q−1),0:(q−1) 〈G〉1:q,

which is the first component of the solution to the Yule-Walker system of order q determined by

G. Therefore the MDFA solution is the same as the fit of a VAR(q) using Proposition 1.

We designate the resulting prediction function Ψ̂ϑ(G) as a Linear Prediction Filter (LPF). Again,

when G = F this LPF is a theoretical object, but when G = I the LPF can be constructed directly

from the sample.

Illustration 2 VAR(1). Again consider a VAR(1) process, and suppose we wish to use MDFA

to approximate the optimal LPP solution – even though we don’t know the true dynamics. Let G
denote the set of moving average filters of length q, and G is the spectral density of the VAR(1);

the solution given by Proposition 2 can be compared to that of the LPP, which has the first q

components given by

ϕ′ = [ψ(0) +AΨ(Φ), ψ(1), . . . , ψ(q − 1)].
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This is an approximate solution to the system ϑ′B = b′, because ϕ′B has j + 1th component, for

0 ≤ j ≤ q − 1, equal to
q−1∑
`=0

ψ(`) 〈G〉j−` +AΨ(Φ) Γ(j).

Noting that

AΨ(Φ) Γ(j) =
∑
`<0

ψ(−`) Φ−` Γ(j) =
∑
`<0

ψ(−`) Γ(j − `),

because for a VAR(1) process Γ(h) = Φh Γ(0) when h ≥ 0, we see that component j + 1 of ϕ′B is∑
`≤q−1

ψ(`) Γ(j − `) = [b′]j+1 −
∑
`≥q

ψ(`) Γ(j − `).

As q →∞ the error term vanishes (for each j), indicating that ϕ′B ≈ b′, or ϑ ≈ ϕ.

To compute the quantities given in Proposition 2, and more generally to compute the MDFA

criterion (13), we propose to approximate each integral by an average over Fourier frequencies.

Although finer meshes could clearly be implemented, the Fourier frequency mesh is sufficient for

statistical purposes – this is because when considering the asymptotic properties of linear function-

als of the periodogram (i.e., weighted linear combinations of periodogram ordinates), there is no

difference between averaging over Fourier frequencies or integrating over every frequency. Moreover,

using the Fourier frequencies produces an empirical criterion function that is a closer approximation

to the sample mean squared error, which is shown by the following heuristic arguments. Recalling

that the real-time filter error Et = Yt − Ŷt has variance given by (12), the sample variance is

T−1
T∑
t=1

EtE
′
t = T−1

T−[T/2]−1∑
j=1−[T/2]−1

IE(ωj),

where IE is the periodogram of the filter errors. This equality is a discrete version of the Plancherel

identity; the right hand side (with IX the periodogram of the process) is approximated by

T−1

T−[T/2]−1∑
j=1−[T/2]−1

[
Ψ(e−iωj )− Ψ̂(e−iωj )

]
IX(ωj)

[
Ψ(eiωj )− Ψ̂(eiωj )

]′
.

This is exactly the criterion DΨ(ϑ, IX) of (13) with the integrals replaced by Riemann sums over

the Fourier frequencies.

With this justification, we see that the entries of the matrixB in Proposition 2 are approximately

computed via

Bj,k ≈ T−1

T−[T/2]−1∑
`=1−[T/2]−1

G(ω`) exp{i (k − j)(ω`)}

for 1 ≤ j, k ≤ T . Moreover, for 0 ≤ k ≤ T − 1

b′k ≈ T−1

T−[T/2]−1∑
`=1−[T/2]−1

Ψ(e−iω`)G(ω`) e
ikω` ,
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where b′ = [b′0, . . . , b
′
T−1]. Finally,

〈Ψ(z)GΨ(z)∗〉0 ≈ T
−1

T−[T/2]−1∑
`=1−[T/2]−1

Ψ(e−iω`)G(ω`) Ψ(eiω`)
′
.

4.2 Constrained MDFA

Various constraints upon the concurrent filter can be envisioned, and imposing such strictures

results in a constrained MDFA. Writing ∆(B) = Ψ(B) − Ψ̂(B) as the discrepancy filter, we see

from (7) that E[Et] = ∆(B)E[Xt]; by Definition 3, we require that E[Et] = 0 for any LPP. If

E[Xt] = 0 then this condition is always satisfied, but with nonzero means additional constraints

on ∆(B) must be imposed, which implicitly amount to constraints on Ψ̂(B). The following results

are well-known (Brockwell and Davis, 1991): if E[Xt] is constant but nonzero, then we require

∆(1) = 0. If E[Xt] is linear in t, then we require ∆(1) = 0 and ∂∆(1) = 0. Hence, we obtain three

fundamental types of constraints: Level Constraint (LC), Time-Shift Constraint (TSC), and Level

and Time-Shift Constraint (LTSC). These are defined as follows:

LC : ∆(1) = 0 or Ψ(1) = Ψ̂(1)

TSC : ∂∆(1) = 0 or ∂Ψ(1) = ∂Ψ̂(1)

LTSC : ∆(1) = 0, ∂∆(1) = 0 or Ψ(1) = Ψ̂(1), ∂Ψ(1) = ∂Ψ̂(1).

In the case of concurrent filters of form (14), LC is accomplished by demanding that
∑q−1

j=0 ψ̂(j) =

Ψ(1). More generally, we consider linear constraints formulated via

ϑ = Rϕ+Q, (18)

where R is Nq ×Nr and ϕ is Nr ×N dimensional, consisting of free parameters; Q is a matrix of

constants, and is Nq×N dimensional. This is not the most general formulation (we could instead

work with vec[ϑ′], but is sufficient to describe LC, TSC, and LTSC.

Level Constraint (LC).
∑q−1

j=0 ψ̂(j) = Ψ(1) implies that

ψ̂(0) = Ψ(1)−
q−1∑
j=1

ψ̂(j). (19)

Hence ϕ′ = [ψ̂(1), ψ̂(2), . . . , ψ̂(q − 1)] and

R =


−1 . . . −1

1 0 0
...

. . .
...

0 0 1

⊗ 1N Q =


Ψ(1)

0
...

0

 .
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Time Shift Constraint (TSC). The constraint is ∂Ψ(1) = ∂Ψ̂(1) =
∑q−1

j=0 j ψ̂(j), or ψ̂(1) =

∂Ψ(1)−
∑q−1

j=2 j ψ̂(j). Hence ϕ′ = [ψ̂(0), ψ̂(2), . . . , ψ̂(q − 1)] and

R =



1 0 . . . 0

0 −2 −3 . . .

0 1 0 . . .
...

. . .
...

...

0 . . . 0 1


⊗ 1N Q =



0

∂Ψ(1)

0
...

0


.

Level and Time Shift Constraint (LTSC). Take the Time Shift constraint formula for ψ̂(1),

and plug this into (19), to obtain

ψ̂(0) = Ψ(1)−

∂Ψ(1)−
q−1∑
j=2

j ψ̂(j)

− q−1∑
j=2

ψ̂(j)

= Ψ(1)− ∂Ψ(1) +

q−1∑
j=2

(j − 1) ψ̂(j).

Hence ϕ′ = [ψ̂(2), . . . , ψ̂(q − 1)] and

R =



1 2 3 . . .

−2 −3 −4 . . .

1 0 . . . 0
...

. . .
...

...

0 . . . 0 1


⊗ 1N Q =



Ψ(1)− ∂Ψ(1)

∂Ψ(1)

0
...

0


.

More generally, we can envision an LPP involving M linear constraints on each scalar filter in

ϑ, taking the form A = [J ⊗ 1N ]ϑ, where J is M × q dimensional (M < q) and A is NM × N
dimensional. (The LC, TSC, and LTSC examples all have this form.) In order to express this

constraint in the form (18), we use the Q-R decomposition (Golub and Van Loan, 1996) of J ,

writing J = C GΠ for an orthogonal matrix C (which is M × M dimensional), a rectangular

upper triangular matrix G (which is M × q dimensional), and a permuation matrix Π (which is

q × q dimensional). Standard matrix software will provide the Q-R decomposition J , and should

produce the rank of J as a by-product – if this is less than M , then there are redundancies in the

constraints that should first be eliminated. Hence proceeding with a full rank J , we partition G

as G = [G1G2] such that G1 has M columns and G2 has q −M columns. This quantity q −M
corresponds to the number of free coefficient matrices, and is therefore the same as r. The Q-R

decomposition guarantees that G1 is an upper triangular matrix, and moreover it is invertible.

Therefore [
G−1

1 C−1 ⊗ 1N
]
A =

([
1M , G

−1
1 G2

]
Π⊗ 1N

)
ϑ,
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and the action of Π (together with the tensor product) amounts to a block-wise permutation of the

elements of ϑ. Let the output of this permutation be denoted[
ϑ

ϑ

]
= (Π⊗ 1N ) ϑ,

where ϑ is NM ×N dimensional and ϑ is Nr×N dimensional. Then by substitution we can solve

for ϑ in terms of ϑ:

ϑ =
[
G−1

1 C−1 ⊗ 1N
]
A−

[
G−1

1 G2 ⊗ 1N
]
ϑ.

Therefore we recognize the free variables ϕ = ϑ, and obtain R and Q in (18) via

R = Π−1

[
−G−1

1 G2

1r

]
⊗ 1N

Q =

(
Π−1

[
G−1

1 C−1

0

]
⊗ 1N

)
A.

These formulas allow one to compute the form (18) from given constraints, and an analytical

solution to the resulting MDFA criterion be obtained from the following result.

Proposition 3 The minimizer of the MDFA criterion given by the determinant of (13), with

respect to G consists of all length q concurrent filters subject to linear constraints of the form (18),

is

ϕ =
[
R′BR

]−1
R′ (b−BQ) . (20)

Letting H = 1Nq −R [R′BR]−1R′B, the minimal value is the determinant of

〈Ψ(z)GΨ(z)∗〉0 − b
′R
[
R′BR

]−1
R′ b+Q′BH Q− 2 b′H Q. (21)

For computation, we utilize the same approximations to B and b as discussed in the previous

subsection, obtaining the constrained MDFA filter ϑ via (20) followed by (18).

4.3 Non-stationary MDFA

We here consider difference-stationary vector time series, which means there exists a scalar differenc-

ing polynomial δ(L) such that ∂Xt = δ(L)Xt is mean zero and covariance stationary. Examination

of (7) indicates that the error process is not stationary unless we make certain assumptions about

∆(L) = Ψ(L) − Ψ̂(L). It is necessary that we can factor δ(L) from ∆(L), i.e., there exists ∆̃(L)

such that

∆(L) = ∆̃(L) δ(L), (22)

as otherwise we cannot guarantee that {Et} will be stationary. However, (22) is sufficient to

guarantee that the filter error be stationary, because

Et = ∆̃(L) ∂Xt
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in such as case. We next discuss a set of filter constraints that guarantee (22), beginning with

a lemma that discusses factorization of filters. We say a filter Ψ(L) is absolutely convergent if∑
j∈Z ‖ψ(j)‖ <∞ for a given matrix norm ‖ · ‖.

Proposition 4 Any linear filter Ψ(L) can be expressed as

Ψ(L) = Ψ(ζ) + (L− ζ) Ψ](L)

for any ζ ∈ C such that |ζ| = 1, and an absolutely convergent filter Ψ](L), so long as ∂Ψ(L) is

absolutely convergent. If in addition ∂∂Ψ(L) =
∑

j∈Z j(j−1)ψ(j)Lj is absolutely convergent, then

there also exists an absolutely convergent filter Ψ[(L) such that

Ψ(L) = Ψ(ζ) + ∂Ψ(ζ) (L− ζ) ζ + (L− ζ)2 Ψ[(L).

Note that if Ψ(ζ) = 0, it follows from Proposition 4 that L − ζ can be factored from Ψ(L).

Similarly, (L− ζ)2 can be factored from Ψ(L) is Ψ(ζ) = ∂Ψ(ζ) = 0.

Definition 4 For ω ∈ [−π, π], a filter Ψ(L) annihilates ω-noise of order 1 if Ψ(e−iω) = 0, and

annihilates ω-noise of order 2 if in addition ∂Ψ(e−iω) = 0.

Hence, we have the following immediate corollary of Proposition 4.

Corollary 1 If a filter Ψ(L) annihilates ω-noise of order 1 and ∂Ψ(L) is absolutely convergent,

then

Ψ(L) = (L− e−iω) Ψ](L).

If a filter Ψ(L) annihilate ω-noise of order 2, and ∂∂Ψ(L) is absolutely convergent, then

Ψ(L) = (L− e−iω)
2

Ψ[(L).

We can apply Corollary 1 to factor a noise-differencing polynomial δN (L) from ∆(L): for each

ω such that the target filter Ψ(L) annihilate ω-noise of order d, we impose the constraint that Ψ̂(L)

shall have the same property, and hence (L− e−iω)
d

can be factored from both filters. For instance,

if noise frequencies are ω` with multiplicities d`, then repeated application of Corollary 1 yields

Ψ(L) =
∏
`

(L− e−iω`)
d` Ψ\(L) = δN (L) Ψ?(L)

for some residual filter Ψ\(L), where Ψ?(L) =
∏
`−e−iω`d` Ψ\(L) and δN (L) =

∏
`(1− eiω` L). By

imposing the same linear constraints on Ψ̂(L), we likewise obtain Ψ̂(L) = δN (L) Ψ̂?(L), and hence

∆(L) =
(

Ψ?(L)− Ψ̂?(L)
)
δN (L). (23)
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So if δ(L) = δN (L), then (22) holds at once. More generally, a given process’ differencing polynomial

may be factored into relatively prime polynomials δN (z) and δS(z), which correspond to noise and

signal dynamics respectively – see Bell (1984) and McElroy (2008). Many signal extraction filters

Ψ(L) have the property that they annihilate ω-noise of the appropriate order, such that δN (L) can

be factored; in addition, the noise filter 1N −Ψ(L) has the same property with respect to the signal

frequencies, i.e., δS(L) can be factored from 1N −Ψ(L) in the same manner. Hence 1N −Ψ(L) =

δS(L) Ψ�(L) for some factor Ψ�(L), and imposing the same constraints on the concurrent filter

yields

∆(L) = (1N − Ψ̂(L))− (1N −Ψ(L)) =
(

Ψ̂�(L)−Ψ�(L)
)
δS(L).

However, (23) also holds, and the roots of δS(z) and δN (z) are distinct (because the polynomials

are relatively prime by assumption), and hence δ(L) = δN (L) δS(L) must be a factor. Therefore,

∆̃(L) = (Ψ̂�(L)−Ψ�(L))/δN (L), and (22) holds.

In summary, given a factorization of δ(z) into signal and noise differencing polynomials, the

noise constraints and signal constraints on Ψ(L) must also be imposed upon Ψ̂(L), and this ensures

that {Et} will be stationary with mean zero. If ω satisfies δN (e−iω) = 0, then we impose that

Ψ̂(L) annihilates ω-noise of order given by the multiplicity of the root in δN (z). Otherwise, if

ω satisfies δS(e−iω) then we impose that Ψ̂(e−iω) = Ψ(e−iω) (if the root is simple – if a double

root, then also impose that ∂Ψ̂(e−iω) = ∂Ψ(e−iω)). In practice, we must determine the real and

imaginary parts of each such constraint, and write the corresponding constraints on Ψ̂(L) in the

form A = [J ⊗ 1N ]ϑ for filters of form (14), applying the methodology of the previous subsection.

With these constraints in play, the formula (12) holds with Ψ(z) − Ψ̂(z) replaced by ∆̃(z) and F

being the spectral density of {∂Xt}, i.e., we define the nonstationary MDFA criterion function as

detDΨ(ϑ,G) for

DΨ(ϑ,G) = 〈∆̃(z)G ∆̃(z)
∗
〉0 = 〈

[
Ψ(z)− Ψ̂ϑ(z)

]
G |δ(z)|−2

[
Ψ(z)− Ψ̂ϑ(z)

]∗
〉
0
. (24)

The second expression in (24) utilizes (22), and employs the understanding that poles in δ(z)−1

are exactly canceled out by the corresponding zeros in Ψ(z) − Ψ̂(z). Moreover, the ratio (Ψ(z) −
Ψ̂(z))/δ(z) = ∆̃(z) is bounded in ω for z = e−iω, as the previous discussion guarantees. As a matter

of convenience, given that the frequencies of singularity in |δ(z)|−2 are a set of Lebesgue measure

zero, calculation of DΨ(ϑ,G) can proceed by using the second expression, computing the numerical

integration over only those frequencies where δ(z) is nonzero. Whereas the theoretical filter error

MSE is given by DΨ,F , with F being the spectral density of {∂Xt}, for estimation we approximate

the integral over Fourier frequencies, and utilize the periodogram of the differenced data for G.

Again, we omit any contributions to the sum arising from Fourier frequencies that correspond to

zeros of δ(z), as such an omission only results in a loss of order T−1. (The alternative is to compute

the quantities ∆̃(z) at Fourier frequencies, using the factorization results of Corollary 1; this is not

worth the effort in practical applications.)
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5 Simulations and Applications

We now apply the preceding methods to simulations and real data, exploring real-time trend ex-

traction problems as well as seasonal adjustment, in a multivariate context.

5.1 VAR(1) Specification and Trend Extraction
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Figure 4: Bivariate Petroleum data (1973.1 through 2016.12) in grey, with black MB trends.

We suppose the true process is a VAR(1), and apply the MB trend filter defined in Example 3.

The parameters of the filter have been obtained by fitting a LLM to a bivariate petroleum series:

Industrial Petroleum Consumption and OPEC Oil Imports, Jan 1973 through December 2016, both

seasonally adjusted, which are displayed in Figure 4. The MLEs for the model parameters are

Σµ =

[
2.32 · 10−4 5.04 · 10−4

5.04 · 10−4 34.73 · 10−4

]
Σι =

[
110.44 · 10−5 7.17 · 10−5

7.17 · 10−5 128.57 · 10−5

]
.

As a result, the trend signal is quite a bit stronger in the second series (Imports), indicating that

little smoothing is needed; this is why the trend for the second series closely tracks the original

data (second panel of Figure 4).
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Figure 5: Bivariate trend filter applied to VAR(1) process (grey), with trends in black.

We seek to solve the corresponding trend extraction LPP. First, we can use the optimal solution

(10) given in Illustration 1, using our knowledge that the VAR(1) is correctly specified. Second,

we can use MDFA, proceeding as if we do not know the true process is a VAR(1), as we would in

practice, and hence use the periodogram; MDFA should be able to replicate the optimal solution,

so long as the filter class G is sufficiently rich. The VAR(1) is defined by

Xt =

[
1.0 0.5

−0.2 0.3

]
Xt−1 + εt,

with stationary initialization, and {εt} a Gaussian white noise of identity innovation variance. The

ideal trends Ψ(B)Xt are produced by truncating the filter to length 4001 (it is symmetric, so the

indices range between −2000 and 2000) and applying to a simulation of length 4500, only retaining

the central 500 data points, as displayed in Figure 5. (In this way we can dispense with edge effects,

and the extra 4000 observations are not used in the MDFA.) The black line of Figure 5 is the target,

and we wish to use MDFA (setting q = 30) with various constraints (LC, TSC, LTSC) to obtain a

good real-time estimate, comparing to the optimal solution given by implementing Illustration 1:
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we find that

AΨ(Φ) =

[
0.317 0.218

−0.054 0.027

]
,

and hence the optimal filter is easily computed. The in-sample MSEs of the various methods are

displayed in Table 1. Note that the basic MDFA (no constraints) replicates the optimal filter, as

their MSE is the same up to negligible statistical error. When imposing a level constraint (LC and

LTSC) there is a loss to the MDFA performance, which makes sense given that the optimal filter

does not impose a level constraint – in fact, the value of the optimal concurrent filter at frequency

zero is

Ψ̂(1) =

[
0.914 0.251

−0.030 0.842

]
,

which is quite different from 12. On the other hand, the time shift constraint alone (TSC) has little

impact on the performance of MDFA, because ∂Ψ̂(1) ≈ 0 · 12, i.e., the optimal filter already has

this property of zero time shift.

Series LPP Opt MDFA Basic MDFA LC MDFA TSC MDFA LTSC

1 .2669 .2668 .3093 .2701 .4452

2 .0234 .0232 .0246 .0234 .0285

Table 1: LPP MSE for bivariate VAR(1) process – with target trend given by the LLM MB trend –
for various concurrent filters: LPP Opt is the optimal filter, whereas the MDFA filters are labeled
according to the constraints imposed.

5.2 Petrol

We now extend the previous exercise by studying the LLM determined by the Petrol MLEs; we

are interested in the performance of MDFA relative to the MB concurrent filter. We begin with a

specification of the LLM exactly corresponding to the model fitted to the Petrol data, so that the

MB concurrent filter Ψ̂(B) solves the LPP. (We refer to this as the null specification of the LLM.)

We show that MDFA (with appropriate constraints) can replicate this optimal filter. As with the

VAR(1) simulation we truncate the target MB filter to length 4001 and generate a simulated LLM

of length 4500. The simulations, together with the target trends (given by the WK trend filters),

are displayed in Figure 6.

We apply MDFA in the manner described in Section 4.3, where δS(L) = 1− L and δN (L) = 1.

By extracting the bottom row (corresponding to T = 528, the length of the petrol sample) of the

matrix formula for the finite-sample filter (McElroy and Trimbur, 2015), we obtain a very close

approximation to the MB concurrent filter, which we denote by Ψ̂(B). Results are displayed in

Figure B.1 of the Appendix, with the target trend in black (these are the same black trend lines as

displayed in Figure 6, but here shown without the underlying simulation) and the MDFA real-time
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Figure 6: Bivariate trend filter applied to Null LLM process (grey), with trends in black.

Null LLM Alternative LLM Petrol Data

Series MB MDFA MB MDFA MB MDFA

Consumption .1285 .1268 1.3224 .9841 .1295 .1176

Imports .1728 .1691 .8433 .6603 2.1691 2.2033

Table 2: Empirical LPP MSE for real-time trend estimators (MB Concurrent filter versus MDFA
filter) applied to bivariate LLM null process, LLM alternative process, and Petrol data, with target
trend given by the null LLM MB trend. (Units of 10−3.)

trend in dark grey; MDFA does a good job of tracking the real trend, although with some loss to

smoothness in addition to a lag effect – this is to be expected of a concurrent filter, to some degree.

Indeed, the optimal concurrent filter (light grey) is exactly matched by the MDFA filter. The

first column block of Table 2 shows the in-sample MSE for the two concurrent filters (MB versus

MDFA), showing negligible discrepancies, i.e., the MDFA filter replicates the optimal concurrent

filter.

Next, we alter the specification to illustrate that MDFA can out-perform the MB concurrent

filter. We do this by substantially increasing the variability in the irregular, producing a noisier
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Figure 7: Bivariate trend filter applied to alternative LLM process (grey), with trends in black.

simulation – now the MB concurrent will do too little smoothing. The new irregular covariance

matrix is

Σι =

[
18.32 · 10−3 1.19 · 10−3

1.19 · 10−3 18.39 · 10−3

]
.

We refer to this as the alternative LLM process. The resulting simulation with trends is shown in

Figure 7. Application of MDFA yields the trends plotted in Figure B.2 of the Appendix. For the

first series, MDFA tracks the MB trend better than the MB concurrent filter does; the second block

of columns in Table 2 shows the in-sample MSE for the two concurrent filters, showing substantial

improvements for MDFA (26% and 22% reductions to MSE, respectively for the two series).

Finally, we conduct a comparison on the Petroleum data itself, recognizing that the LLM might

be mis-specified. We do not have the long samples available considered before, so we compute a

series of MB trends based on the matrix formulas for signal extraction, based on the specified model,

and delete the first and last five years of such trends. The result is a trend that approximately

corresponds to the output of the symmetric MB filter Ψ(B). Taking the same MB filter as target,

we compute the non-stationary MDFA solution to the LPP, and compare to the concurrent MB
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Figure 8: Petroleum data LLM bivariate trend output (black), with non-stationary MDFA trend
(dark grey) and MB concurrent trend (light grey). The trend lines have been vertically staggered
for easier visualization.

filter output. The resulting trends are plotted in Figure 8. The in-sample MSE is displayed in the

final block of columns Table 2, showing a modest improvement for MDFA on the first series, and

similar performance on the second series.

5.3 Housing Starts

Finally, we consider the quavariate time series of Housing Starts (South, West, NorthEast, Mid-

West) January 1964 through December 2012, abbreviated as starts. The series is displayed in

Figure 9, along with MB seasonal adjustments obtained from a fitted structural model. The MLEs

are omitted (there are 8 matrices of dimension 4), but the impact of differing variances among the

components and sectors can be discerned in the seasonal adjustment frf displayed in Figure 3.

As with the previous subsection, we simulate the null specification and verify that MDFA can

replicate the MB concurrent filter. (In order to improve finite-sample effects, we let T = 2000

while maintaining the filter length of 4001.) Again, we are using the constrained MDFA described

in section 4.3, where the signal has differencing operator (1− L)2 (i.e., a double root at frequency
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Figure 9: Quadvariate Housing Starts data (1964.1 through 2012.12) in grey, with black MB
seasonal adjustments.
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zero) and the noise has differencing operator U(B) (i.e., single roots at the other eleven roots of

unity). The alternative specification is obtained by increasing the variability in each of the six

atomic components that drive the seasonality – this has the effect of rendering the seasonal more

noisy, and hence a seasonal adjustment filter should have frf with wider troughs; we therefore expect

the MB concurrent filter will generate an overly stable seasonal component, leaving some dynamic

seasonality behind in the seasonal adjustment. Finally, we omit the first and last fifteen years of

data and engage in an empirical analysis, with results displayed in Figure 10. All the in-sample

MSEs are provided in Table 3, with results displayed in Figures B.3, B.4, B.5, and B.6 of the

Appendix.

Null Model Alternative Model Starts Data

Series MB MDFA MB MDFA MB MDFA

South 2.1371 2.0123 9.2617 7.4844 9.7014 10.1348

West .8051 .7398 3.5080 2.7124 2.4644 2.0859

NorthEast .1628 .1508 .8041 .6067 1.0232 1.0411

MidWest .4805 .4394 2.1825 1.6332 1.4035 1.1902

Table 3: Empirical LPP MSE for real-time seasonal adjustment estimators (MB Concurrent filter
versus MDFA filter) applied to quadvariate structural null process, structural alternative process,
and Starts data, with target seasonal adjustment given by the null structural MB seasonal adjust-
ment.

Again, MDFA replicates (and somewhat improves upon) the MB filter in in the null specification.

Under the alternative specification the MDFA filter is superior to the MB concurrent, yielding

19%, 23%, 26%, and 25% reductions to in-sample MSE, for South, West, NorthEast, and MidWest

respectively. On the actual data, with fifteen years of truncation the sample is still not long enough

to grant the periodogram a fully accurate portrayal of the dynamics, and therefore MDFA has worse

performance for South and NorthEast, with increases of 5% and 2% to in-sample MSE, whereas

for West and MidWest MDFA drops the MSE by 15% in both cases.

6 Conclusion

Real-time signal extraction – and, more generally, the LPP – is a sophisticated estimation problem

with widespread applications to time series forecasting, monitoring and systems control. This pa-

per’s approach differs from the classic time series paradigm by replicating the veritable structure of

the multivariate LPP in the optimization criterion. Specifically, we substitute a generic target, in-

volving a linear combination of one-step and multi-step ahead forecasts (of possibly infinite horizon)

for the traditional one-step ahead error norm. Our first result is a real-time filter corresponding to a

Model-Based Analysis (MBA); secondly, we generalize these solutions by adopting a nonparametric

approach denoted Multivariate Direct Filter Analysis (MDFA). The generalization uses the same
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Figure 10: Starts data structural quadvariate seasonal adjustment output (black), with non-
stationary MDFA seasonal adjustment (dark grey) and MB concurrent seasonal adjustment (light
grey). The seasonal adjustment lines have been vertically staggered for easier visualization.

28



choice of the target signal, but utilizes a nonparametric spectral estimate in the criterion and is

facillitated by a broad class of moving average filters. Various degrees of hybridization between the

MBA and MDFA designs are feasible.

Our empirical examples illustrate that: (i) the MDFA is able to replicate the MBA when the

chosen model corresponds to the true process, and (ii) the MDFA outperforms the MBA in cases of

model mis-specification. Another distinguishing feature of our methoology is that filter coefficients

are obtained directly, as an argument (i.e., a parameter) of the criterion, which allows for more

precise control of frequency domain filter characteristics. As an example, improved timeliness of

the real-time filter can be obtained by imposing a vanishing time-shift at frequency zero (described

as the TSC of Section 4.2). More generally, we discuss the construction of filter constraints that

can accomodate unit roots of arbitrary argument (i.e., complex roots of unit modulus and possibly

non-zero phase) and order in the data generating process. The empirical examples demonstrate the

flexibility of this approach, allowing us to address a nuanced presentation of seasonality, as well as

trend extraction of varying degrees of smoothness.

Our treatment readily extends to co-integration: McElroy (2017) discusses how co-integration

at at a unit root ζ = eiω can be viewed as the occurence of rank reduction in the spectral density

F of the differenced process at frequency ω. Curiously, it can occur that signal extraction filters

no longer have the property that they equal zero at a noise frequency ω, if this corresponds to

a co-integrating frequency. Hence, in order to construct real-time filters with the appropriate

properties, instead of insisting that Ψ̂(e−iω) = 0 we can just impose a mimicry of the target filter,

i.e., Ψ̂(e−iω) = Ψ(e−iω). This looks exactly the same as the constraint at the signal frequency, and

is therefore trivial to implement. While in principle this extension is simple, we have omitted an

application from this paper, as a full treatment of the topic seems to merit a separate article.

Another extension is motivated from the univariate DFA, which was extended in Wildi and

McElroy (2018) to a still more general error criterion allowing for customization of filters, so that a

practitioner can directly accomodate specific user-priorities of having a smoother real-time estimate

of the signal, versus having a more timely estimate (i.e., less phase delay). A corresponding mul-

tivariate extension of the so-called Accuracy-Timeliness-Smoothness trilemma is currently under

investigation by the authors.
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Supplement to

The Multivariate Linear Prediction Problem:

Model-Based and Direct Filtering Solutions

Tucker S. McElroy∗† and Marc Wildi‡

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

Appendix A Proofs

Proof of Proposition 1. In order for a linear solution to be MSE optimal, it is sufficient that

the resulting error process be uncorrelated with the data Xt:. If we can show that the real-time

signal extraction error process {Et} depends only on future innovations, then by the causality of

{Xt} the error process must be uncorrelated with Xt:, establishing optimality. The filter error of

the putative solution is given by

Ψ(L)− Ψ̂(L) =
∑
`<0

ψ(`)L`
(

1− [Θ(L)]∞−` Θ(L)−1
)

=
∑
`<0

ψ(`)L` [Θ(L)]
−(`+1)
0 Θ(L)−1.

Applying this to {Xt} yields

Et =
∞∑
`=1

ψ(−`) [Θ(L)]`−1
0 εt+`.

Noting that [Θ(L)]`−1
0 is an order `− 1 polynomial in L, and is applied to εt+`, it is apparent that

Et is a linear function of future innovations {εt+1, εt+2, . . .}. Computing the variance of Et yields

the expression for the minimal MSE. 2
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Proof of Proposition 2. First note that the typical component of b has the form

〈Ψ(z)G〉` =
∑
k∈Z

ψ(k) 〈G〉`−k (A.1)

for 0 ≤ ` < q, which shows that b is real-valued. The argument follows the same method as in

McElroy and Findley (2015); each entry of the matrix objective function is a quadratic in ϑ, and

therefore the minimizer is obtained by computing the gradient and Hessian, which are −2b+ 2B ϑ

and 2B respectively, yielding the solution. Plugging back into DΨ yields (17). 2

Proof of Proposition 3. Substituting (18) in (15) yields

DΨ(ϑ,G) = ϕ′
[
R′BR

]
ϕ+

[
Q′BR− b′R

]
ϕ+ ϕ′

[
R′BQ−R′ b

]
+Q′BQ−Q′ b− b′Q+ 〈Ψ(z)GΨ(z)∗〉0.

Now by applying the method of proof in Proposition 2, we obtain the formula (20) for ϕ. Plugging

back into DΨ(ϑ,G) yields the minimal value (21). 2

Proof of Proposition 4. We claim that Ψ](L) =
∑

j∈Z ψ
](j)Lj with

ψ](j) =

ζ−(j+1)
∑

k≥j+1 ψ(k) ζk j ≥ 0

−ζ−(j+1)
∑

k≥−j ψ(−k) ζ−k j ≤ −1.

To show this, first observe that

Ψ(L)−Ψ(ζ) =
∑
j≥1

ψ(j) (Lj − ζj) +
∑
j≤−1

ψ(j) (Lj − ζj).

Beginning with the first term, so that j ≥ 1, we write Lj − ζj = ζj (L/ζ − 1) pj−1(L/ζ) where

pk(z) =
∑k

`=0 z
`. Next, by coefficient matching we can verify that∑

j≥1

ψ(j) (Lj − ζj) = (L/ζ − 1)
∑
j≥1

ψ(j) ζj pj−1(L/ζ)

= (L/ζ − 1)
∑
j≥0

∑
k≥j+1

ψ(k) ζk (L/ζ)j = (L− ζ)
∑
j≥0

ψ](j)Lj .

Next, take j ≤ −1, and use the symbol F = L−1:∑
j≤−1

ψ(j) (Lj − ζj) =
∑
j≥1

ψ(−j) (F j − ζ−j) = (Fζ − 1)
∑
j≥1

ψ(−j) ζ−j pj−1(Fζ)

= (Fζ − 1)
∑
j≥0

∑
k≥j+1

ψ(−k) ζ−k (Fζ)j

= −F (L− ζ)
∑
j≥1

ζj−1
∑
k≥j

ψ(−k) ζ−k F j−1

= (L− ζ)
∑
j≤−1

ψ](j)Lj .
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This establishes algebraically that Ψ](L) with coefficients as defined above equals (Ψ(L)−Ψ(ζ))/(L−
ζ), whenever the Laurent series converges. Based on the above calculations, we can write

Ψ(L)−Ψ(ζ)

L− ζ
=
∑
j≥1

(
ψ(j) ζj−1 pj−1(L/ζ)− ψ(−j) ζ−j F pj−1(Fζ)

)
.

To check the absolute convergence, it suffices to set L = 1; note that |pk(ζ)| ≤ (k + 1) if |ζ| = 1.

Thus we obtain the bound∥∥∥∥Ψ(L)−Ψ(ζ)

L− ζ

∥∥∥∥ ≤∑
j≥1

j (‖ψ(j)‖+ ‖ψ(−j)‖) ,

which is finite by the assumption that ∂Ψ(L) is absolutely convergent. Next, we claim that Ψ[(L) =∑
j∈Z ψ

[(j)Lj with

ψ[(j) =

ζ−(j+2)
∑

k≥j+2(k − 1− j)ψ(k) ζk j ≥ 0

ζ−(j+2)
∑

k≥−j(k + j + 1)ψ(−k) ζ−k j ≤ −1.

To verify this, observe that

Ψ(L)−Ψ(ζ)− ∂Ψ(ζ) (L− ζ) ζ−1 =
∑
j≥1

ψ(j)
[
(Lj − ζj)− j ζj−1 (L− ζ)

]
+
∑
j≤−1

ψ(j)
[
(Lj − ζj)− j ζj−1 (L− ζ)

]
.

First assuming that j ≥ 1, note that p`−1(z) − ` equals zero unless ` ≥ 2, and otherwise equals∑`−1
k=1 pk−1(z) (z − 1). Therefore∑

j≥1

ψ(j)
[
(Lj − ζj)− j ζj−1 (L− ζ)

]
= (L− ζ)

∑
j≥1

ψ(j) ζj−1 [pj−1(L/ζ)− j]

= (L− ζ)2
∑
j≥2

ψ(j) ζj−2
j−1∑
k=1

pk−1(L/ζ)

= (L− ζ)2
∑
j≥0

ψ[(j)Lj

by coefficient matching in the final step. Similarly, letting j ≤ −1 and using zp`−1(z) − ` =

(z − 1)
∑`

k=1 pk−1(z), we have∑
j≤−1

ψ(j)
[
(Lj − ζj)− j ζj−1 (L− ζ)

]
= (L− ζ)

∑
j≥1

ψ(−j) ζ−j
[
−F pj−1(Fζ) + j ζ−1

]
= (L− ζ)2 F

∑
j≥1

ψ(−j) ζ−(j+1)
j∑

k=1

pk−1(Fζ)

= (L− ζ)2 F ζ−1
∑
j≥0

∑
k≥j+1

(k − j)ψ(−k) ζ−k (Fζ)j

= (L− ζ)2
∑
j≤−1

ψ[(j)Lj
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by matching coefficients. To establish convergence of the Laurent series for Ψ[(L), observe that

Ψ(L)−Ψ(ζ)− ∂Ψ(ζ) (L− ζ) ζ−1

(L− ζ)2 =
∑
j≥2

ψ(j) ζj−2
j−1∑
k=1

pk−1(L/ζ)+F
∑
j≥1

ψ(−j) ζ−(j+1)
j∑

k=1

pk−1(Fζ).

Hence the matrix norm has the bound (setting L = 1 and taking |ζ| = 1) of∥∥∥∥Ψ(L)−Ψ(ζ)− ∂Ψ(ζ) (L− ζ) ζ−1

(L− ζ)2

∥∥∥∥ ≤∑
j≥2

‖ψ(j)‖
(
j

2

)
+
∑
j≥1

‖ψ(−j)‖
(
j + 1

2

)
,

using |
∑j

k=1 pk−1(ζ)| ≤
(
j+1

2

)
. Because ∂∂Ψ(L) is absolutely convergent, the above norm is finite.

2
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Appendix B Supplementary Figures
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Figure B.1: Null LLM bivariate trend output (black), with non-stationary MDFA trend (dark grey)
and MB concurrent trend (light grey). The trend lines have been vertically staggered for easier
visualization.
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Figure B.2: Alternative LLM bivariate trend output (black), with non-stationary MDFA trend
(dark grey) and MB concurrent trend (light grey). The trend lines have been vertically staggered
for easier visualization.
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Figure B.3: Quadvariate seasonal adjustment filter applied to Null structural process (grey), with
seasonal adjustments in black.
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Figure B.4: Null structural quadvariate seasonal adjustment output (black), with non-stationary
MDFA seasonal adjustment (dark grey) and MB concurrent seasonal adjustment (light grey). The
seasonal adjustment lines have been vertically staggered for easier visualization.
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Figure B.5: Quadvariate seasonal adjustment filter applied to Alternative structural process (black),
with seasonal adjustments in grey.
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Figure B.6: Alternative structural quadvariate seasonal adjustment output (black), with non-
stationary MDFA seasonal adjustment (dark grey) and MB concurrent seasonal adjustment (light
grey). The seasonal adjustment lines have been vertically staggered for easier visualization.
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