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Abstract

Methodology and implementation details of ARIMA model-based seasonal adjustment

are presented, with key features illustrated with the simplest formulas that provide con-

crete representations of the methd devoloped by Tiao and Hillmer (1978) and Hillmer and

Tiao (1982), with important implementation contributions by Burman (1980), Gómez and

Maravall (1996) and others.



1. Introduction

Methodology and implementation details of ARIMA model-based seasonal adjustment are pre-

sented, with key features illustrated with the simplest formulas that provide concrete represen-

tations of the methd devoloped by Tiao and Hillmer (1978) and Hillmer and Tiao (1982), with

important implementation contributions by Burman (1980), Gómez and Maravall (1996) and

others. We use the abbreviation SA for seasonal adjustment and AMBSA for this ARIMA-

Model-Based SA method. Typically this refers to the decomposition of a span of Seasonal-

ARIMA-modeled time series data into component time series for the same time span, usually

seasonal, trend and irregular component series, with the irregular obtained in such a way that the

decomposition is "canonical". This term means that it conforms to Tiao and Hillmer’s attrac-

tive way of specifying a unique decomposition by requiring the white noise irregular component

to have maximal variance (possibly zero). Most commonly, the ARIMA model’s differencing

operator has a seasonal sum factor and a trend differencing factor. When only the latter is

present, the decomposition has trend and irregular components but no seasonal component.

AMBSA is applied to time series which, in the course of obtaining the ARIMA (sometimes

ARMA) model, have been preadjusted for identified effects of outliers, holidays, and other

calendar effects. The model obtained is treated as correct in all calculations. In particular,

autocovariances (and spectral densities) calculated for components from the model, after any

model-specified differencing, ignore uncertainties in the ARIMA model’s selection and estima-

tion procedures. Similarly, coeffi cients of the component estimates and the mean square errors

calculated for component estimates are treated as non-stochastic.

After preadjustment, if only the seasonal adjustment is wanted, the task and methods can

be viewed as those of basic statistical signal processing applied to the preadjusted series in order

to statistically suppress the seasonal "noise" to better reveal the nonseasonal "signal," (or the

non-trend to better reveal the trend if it is the signal, etc.)

For AMBSA in such two-component decomposition situations, under weak assumptions,

mean square optimal, i.e. minimum mean square error linear unobserved component estimation

can be formulated as a linear regression problem with refinements to accommodate ARIMA

differencing operations, as displayed in the easily programmed matrix formulas of McElroy

(2008) shown in Subsection 9.3.

Calculation of these estimates and their mean square error variance matrix via the matrix

formulas is an option in some AMBSA software. However, the matrix calculations are not

as numerically effi cient and stable as those of the two traditional, less elementary calculation

methods, the "Wiener-Kolmogorov" method presented in Section 13, and the state space method

presented in Durbin and Koopman (2012).

AMBSA software refers to the software currently in wide use by National Statistical Institutes

and Central Banks. This includes JDemetra+, (see Eurostat 2015), TRAMO-SEATS, see Gómez
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and Maravall (1996) and X-13ARIMA-SEATS, see U.S. Census Bureau (2017).

AMBSA should not be a black box procedure to its users because default software procedures

are sometimes seriously inadequate. Also user decisions regarding software options and model

choice can strongly impact the results obtained, for better or worse. A seasonal adjuster who

understands the basic facets of the method and some of its diagnostics, as outlined and then

detailed in this document, will have a greater capacity to obtain successful adjustments. Maravall

(2016) has alternative treatments of some of the topics we consider and treatments of further

important topics relevant to the AMBSA methods described in Gómez and Maravall (1996) and

adopted in the software of the U.S. Bureau of the Census and Eurostat.

The reader is assumed to be familiar with ARIMA time series models. For an understanding

of the nature of the component estimates, only a basic background in linear regression suffi cient

for the review of regression in Section 4 is needed. The regression formulas are first illustratively

applied in Section 6 to a stationary case, to obtain the canonical decomposition of a span of

data from an AR(1)r, a first-order seasonal autoregressive model with seasonal period r (r

observations per year). In this case, they yield simple revealing time-varying filter formulas for

the signal and noise component estimates and for their error variance matrix.

Thereafter technical background for nonstationary ARIMA data with multiple unobserved

components is developed, moving step by step through the simplest formulas that provide con-

crete representations of key features of AMBSA.

The reader might start by perusing the Sections whose titles have a *, and later reading for

details as their content becomes more directly relevant.

2. Conceptual Overview* (* indicates especially fundamental material.)

Estimating Two-Component Decompositions. Two-component decompositions can illus-
trate the main concepts of AMBSA. We begin with a span Z1, . . . , Zn of n stationary zero-mean

data, in vector form Z = (Z1, . . . , Zn)
′, that has an ARMA model and consequently an autoco-

variance matrix ΣZZ = EZZ ′ that is positive definite1 .

1See Wikipedia Contributors (2017b)
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Suppose Zt is considered to be the sum of two unobserved, mutually uncorrelated, stationary

component series.

Zt = St +Nt. (2.1)

Thus there is an autocovariance decomposition,

ΣZZ = ΣSS + ΣNN . (2.2)

In the cases we consider, the unobserved components can be usually be estimated with the aid

of appropriate properties specified or inferred for ΣSS and ΣNN , as we first illustrated simply

with (2.4).

Henceforth, I denotes the identity matrix of order n. From (2.2), the linear regression formu-

las of Section 4 provide the n×n coeffi cient matrices βS = [βS (j, k)], 1 ≤ j, k ≤ n and βN = I−
βS of the minimum mean square error (MMSE) linear estimates, βSZ = Ŝ =

(
Ŝ1, . . . , Ŝn

)′
of

S = (S1, . . . , Sn)
′, and βNZ = N̂ = I − Ŝ =

(
N̂1, . . . , N̂n

)′
of N = (N1, . . . , Nn)

′ in (2.3). The

j-th row of βS shows the data coeffi cients of the linear estimate Ŝj = Σnk=1βS (j, k)Zk of the

decomposition of Zj and correspondingly for N̂j in

Z = Ŝ + N̂ . (2.3)

With a two-component decomposition, the component of greater interest can be labeled

signal St and the other labeled noise Nt. The simplest case is that of white noise, uncorrelated

and constant variance Nt, resulting in ΣNN = σ2I. A specification of σ2 > 0 small enough that

ΣSS = ΣZZ−σ2I is a covariance matrix, i.e. positive semi-definite (all eigenvalues nonnegative,
one or more positive) will provide a decomposition (2.2) that yields estimates (2.3).

ΣZZ = ΣSS + σ2I. (2.4)

A Limited Elementary Stationary-Case Specification of σ2. Here is a possible spec-
ification of σ2 in (2.4) that only uses standard matrix concepts: Specify σ2 as the maximal

white noise variance compatible with (2.4). From ΣSS = ΣZZ − σ2I one sees that this σ2 is the
smallest eigenvalue αmin of ΣZZ . It is positive because every ARMA covariance matrix ΣZZ

is positive definite2 . The resulting N̂ and Ŝ = Z − N̂ from the regression formulas (4.2) of

Section 4 are the MMSE linear estimates of the white noise N̂ and the signal Ŝ for the specified

decomposition (2.4). (The estimated N̂t are not white noise, see (4.5)).

A choice of σ2 different from (smaller than) αmin produces a different decomposition (2.4)

with different estimated components. So the choice αmin is just one of many possibilities for

stationary data.

2Every positive definite matrix has such a σ2 = αmin decomposition. No model connection is required.
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For ARMA Zt, AMBSA software uses the less elementary σ2 specification of Hillmer and

Tiao (1982) described in the next paragraph. Differently from σ2 = αmin, its definition of σ2

admits a generalization for ARIMA Zt, the usual case for AMBSA. So it provides some useful

conceptual consistency between stationary and nonstationary cases. See Section 7.

The Canonical Two-Component Stationary-Case Decomposition. The generalizable
definition of σ2 requires the ARMA model for Zt to be invertible, which is the typical case in

practice. This means that the spectral density gZ (λ), defined by (5.13) and abbreviated sd (or

Sd, plural sds or Sds) has a positive minimum value, minλ gZ (λ) > 0. For ARMA Zt, the

canonical decomposition (Tiao and Hillmer, 1978) specifies σ2 = minλ gZ (λ) in (2.4).

Sd functions are autocovariance generating functions, see (5.5). The matrix decomposition

(2.4) is generated for all series lengths n by the sd decomposition gZ (λ) = gS (λ) + σ2 =

gS (λ) + gN (λ) with gS (λ) = gZ (λ)− σ2. Invertibility of the ARMA model guarantees that

gS (λ) = gZ (λ) − σ2 ≥ 0. It follows that gS (λ) specifies a stationary component St having a

non-invertible ARMA model. such that the variance σ2 of the white noise component Nt is

maximal. Such maximality is the defining property of the canonical decomposition, also when

there are several non-white-noise components.

Nonstationary Case. For invertible ARIMA Zt, σ2 is specified as the minimum of the

pseudo-spectral density (p-sd) of the model, defined by (7.1). The trend plus irregular decom-

position (8.6) of Subsection 8.1, with trend component denoted pt, illustrates this.

The sd and p-sd formulas (5.13) and (7.1) are sources of the great versatility of AMBSA.

They reflect the model structure in ways that facilitate the specification of decompositions with

appropriate components, see Section 8 and Subsection 21.

If decomposition calculations provide an sd or a p-sd for each component, and a nonnegative

value for the constant calculated to be the maximal variance, then the decomposition is admis-

sible (or acceptable). If this constant is negative, the decomposition is nonadmissible. Section

8 provides two examples of fundamental ARIMA models with admissible decompositions for all

model parameter values and one ARIMA model whose decomposition is admissible only for a

subinterval of model coeffi cient values.

3. Fundamental Examples*

Section 10 offers graphs of central and concurrent (latest observation time) MMSE filters from

a standard seasonal model, and also graphs of the associated time-varying error variances of

their AMBSA seasonal adjustments. Subsections 11.2 and 12.1 illustrate how error variances

and covariances can be used to obtain probability intervals for an estimated growth rate and

also for its revised value that will be obtained by reestimating with additional later data.

Sections 10—12 illustrate, in various ways, how greater AMBSA smoothing is associated with

greater instability of the AMBSA estimates, a theme relevant for Section 17.
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The seasonal random walk is the nonstationary analogue of the seasonal AR(1)r. Its r = 2

biannual model is the only nonstationary model for which we show exact formulas for seasonal,

trend and irregular filters, symmetric and asymmetric. The symmetric filters of this model are

derived in Section 15. The asymmetric filters are obtained using MMSE forecasts and backcasts

of data required by the symmetric filters but not available.

Reflecting the complexity of most economic indicators that are seasonally adjusted, the trend

component has often been called the trend-cycle component and regarded as consisting of a long-

term trend component plus one or more higher frequency cyclical components. An approach to

providing such a decomposition with one cycle component, available in some AMBSA software,

is described in Subsection 21.2.

4. Linear Regression Applied for Signal Extraction*

As in Section 2, we start from zero mean data Z1, . . . , Zn whose n × n autocovariance matrix
ΣZZ , is positive definite and focus on two-unobserved-component decompositions Zt = St +Nt

with uncorrelated components, ESjNk = 0, j, k = 1, . . . n. With Z = (Z1, . . . , Zn)
′, the task is

to use a specified autocovariance decomposition (2.2) to obtain n × n coeffi cient matrices βS ,
βN of linear estimates Ŝ = βSZ, N̂ = βNZ of a decomposition (2.3) that have have minimum

mean square error. To accomplish this, setting Z = (Z1, . . . , Zn)
′ and S = (S1, . . . , Sn)

′, we

seek the n× n coeffi cient matrix βS such that the error e = Ŝ − S of the linear estimate
Ŝ = βSZ is uncorrelated with Z, Ee′Z = 0, which then also holds for the error N̂ −N = −e.
This property characterizes linear estimates βZ whose mean square error Ee′e = Σnj=1e

2
j is

minimal, as Section 4.1 of Whittle (1963) shows3 . Other MMSE characterizations include: For

any positive definite n × n matrix Q, the MMSE error et minimizes Σj,k=1,...,n E {ejQj,kek}.
With Gaussian Z, the MMSE Ŝ and N̂ are the conditional expectations of S and N given Z.

Let 0n denote the zero matrix of order n. Because ΣSN = ESN ′ = 0n yields ΣSZ = ΣSS ,

we have, with ⇐⇒ denoting equivalence,

E (S − βSZ)Z ′ = 0n ⇐⇒ ΣSZ − βSΣZZ = 0n ⇐⇒ ΣSS = βSΣZZ , (4.1)

resulting in Ŝ = βSZ with βS = ΣSSΣ−1ZZ . Analogously, N̂ = βNZ with βN = ΣNNΣ−1ZZ ,

whence βS + βN = I.

In summary,

Ŝ = βSZ, βS = ΣSSΣ−1ZZ , N̂ = βNZ, βN = ΣNNΣ−1ZZ , βS + βN = I. (4.2)

It follows that covariance matrices of the estimates have the formulas

ΣŜŜ = ΣSSΣ−1ZZΣSS , ΣN̂N̂ = ΣNNΣ−1ZZΣNN . (4.3)

3Wikipedia Contributors (2013) derives and applies the analogous MMSE estimate identifying property for
simpler non-time series contexts.
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The last formula in (4.2) shows that the estimates provide a decomposition (2.3). For a

specified decomposition (2.2), the estimate Ŝ = Z − N̂ can be regarded as an optimally "de-

noised" version of the data for revealing the signal S.

For 1 ≤ t ≤ n, the t-th row of βS provides the coeffi cients of the MMSE linear estimate
Ŝt = Σnj=1βS,t,jZj and correspondingly for βN and N̂t, see examples in Subsection 6.1.

From (2.1) and (2.3), the estimation error e = S − Ŝ is equal to N̂ −N , so both estimates
have the same error variance matrix,

Σee = E(S − Ŝ)(S − Ŝ)′ = E(N − N̂)(N − N̂)′

= ΣNNΣ−1ZZΣSS = ΣSSΣ−1ZZΣNN = Σ̂N̂Ŝ = ΣŜN̂ . (4.4)

Change of Scale Results. It follows from the preceding formulas that if Z and its compo-

nents are multiplied by scalar α 6= 0, then Σee and other covariance matrices become multiplied

by α2 but the filter coeffi cient vectors βS and βN are unchanged, they are scale invariant.

4.1. Basic Examples of Covariance Properties Not Inherited by Estimates

The final formulas for Σee show that, whereas ΣSN = ΣNS = 0n, the estimates are cross-

correlated, ΣŜN̂ = ΣN̂Ŝ = Σee, a positive definite matrix if both ΣSS and ΣNN have this

property, otherwise positive semidefinite. This generalizes to AMBSA. Estimates of uncorrelated

components are cross-correlated because all are linear functions of the data Z (after differencing

to stationarity in nonstationary cases). Also, a component estimate has covariance properties

different from the component. Most basically, for a white noise component N of non-white-noise

Z, the estimate N̂ , is not white noise. From (4.3),

ΣN̂N̂ = σ4Σ−1ZZ = σ4
(
ΣSS + σ2I

)−1
. (4.5)

5. Spectral Densities of Stationary Series*

Optional Review of Complex Numbers. Spectral densities can be defined without using complex

numbers as we show, but then formulas and important seasonal decomposition calculations lose

simplicity. We use standard notation, z = a+ ib with a and b real and i2 = −1. The number a is

the real part of z, a = Re (z), and b the is imaginary part, b = Im (z). z̄ = a− ib is the complex
conjugate of z. Its properties are z + z̄ = 2 Re (z), z − z̄ = 2i Im (z) and

√
zz̄ =

√
a2 + b2, which

is the magnitude of z, denoted |z| (the distance from (a, b) to (0, 0) in the coordinate plane).

Euler’s formula eiθ = cos θ+ i sin θ for real θ shows that e−iθ is the complex conjugate of eiθ and

that
∣∣eiθ∣∣2 = cos2 θ+sin2 θ = 1. The polar representation of z is |z| eiθ, with phase θ. Especially

relevant are calculations like∣∣1± θeiλ∣∣2 =
(
1± θeiλ

) (
1± θe−iλ

)
= 1 + θ2 ± θ

(
ei2πλ + e−i2πλ

)
= 1 + θ2 ± 2θ cosλ. (5.1)
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For more information, see Wikipedia Contributors (2012).

Notational Convention: Hereafter, wt denotes a covariance stationary series, sometimes
ARMA, possibly the stationary transform wt = δ (B)Zt of an ARIMA Zt with differencing

operator δ (B). When Zt is stationary, then wt = Zt.

With γj = Ewtwt−j , j = 0,±1, . . ., the spectral density of wt is the function defined for

−1/2 ≤ λ ≤ 1/2 by

gw (λ) =

∞∑
j=−∞

γje
i2πjλ. (5.2)

Because γ−j = γj ,

gw (λ) = γ0 +

∞∑
j=1

γj
(
ei2πjλ + e−i2πjλ

)
, (5.3)

= γ0 + 2

∞∑
j=1

γj cos 2πjλ. (5.4)

gw (λ) is also called the autocovariance generating function of wt due to

γj =

∫ 1/2

−1/2
e−i2πjλgw (λ) dλ = 2

∫ 1/2

0

cos 2πjλgw (λ) , j = 0,±1, . . . . (5.5)

Thus gw (λ) is a frequency domain re-expression of the autocovariance properties of wt. It is an

even function, gw (−λ) = gw (λ) ,−1/2 ≤ λ ≤ 1/2, which is nonnegative, a property expressed

in the ARMA spectral density formula (5.13). Any integrable function with these properties is

the spectral density of a stationary time series, see Brockwell and Davis (1991).

White noise, wt = at, with σ2a = Ea2t has the simplest sd. From (5.3), its spectral density is

a constant,

ga (λ) = σ2a, − 1/2 ≤ λ ≤ 1/2. (5.6)

Conversely, if (5.6) holds, it follows from (5.5) that the autocovariances of at are zero at nonzero

lags, i.e. at is white noise. To illustrate (5.2), an MA(1), wt = (1− θB)at, has autocovariances

γ0 = σ2a
(
1 + θ2

)
, γ±1 = −σ2aθ and γj = 0 for |j| ≥ 2, so from (5.3) and (5.1),

gw (λ) = σ2a
(
1 + θ2

)
− σ2aθ

(
ei2πjλ + e−i2πjλ

)
= σ2a

∣∣1− θei2πλ∣∣2 . (5.7)

The final formula in (5.7) is an instance of the general ARMA sd formula (5.13).

5.1. Transfer Functions and the ARMA Spectral Density Formula*

5.1.1. ARMA Conventions

For a stationary ARMA(p,q) series wt, by definition

φ (B)wt = θ (B) at, (5.8)
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with white noise at. Unlike some AMBSA software, we use the sign convention of Box and Jenk-

ins (1976), with the basic ARMA(1,1) expressed as (1− φ1B)wt = (1− θ1B) at. Stationarity

requires φ (z) = 1− φ1z + · · · − φpzp to satisfy

φ (z) 6= 0, |z| ≤ 1, (5.9)

(|φ1| < 1 if p = 1). With no loss of generality under Gaussian assumptions, θ (z) is assumed to

satisfy

θ (z) 6= 0, |z| < 1, (5.10)

a condition that is always imposed by the ARIMA coeffi cient estimation routines of AMBSA

software. If also θ (z) 6= 0 whenever |z| = 1, then wt and its model are said to be invertible.

Both are noninvertible if θ (z) = 0 for a z with |z| = 1.

When wt is a seasonal ARMA process, φ (B) Φ (Br)wt = θ (B) Θ (Br) at with seasonal

period r ≥ 2, then (5.9) and (5.10) apply to the total AR and MA polynomials4 ϕ (z) =

φ (z) Φ (zr) and ϑ (z) = θ (z) Θ (zr).

For simplicity, we usually use this total notation for all ARMA and ARIMA models,

ϕ (B)Zt = ϑ (B) at, (5.11)

seasonal or nonseasonal, referring to ϑ (z) as the MA polynomial and ϕ (z) as the AR polynomial,

which can include the differencing polynomial in the nonstationary case.

The formula (5.13) of the spectral density of such a wt follows from (5.8) via a fundamental

fact: When a stationary series yt is the output of a linear filter β (B) =
∑
j βjB

j , i.e. yt =∑
j βjxt−j for some stationary xt, then the spectral densities of the input series xt and the

output series yt are related by

gy (λ) =
∣∣β (ei2πλ)∣∣2 gx (λ) , (5.12)

see Theorems 4.4.1 and 4.10.1 of Brockwell and Davis (1991). The function β
(
e−i2πλ

)
=∑

j βje
−i2πjλ is the transfer function of the filter and

∣∣β (ei2πλ)∣∣2 is the squared gain of the
filter. The filter is symmetric, βj = β−j for j 6= 0, when β

(
e−i2πλ

)
= β

(
ei2πλ

)
for all λ.

5.1.2. The Spectral Density Formula

Using (5.12), it follows from (5.6) and (5.8) that
∣∣ϕ (ei2πλ)∣∣2 gw (λ) =

∣∣ϑ (ei2πλ)∣∣2 σ2a and there-
fore that an ARMA sd has the form

gw (λ) = σ2a

∣∣ϑ (ei2πλ)∣∣2
|ϕ (ei2πλ)|2

, −1/2 ≤ λ ≤ 1/2. (5.13)

4ϑ is script θ "theta" and ϕ is script φ "phi"
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Thus an ARMA(1,1) wt has sd

w (λ) = σ2a

∣∣1− θeiλ∣∣2
|1− φeiλ| .

Invertibility is equivalent to the sd having a positive minimum, σ2 = minλ gw (λ) > 0.

5.2. Spectral Density Sums and Uncorrelated Decompositions*

If stationary times series xt and x̃t are uncorrelated, then

E (xt + x̃t) (xt−j + x̃t−j) = Extxt−j + Ex̃tx̃t−j j = 0,±1, . . . .

It follows that the sd of the sum series wt = xt + x̃t is the sum of the component sds,

gw (λ) = gx (λ) + gx̃ (λ) . (5.14)

Conversely, if the spectral density gw (λ) of a stationary series is found to have a decompo-

sition (5.14), then as regards its autocovariance properties, one one can treat wt as admitting a

decomposition wt = xt + x̃t with uncorrelated components having spectral densities gx (λ) and

gx̃ (λ). (The possible correlated decompositions yielding (5.14) lack practical value, see Findley

(2012).)

As a fundamental example of (5.14), in the invertible case, σ2 = minλ gw (λ) > 0, then with

gs (λ) = gw (λ)− σ2, the decomposition

gw (λ) =
{
gw (λ)− σ2

}
+ σ2 ≡ gS (λ) + gN (λ) (5.15)

specifies a canonical two-component decomposition, wt = St +Nt, with white noise Nt.

5.2.1. The Canonical Sd Decomposition of an Invertible MA(1)

For an MA(1) wt with |θ| < 1, from (5.1), σ2 = minλ σ
2
a

(
1 + θ2 − 2θ cosλ

)
= σ2a

(
1 + θ2 − 2 |θ|

)
.

Therefore

gS (λ) = gw (λ)− σ2 = σ2a (2 |θ| − 2θ cosλ) .

6. Canonical Decomposition of a First-Order Seasonal Autoregression*

The time-varying filters and MMSE errors for (5.15) can given in detail for data from the first-

order seasonal autoregressive model AR(1)r, with seasonal period r ≥ 2,

wt = Φwt−r + at,−1 < Φ < 1. (6.1)
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From Box and Jenkins (1976, p. 329),

γj = Ewt+jwt = σ2a

{ (
1− Φ2

)−1
Φk, |j| = kr, k = 0, 1, . . .

0, otherwise.
. (6.2)

From (5.13) and (5.15), we obtain gw (λ) and its canonical decomposition components:

gw (λ) = σ2a
∣∣1− Φei2πrλ

∣∣−2 , (6.3)

gN (λ) = σ2 = min
λ
gw (λ) = gw (0) = σ2a (1 + |Φ|)−2 . (6.4)

Formula (19) of Findley, Lytras and Maravall (2015) shows that for Φ > 0,

gS(λ) = gw (λ)− gN (λ) can be expressed as

gS(λ) = σ2aΦ (1 + Φ)
−2

∣∣1 + ei2πλ
∣∣2

|1− Φei2πλ|2
.

For simplicity, we only consider Φ > 0. Then the minimum in (6.4) occurs at the frequencies

in −1/2 ≤ λ ≤ 1/2 where cos 2πrλ = −1, such as λ = ± (2r)
−1.

Figure 1: Two r = 12 SAR(1) sds for 0 ≤ λ ≤ 1/2, for Φ = 0.70 (darker line) and Φ = 0.95,

with σ2a = 1− Φ2 to have γ0 = 1, hence area 1/2 below each graph.

The peaks in Figure 1 are at λ = 0 and at each seasonal frequency, k/12 cycles per year,

1 ≤ k ≤ 6, always with amplitude σ2a (1− Φ)
−2

= (1 + Φ) (1− Φ)
−1. The peaks for Φ = 0.70

14



are broader and much lower than those for Φ = 0.95. The minimum value (1− Φ) (1 + Φ)
−1

occurs midway between each pair of peaks.

The canonical sd decomposition gw (λ) =
(
gw (λ)− σ2a (1 + Φ)

−2
)

+ σ2a (1 + Φ)
−2 identifies

the matrix decomposition

Σww =
(

Σww − σ2a (1 + Φ)
−2
I
)

+ σ2a (1 + Φ)
−2
I ≡ ΣSS + ΣNN . (6.5)

Substitution from (6.2) into the regression formulas (4.2) yields the estimates Ŝt and N̂t of the

canonical decomposition, as we illustrate.

For the seasonal AR(1)r model, the entries of the inverse matrix Σ−1ww have known, relatively

simple formulas, see Wise (1955) and Zinde-Walsh (1988). For example, when r = 2, n = 7,

Σ−1ww = σ−2a



1 0 −Φ 0 0 0 0

0 1 0 −Φ 0 0 0

−Φ 0 1 + Φ2 0 −Φ 0 0

0 −Φ 0 1 + Φ2 0 −Φ 0

0 0 −Φ 0 1 + Φ2 0 −Φ

0 0 0 −Φ 0 1 0

0 0 0 0 −Φ 0 1


. (6.6)

For r ≥ 2 and all n ≥ 2r+ 1, as (6.6) indicates, Σ−1ww has a tridiagonal symmetric form, with

nonzero values only on the main diagonal and the r-th diagonals above and below. The sub-

and superdiagonals have the entries −Φσ−2a . The first and last r entries of the main diagonal

are σ−2a and the rest are σ−2a
(
1 + Φ2

)
.

For βN = ΣNNΣ−1ww = σ2NΣ−1ww = (1 + Φ)
−2
σ2aΣ−1ww , one has, when r = 2, n = 7,

βN = (1 + Φ)
−2



1 0 −Φ 0 0 0 0

0 1 0 −Φ 0 0 0

−Φ 0 1 + Φ2 0 −Φ 0 0

0 −Φ 0 1 + Φ2 0 −Φ 0

0 0 −Φ 0 1 + Φ2 0 −Φ

0 0 0 −Φ 0 1 0

0 0 0 0 −Φ 0 1


, (6.7)
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Further, from βS = I − βN ,

βS = Φ (1 + Φ)
−2



(2 + Φ) 0 1 0 0 0 0

0 (2 + Φ) 0 1 0 0 0

1 0 2 0 1 0 0

0 1 0 2 0 1 0

0 0 1 0 2 0 1

0 0 0 1 0 (2 + Φ) 0

0 0 0 0 1 0 (2 + Φ)


. (6.8)

6.1. Signal and Noise Filters of the Initial, Intermediate, and Final Years

For general r ≥ 2 and n ≥ 2r + 1, the Σ−1ww formula of Wise (1955) yields the filter formulas

for N̂ and Ŝ = w − N̂ shown in (6.9)—(6.13) and (6.14)—(6.16). For the intermediate times

r + 1 ≤ t ≤ n − r, the noise component estimate N̂t is given by a symmetric filter (6.9)

with equal negative initial and final coeffi cients smaller in magnitude than the positive central

coeffi cient.

N̂t =
1

(1 + Φ)
2

(
−Φwt−r +

(
1 + Φ2

)
wt − Φwt+r

)
. (6.9)

The filters for the initial and final years are asymmetric. For the initial year 1 ≤ t ≤ r,

N̂t =
1

(1 + Φ)
2 (wt − Φwt+r) (6.10)

=
1

(1 + Φ)
2

(
−Φ {Φwt}+

(
1 + Φ2

)
wt − Φwt+r

)
. (6.11)

The filter for the final year n− r + 1 ≤ t ≤ n is the time-reverse of the initial year filter,

N̂t = (1 + Φ)
−2

(−Φwt−r + wt) (6.12)

=
1

(1 + Φ)
2

(
−Φwt−r +

(
1 + Φ2

)
wt − Φ {Φwt}

)
. (6.13)

In comparison with (6.9), the value {Φwt} in the re-expression (6.11) appears as the MMSE
AR(1)r backcast of the missing wt−r and in (6.13) as the MMSE AR(1)r forecast of the missing

wt+r.

Also for Ŝt at intermediate times r + 1 ≤ t ≤ n− r the filter formula is symmetric,

Ŝt =
Φ

(1 + Φ)
2 (wt−r + 2wt + wt+r) =

4Φ

(1 + Φ)
2

(
1

4
wt−r +

1

2
wt +

1

4
wt+r

)
. (6.14)

As with N̂t, for the initial and final years, the Ŝt filters are asymmetric. For 1 ≤ t ≤ r,

Ŝt =
Φ

(1 + Φ)
2 ((Φ + 2)wt + wt+r) =

4Φ

(1 + Φ)
2

(
1

4
{Φwt}+

1

2
wt +

1

4
wt+r

)
, (6.15)
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and for n− r + 1 ≤ t ≤ n, the filter is the time reverse of the initial year filter,

Ŝt =
Φ

(1 + Φ)
2 (wt−r + (Φ + 2)wt) =

4Φ

(1 + Φ)
2

(
1

4
wt−r +

1

2
wt +

1

4
{Φwt}

)
. (6.16)

The role of {Φwt} in (6.15) and (6.16) is as in (6.11) and (6.13).
The classical nonregression approach, illustrated in Subsection 14.1, quickly yields the sym-

metric filters but explicitly needs forecasts and backcasts to obtain the asymmetric filters.

Figure 2 shows the extracted signal Ŝt from an n = 144 simulated r = 12 (monthly) Zt with

Φ = 0.95, after MMSE suppression of Zt’s white noise component. The Ŝt track all but the most

rapid movements of the Zt series, but with fewer changes of direction over the 12 years. Findley

et al. (2016) gives a formal sense in which the calendar month series of the Ŝt are smoother

than those of the Zt.

6.2. The Error Variance Matrix of the Estimates

From (4.4), for q = 2 and n = 7, the error variance matrix has the formula

Σee = σ2a
Φ

(1 + Φ)
4



2 + Φ 0 Φ 0 0 0 0

0 2 + Φ 0 Φ 0 0 0

Φ 0 2 0 Φ 0 0

0 Φ 0 2 0 Φ 0

0 0 Φ 0 2 0 Φ

0 0 0 Φ 0 2 + Φ 0

0 0 0 0 Φ 0 2 + Φ


. (6.17)

The error variances of the initial and final years are larger than the error variance 2σ2a (1 + Φ)
−4

Φ

at intermediate times by the amount σ2aΦ2 (1 + Φ)
−4, which is the mean square error5 of using

Φ (1 + Φ)
−2 {Φwt} to forecast/backcast Φ (1 + Φ)

−2
wt±q in (6.10) and (6.13), since from (6.2)

we have

E (wt±q − Φwt)
2

=
(
1 + Φ2

)
γ0 − 2Φγq =

(
1− Φ2

)
γ0 = σ2a. (6.18)

The fact that the intermediate-time mean square error has the same positive value for all

n ≥ 5 shows that the mean square error does not become negligible with large n. Unobserved

components can be estimated only to limited precision.

5With model-based estimates from more general models for Zt, more forecasts and backcasts are needed and
their error cross-covariances occur in the mean square error formulas, which are less simple.
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Figure 2: The 12 calendar-month subseries, their averages (horizontal lines), and canonical Ŝt
(darker line) of a length 144 simulated Φ = 0.95 SAR(1) Zt.

7. Pseudo-Spectral Densities of ARIMA Models*

With nonstationary ARIMA Zt, the pseudo-spectral density (p-sd) takes over the role of the sd

in decomposition calculations. Its partial fraction decomposition (e.g.,Wikipedia Contributors

(2011)) is often the starting place for deriving the canonical decomposition as is shown with

examples below.

Let Zt denote a nonstationary ARIMA time series with differencing operator

δ (B) = 1+
∑d
j=1 δjB

j for d ≥ 1 such that wt = δ (B)Zt has the model (5.8). We always assume

that δ (B) and ϑ (B) have no common factors: there is no overdifferencing.

With gw (λ) as in (5.13), the pseudo-spectral density (p-sd, plural p-sds) of Zt is defined by

gZ (λ) =
gw (λ)

|δ (ei2πλ)|2
= σ2a

∣∣ϑ (ei2πλ)∣∣2
|δ (ei2πλ)|2 |ϕ (ei2πλ)|2

, − 1/2 ≤ λ ≤ 1/2. (7.1)

The p-sd is a non-integrable function,
∫ 1/2
−1/2 gZ (λ) dλ = ∞, as each zero of δ

(
ei2πλ

)
occurs

where gw (λ) > 0.

The most basic p-sd is that of the (0,1,0) or random walk,

(1−B)Zt = at ⇐⇒ Zt = Zt−1 + at, (7.2)
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where at is white noise with variance σ2a. From (7.1),

gZ (λ) =
σ2a

|1− ei2πλ|2
. (7.3)

The model (7.2) is the special case θ = 0 of the invertible IMA(1,1) trend model,

(1−B)Zt = (1− θB)at, −1 < θ < 1, (7.4)

which, by (5.7) and (7.1), has the p-sd

gZ (λ) = σ2a

∣∣∣∣1− θei2πλ1− ei2πλ

∣∣∣∣2 ,−1 < θ < 1. (7.5)

Especially informative will be the r ≥ 2 seasonal (1,1)r generalization of (7.4),

(1−Br)Zt = (1−ΘBr) at,−1 < Θ < 1, (7.6)

considered in Subsection 8.2. Its p-sd is

gZ (λ) = σ2a

∣∣∣∣1−Θei2πrλ

1− ei2πrλ

∣∣∣∣2 ,−1 < Θ < 1. (7.7)

8. Canonical Pseudo-Spectral Density Decompositions*

8.1. The Canonical Trend-Irregular Decomposition of the IMA(1,1)

The differencing operator 1−B of (7.4), the IMA(1,1), is a trend differencing, so the "signal" of

its p-sd decomposition is a trend. We use pt for trend (later trend-cycle) and Nt for the white

noise irregular of the canonical two-component decomposition, as in Section 6,

Zt = pt +Nt. (8.1)

The minimum value of the p-sd gZ (λ) in (7.5) is not obvious, so we calculate the partial fraction

decomposition,

σ−2a gZ (λ) =

∣∣1− θei2πλ∣∣2
|1− ei2πλ|2

=
a

|1− ei2πλ|2
+ b. (8.2)

The constants a, b are obtained by multiplying (8.2) by
∣∣1− ei2πλ∣∣2 and expanding the resulting

expressions, ∣∣1− θei2πλ∣∣2 = a+ b
∣∣1− ei2πλ∣∣2(

1 + θ2
)
− θ

(
ei2πλ + e−i2πλ

)
= a+ b

(
2−

(
ei2πλ + e−i2πλ

))
= (a+ 2b)− b

(
ei2πλ + e−i2πλ

)
.
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Equating constants and coeffi cients of
(
ei2πλ + e−i2πλ

)
on both sides yields a + 2b = 1 + θ2,

b = θ. Thus a = (1− θ)2 and we have

σ−2a gZ (λ) =
(1− θ)2

|1− ei2πλ|2
+ θ, (8.3)

revealing that the variance of the canonical white noise irregular component is

σ−2a σ2N = min
λ
σ−2a gZ (λ) =

(1− θ)2

4
+ θ =

(1 + θ)
2

4
(8.4)

in units of σ2a. Therefore, for the p-sd of the trend, from (7.5),

σ−2a gp (λ) = σ−2a
(
gZ (λ)− σ2N

)
=

(1− θ)2

|1− ei2πλ|2
− (1− θ)2

4

=
1

4
(1− θ)2

4−
∣∣1− ei2πλ∣∣2
|1− ei2πλ|2

=
1

4
(1− θ)2

∣∣1 + ei2πλ
∣∣2

|1− ei2πλ|2
. (8.5)

In summary, from (8.4) and (8.5), the canonical IMA(1,1) p-sd decomposition

gZ (λ) = gp (λ) + gN (λ)

has

gp (λ) =
1

4
(1− θ)2

∣∣1 + ei2πλ
∣∣2

|1− ei2πλ|2
σ2a, gN (λ) =

1

4
(1 + θ)

2
σ2a, (8.6)

and is admissible for all −1 ≤ θ < 1.

The canonical trend’s model is the noninvertible IMA(1,1),

(1−B) pt = (1 +B) bt, (8.7)

with white noise bt having variance σ2b = σ2a (1− θ)2 /4.
For 0 < θ < 1, the noncanonical, admissible, IMA(1,1) trend-irregular Structural Model

decomposition is derived in Section 18.

8.2. A Sometimes Nonadmissible 3-Component Canonical Decomposition*

For three-component seasonal-trend-irregular decompositions, we follow the notation of Maravall

(2016) in using st, pt and ut for the respective components,

Zt = st + pt + ut. (8.8)

We start with our most revealing example, the canonical (8.8) decomposition of (7.6) for

r = 2 (biannual data). Partial fraction calculations for the p-sd (7.7) like those used for (8.3)

yield

σ−2a gZ (λ) =
(1−Θ)

2

4 |1 + ei2πλ|2
+

(1−Θ)
2

4 |1− ei2πλ|2
+ Θ. (8.9)
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If Θ is nonnegative, this is an admissible p-sd decomposition, but not the canonical decomposi-

tion: the condition Θ ≥ 0 is too restrictive.

To obtain the candidate canonical p-sd decomposition, the positive (equal) minimum values

of the nonconstant p-sds in (8.9),

min
λ

(1/4) (1−Θ)
2

|1 + ei2πλ|2
= min

λ

(1/4) (1−Θ)
2

|1− ei2πλ|2
= (1−Θ)

2
/16, (8.10)

are shifted to the constant term Θ in (8.9) to yield the larger constant,

Θ + 2 (1−Θ)
2
/16 =

(1−Θ)
2

+ 8Θ

8
=

1 + 6Θ + Θ2

8
,

and the noninvertible seasonal and trend p-sds

(1/4) (1−Θ)
2

|1 + ei2πλ|2
− (1−Θ)

2
/16 =

(1−Θ)
2

16

4−
∣∣1 + ei2πλ

∣∣2
|1 + ei2πλ|2

=
(1−Θ)

2

16

∣∣1− ei2πλ∣∣2
|1 + ei2πλ|2

,

(1/4) (1−Θ)
2

|1− ei2πλ|2
− (1−Θ)

2
/16 =

(1−Θ)
2

16

4−
∣∣1− ei2πλ∣∣2
|1− ei2πλ|2

=
(1−Θ)

2

16

∣∣1 + ei2πλ
∣∣2

|1− ei2πλ|2
.

These result in the new decomposition

σ−2a gZ (λ) =
(1−Θ)

2

16

∣∣1− ei2πλ∣∣2
|1 + ei2πλ|2

+
(1−Θ)

2

16

∣∣1 + ei2πλ
∣∣2

|1− ei2πλ|2
+

1 + 6Θ + Θ2

8
. (8.11)

This is the canonical p-sd decomposition when the admissibility condition 1+6Θ+Θ2 ≥ 0 holds,

which is equivalent to Θ ≥ −3 + 2
√

2
.
= −0.1716. For such Θ, the canonical p-sd decomposition

for (8.8) has

gs (λ) = σ2a
(1−Θ)

2

16

∣∣1− ei2πλ∣∣2
|1 + ei2πλ|2

, gp (λ) = σ2a
(1−Θ)

2

16

∣∣1 + ei2πλ
∣∣2

|1− ei2πλ|2
, gu (λ) = σ2u, (8.12)

with the maximal irregular component variance

σ2u =

(
Θ2 + 6Θ + 1

)
8

σ2a. (8.13)

Thus, for these Θ, we have a canonical decomposition (8.8) with white noise ut having variance

(8.13) and with ARIMA st and pt having the noninvertible biannual seasonal and trend models,

(1 +B) st = (1−B) ct,

(1−B) pt = (1 +B) bt,

respectively, with

σ2b = σ2c = (1−Θ)
2
σ2a/16. (8.14)
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For output tables of AMBSA software, the white noise variance σ2a of Zt’s ARIMA model is often

set equal to 1.0 in the calculation of seasonal decomposition components’white noise variances

like σ2b and σ
2
c . These are then identified as being in "units of var(a)".

For the subinterval −1 < Θ < −3 + 2
√

2, (8.13) yields a negative σ2u. For these Θ, the

p-sd decomposition is nonadmissible and there is no AMBSA decomposition from the estimated

model of Zt. The automatic nonadmissible decomposition model replacement option6 of some

AMBSA software replaces Θ in this one-parameter case with the closest Θ from an admissible

decomposition, Θ
.
= −.1716 for the model (7.6) with r = 2. Then σ2u = 0 so there there is no

irregular component.

Hillmer and Tiao (1982, pp. 66-67) also provide results for r > 2 and for more general

seasonal models, but only for r = 2 (biannual data) do they obtain simple formulas. In practice,

estimated Θ are usually positive for an Airline i.e., (0,1,1)(0,1,1)r model, and Θ ≥ 0 results in

admissibility for this and some similar seasonal models, as Hillmer and Tiao show. Our final

canonical p-sd decomposition example will provide a revealing collection of filter formulas for

component estimation.

8.3. 3-Component Pseudo-Spectral Density Decomposition of the Biannual Seasonal
Random Walk

Setting Θ = 0 and r = 2 in (7.6) yields the biannual Seasonal Random Walk, the (0,1,0)2 or

SRW2,

(1−B2)Zt = at, (8.15)

whose p-sd is given by

σ−2a gZ (λ) =
1

|1− ei2π2λ|2
=

1

|1 + ei2πλ|2
1

|1− ei2πλ|2
. (8.16)

Setting Θ = 0 in (8.12) and (8.13) yields the p-sd formulas for its 3-component decomposition

(8.8),

gs (λ) =
σ2a
16

∣∣1− ei2πλ∣∣2
|1 + ei2πλ|2

, gp (λ) =
σ2a
16

∣∣1 + ei2πλ
∣∣2

|1− ei2πλ|2
, gu (λ) =

σ2a
8
. (8.17)

Thus st and pt are nonstationary, with respective differencing polynomials δs (B) = 1 + B

and δp (B) = 1 − B, with δp (B) also the differencing polynomial of the seasonal adjustment

sat = pt + ut. Section 15 provides the symmetric filter formulas, also obtained by Maravall

and Pierce (1987), whose tutorial study of (8.15) displays the infinitely many decompositions

6One should check that the software’s replacement model has acceptable goodness-of-fit diagnostics. If it does
not, the user could explore other models and/or shorter data spans to try to obtain an estimated model with
an admissible decomposition having acceptable diagnostics. Nonadmissibility is generally associated with data
whose graph shows quite erratic movements or strong trend movements.
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different from the canonical that can result from apportioning p-sd minima like (8.10) differently

between two or more component p-sds (or sds).

We now consider methods for estimating components of nonstationary decompositions and

their filters’properties.

9. Matrix Formulation of Signal Extraction: Difference-Stationary Case

For data with a known ARIMA model, three approaches for calculating MMSE estimates (pro-

viding identical estimates) are available among the main AMBSA programs. The only elemen-

tary approach, also the easiest to program for two-component decompositions, is presented in

Subsection 9.3. To best reveal to the reader how the nonstationary case differs from the station-

ary case, we start with the need for an assumption that provides MMSE optimality of forecasts,

backcasts and component estimates.

9.1. Assumption A and Random Walk Forecasts and Backcasts*

Purely autocovariance-based formulas like those above, e.g. in (4.2), are not applicable to the in-

herently more complex case of nonstationary ARIMA Zt because variances and autocovariances

cannot be estimated for nonstationary variates. We illustrate why this is so with the simplest

ARIMA process, the random walk (7.2). Its Zt, t ≥ 2, are generated recursively from Z1 and

future white noise at, t ≥ 2,

Zt = Zt−1 + at = Zt−2 + at−1 + at = · · · = Z1 +

t∑
j=2

aj , t ≥ 2. (9.1)

Assumption A of Bell (1984) for (7.2) is that the initial value Z1 of the data generating formula

(9.1) is uncorrelated with all at, including the at, t ≤ 1 which generate earlier Zt via

Zt−1 − Zt = −at, t ≤ 1.

EZ21 cannot be estimated consistently from one datum Z1. Nor can the covariance EZ1at. So

Assumption A can neither be verified nor contradicted. It can be replaced by other assumptions

but doing so leads to more complex formulas with no advantages, see Bell (1984), where it is also

indicated why Assumption A justifies the standard ARIMA forecast formulas by guaranteeing

that they provide MMSE forecasts. We establish this for the random walk.

For (7.2), the "well known" (if rarely fully derived) result is that for all h ≥ 1, the MMSE

h-step forecast of Zt+h from data Z1, . . . , Zt is the latest datum, Ẑt+h = Zt. To establish this

result, note from (9.1) that the forecast error Zt+h−Zt = at+1+at+2+ · · ·+at+h is uncorrelated
with Z1 by Assumption A and with a2, . . . , at by the white noise property. Consequently, the

error of forecast Ẑt+h = Zt is uncorrelated with the data, which is the MMSE characterizing

property, see Section 4. Analogous calculations show that Z1 is the MMSE backcast of Z1, . . . , Zt
for all h ≥ 1.
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9.2. Required Properties of the Stationarized Data, Signal, and Noise

When signal and noise components are ARIMA , there are three differencing operators δ (B) =

1 + δ1B + · · ·+ δdB
d for the series Zt, δS (B) = 1 + δS1B + · · ·+ δSdSB

dS for St, and δN (B) =

1+δN1 B+ · · ·+δNdNB
dN for Nt. If either St or Nt is a stationary component, such as an irregular,

transitory, or cycle component (see Subsection 21.2) one sets δS (B) = 1 or δN (B) = 1. For

MMSE component estimates from series of length n > d, the formulas of McElroy(2008) below

and most of those of Section 13 require:

1. δ (B) = δS (B) δN (B)

2. δS (B) and δN (B) have no common zeroes

3. The stationary processes

Ut = δS (B)St, Vt = δN (B)Nt, (9.2)

are uncorrelated7 : EUsVt = 0, for s = ds + 1, . . . , n, t = dN + 1, . . . , n.

4. The d = deg δ (B) initial values Z1, . . . , Zd are uncorrelated with the series Ut and Vt.

(Assumption A of Bell (1984)).

We refer to these as Requirements 1—3 and Assumption A. Regarding 1 and 2, when δ (B) =

(1−B)
d (

1−B12
)
, as is common with monthly data Zt, with St the seasonal and Nt = Zt−St

the nonseasonal component, these Requirements are met by δS (B) = 1 + B + · · · + B11 and

δN (B) = (1−B)
d+1.

9.3. The Two-Component Estimation Formulas

For Ut = δS (B)St, define U = (UdS+1, . . . , Un)
′ and let ∆S be the (n− dS)× n matrix imple-

menting δS (B), i.e. such that

U = ∆SS.

Thus, when δS (B) = 1 +
∑dS
j=1 δ

S
j B

j , the matrix ∆S has the form

∆S =



δSdS δSdS−1 · · · 1 0 · · · 0

0 δSdS δSdS−1 · · · 1 · · · 0
...

...

0 1 0

0 0 · · · · · · δS1 1


.

7Findley (2012) shows how this requirement can be weakened.
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Set ΣU = EUU ′ and let Σ, ΣV and ∆N be the analogous matrices for δ (B)Zt, Vt =

δN (B)Nt, and δN (B). With the autocovariance matrices ΣU and ΣV and differencing matrices

∆S and ∆N , McElroy (2008) shows, under Requirements 1—4, that the MMSE linear estimate

Ŝ = βSZ (9.3)

is obtained with

βS =
(
∆′SΣ−1U ∆S + ∆′NΣ−1V ∆N

)−1
∆′NΣ−1V ∆N , (9.4)

and the variance matrix Σee of the signal extraction error e = S − Ŝ has the formula

Σee =
(
∆′SΣ−1U ∆S + ∆′NΣ−1V ∆N

)−1
. (9.5)

For each 1 ≤ t ≤ n, the t-th row of βS consists of the filter coeffi cients βS,t,j used to obtain
Ŝt =

∑n
j=1 βS,t,jZj . The change of scale results below formulas (4.4) also apply in the ARIMA

case, e.g., the filters do not depend on σ2a. McElroy (2008) establishes various properties of the

filters, including their reverse symmetry : the coeffi cients for t = n are those of t = 1 in reverse

order, and similarly for t = n − 1 and t = 2, etc. If n is odd, n = 2m + 1, then the filter for

the midpoint t = m + 1 is symmetric, βS,m+1,j = βS,m+1,n−j for 1 ≤ j ≤ m. Otherwise, the

AMBSA seasonal adjustment filters are asymmetric. As in the stationary case, N̂ = βNZ with

βN = I − βS .
A conspicuous feature of the formula for βS is the noise differencing operator ∆N on the

right: When Nt is nonstationary, signal extraction starts by stationarizing the noise component.

Extensions of the matrix formulas are developed in McElroy (2006) and McElroy and Holan

(2012) for the long-term trend and cycle estimates of Subsection 21.2.

9.4. Filter and Error Variance Properties of The Canonical Decomposition*

Remark 1 of McElroy (2008) describes how the formulas (9.4) and (9.5) simplify when one

component is stationary. For the canonical decomposition case, with ΣNN = σ2I, σ2 > 0, and

W = ∆Z, the result is

βS = I − σ2∆′Σ−1W ∆,

Σee = σ2βS .

This Σee formula is a generalization of (4.4) to nonstationary Zt and St. When, for example, St is

the trend component of the IMA(1,1) model considered in Subsection 8.1, then σ2 = (1 + θ)
2
/4

in units of σ2a, see (8.4).

The formulas reveal that, with white noise N , βS = σ−2Σee is a positive definite matrix,

since Σee is. It follows that the filter coeffi cient βS,t,t of Zt in Ŝt = Σnj=1βS,t,jZj is positive for

each 1 ≤ t ≤ n. Further, the largest magnitude coeffi cient in βS is on the main diagonal, i.e., is
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the coeffi cient βS,t,t of Zt in Ŝt for some t, and thus positive, see Theorem 12.4 of Noble (1969).

Also, βN = 1− βS = σ2∆′Σ−1W ∆ has these properties.

The largest magnitude coeffi cient property does not generalize to 3-component decomposi-

tions: In Subsection 15.2, the seasonal component filter (15.6) of the canonical three-component

decomposition of a seasonal random walk is displayed. Its largest magnitude coeffi cient is neg-

ative and not on the main diagonal.

Section 5.2 of McElroy (2008) shows a way, which is implemented in some AMBSA software

to, use matrix formulas to obtain AMBSA estimates for decompositions with more components.

But usually the state space method or the W-K filter-based calculation method described in

Burman (1980) is used. Each is available in widely used AMBSA software and can handle

any number of components. Both have important computational effi ciency advantages over the

matrix formulas. The different methods produce the same finite-sample estimates and filter

coeffi cients (up to rounding error). Only the matrix and state space calculations produce finite-

sample variances and covariances rather than infinite-sample-based approximations.

10. Illustrative Seasonal Adjustment Filter and Standard Error Graphs*

For a monthly time series of length n = 131 from the θ = 0 Airline model,

(1−B)
(
1−B12

)
logZt =

(
1−ΘB12

)
at, (10.1)

with Θ = 0.3, Figure 3 shows the filter coeffi cients for the symmetric midpoint SA filter (t = 66,

solid lines) and for the one-sided concurrent SA filter (t = 131, dashed lines). Focusing on the

larger coeffi cients, both filters have effective lengths of about two years, with large coeffi cients

of different signs between time t and the adjacent same-calendar-month times, also for other t

not shown. As a consequence, their SA estimates can be adaptive to short-term changes in the

features of the series, potentially providing considerable smoothing. But with future data, the

SA, especially its concurrent value, can have large revisions, i.e., large changes in value from

its initial estimate, in comparison to revisions from Figure 4’s Θ = 0.9 filters, as the standard

errors in Figure 5 indicate.
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Figure 3: Symmetric central (t = 66) and one-sided concurrent (t = 131) seasonal adjustment

filter coeffi cients for n = 131 from the canonical decomposition of the (0,1,0)(0,1,1)12 model

with Θ = 0.3.
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Figure 4: The Θ = 0.9 analogue of the preceding Figure. The coeffi cients decrease slowly, so

the filters are not very responsive to short-term data fluctuations.
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Figure 5: The finite-sample standard errors of seasonal adjustments from the models of Figures

3 and 4, increase with the asymmetry of the filters as more forecasts and backcasts are used.

Figure 5 shows that additional smoothing from the Θ = 0.3 model results in more than twice

the standard error of the less smooth seasonal adjustment from the Θ = 0.9 model. Note too

how the standard errors increase with the distance from the center of the series. The same σ2a
is used in (10.1) for both models.

11. Standard Errors of Change for Additive Estimates

11.1. Change from the Preceding Estimate

Error variances and covariances from Σee can be used to describe the uncertainty in measures

of change. Let St denote the seasonal adjustment component of interest (e.g., the seasonal

adjustment or the trend). With an additive decomposition, the error of the one-month change

estimate Ŝt − Ŝt−1 is the difference of the errors of the two estimates,

(St − St−1)−
(
Ŝt − Ŝt−1

)
=
(
St − Ŝt

)
−
(
St−1 − Ŝt−1

)
= et − et−1,

so the error variance is

E (et − et−1)2 = (Σee)t,t + (Σee)t−1,t−1 − 2 (Σee)t,t−1 . (11.1)
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Hence the standard error of Ŝt − Ŝt−1 is given by√
(Σee)t,t + (Σee)t−1,t−1 − 2 (Σee)t,t−1, (11.2)

from which probability intervals for St − St−1 can be calculated under standard assumptions.
We illustrate such an interval for the more complex case of future revisions of an estimate.

11.2. Revisions with Future Data*

The n×n matrix Σee depends only on the models for St and Nt, not on Zt data, see (9.5). So it

can be calculated for future series lengths n+h for any h = 1, 2, . . . when only n observations are

available. Let Ŝt|n1 and Ŝt|n+h1
denote the estimates of St from these two series lengths, resulting

in the revision Ŝt|n+h1
− Ŝt|n1 , and let Σ

(n)
ee and Σ

(n+h)
ee denote the corresponding error variance

matrices. The main result is that Rt (h) = E
(
Ŝt|n+h1

− Ŝt|n1
)2
, called the revision variance or

the mean square revision, is given by the nonnegative quantity

Rt (h) =
(

Σ(n)ee

)
t,t
−
(

Σ(n+h)ee

)
t,t
. (11.3)

Hence, assuming normality, a 95 percent probability interval for the revised estimate Ŝt|n+h1
with

additional data Zn+1, . . . , Zn+h is given by Ŝt|n1 − 1.96
√
Rt (h) ≤ Ŝt|n+h1

≤ Ŝt|n1 + 1.96
√
Rt (h).

With Rt (∞) = limh→∞Rt (h), McElroy and Gagnon (2008) show how to calculate the

analogue 1 −
√

1−Rt (h) /Rt (∞) of a revision measure produced by AMBSA software for

revisions of estimates from the infinite past Ŝt|n−∞ − Ŝt|n+h−∞
, 1 ≤ h <∞.

McElroy and Gagnon further show how this is a measure of the proportion of the total root

mean square revision
√
Rt (∞) of Ŝt|n1 that is obtained after h months. Their numerical compar-

isons indicate that the software-default infinite-data-based measures, which are computationally

less expensive (especially for large n), differ little from 1−
√

1−Rt (h) /Rt (∞) except when n

is small.

12. Multiplicative Decomposition Estimates from Logs*

Most often, it is the logs of positive economic data zt, Zt = log zt, that can be modeled with

an ARIMA model. In this case, the conceptual two-component signal and noise decomposition

model is a multiplicative decomposition, zt = stnt, estimated from the additive decomposition

Zt = St +Nt, with St = log st and Nt = log nt.

If lognormality (e.g., Wikipedia Contributors (2017a)) is assumed, the MMSE estimate of

st = expSt is

exp

(
Ŝt +

1

2
(Σee)t,t

)
=
(√

exp (Σee)t,t

)
exp Ŝt,
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whose mean square error is exp 2Ŝt

(
exp

(
2 (Σee)t,t

)
− exp

(
(Σee)t,t

))
, and analogously for nt =

expNt. The product of the optimal estimates is thus not zt but zt (Σee)t,t. In AMBSA practice

however, ŝt = exp Ŝt and n̂t = exp N̂t are taken as the estimates, giving up idealized mean

square optimality for the practical goal of having a multiplicative decomposition zt = ŝtn̂t.

Another effect of estimating components by exponentiating estimates made from log trans-

formed data is that the resulting level estimates are downwardly biased, as a consequence of the

geometric-arithmetic mean inequality: exp
(
n−1Σnt=1 log xt

)
< n−1Σnt=1xj for n ≥ 2 unless all

xj have the same value. Thus trend estimates obtained by exponentiating the trend estimates of

the log transformed data are downwardly biased. A simple often effective procedure of Maravall

to reduce this bias is implemented in all AMBSA software. See Proietti and Riani (2017) for a

more encompassing analysis and discussion of transformations.

12.1. Standard Errors for Growth Rates*

Growth rates from multiplicative decompositions are calculated as

(st − st−1) /st−1 in the one-period case. When they are reasonably small, e.g. < 0.10, then

Ŝt − Ŝt−1 = log

(
ŝt
ŝt−1

)
= log

(
1 +

ŝt − ŝt−1
ŝt−1

)
.
=
ŝt − ŝt−1
ŝt−1

, (12.1)

and the error variance of (ŝt − ŝt−1) /ŝt−1 can be estimated by the error variance of Ŝt − Ŝt−1,
i.e. by (11.1), and its standard error by (11.2). The standard errors of Ŝt− Ŝt−1 shown in Figure
6 for the models of Figures 3 and 4 reveal that those for Θ = 0.3 are substantially larger and

increase much more sharply near the ends of the series than those for θ = 0.9.
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Figure 6: Finite-sample (n = 131) standard errors of the approximate one-month growth rates

(12.1) from (11.2) for the canonical decompositions of the (0,1,0)(0,1,1) models with Θ = 0.3

and Θ = 0.9. The value used for the white noise variance σ2a is the same as for Figure 3 and the

interpretation of the graphs is analogous.

13. ARMA and ARIMA Wiener-Kolmogorov Filters

MMSE component estimation for the case of bi-infinite data Zm, −∞ < m <∞ is the conceptual

starting point for the approach of Hillmer and Tiao (1982) approach to MMSE finite-sample

component estimation. For signal plus noise decompositions of stationary series, the symmetric

MMSE filter formulas (13.1) and associated transfer function formulas below were independently

published by A. N. Kolmogorov (1939) and N. Wiener (1949). Bell (1984) provided conceptual

foundations for the ARIMA generalization. As Subsection 6.1 illustrated with finite symmetric

filters for stationary data and Subsection 15 illustrates for nonstationary data, forecasts and

backcasts replace the unavailable data required by the symmetric filter, thereby defining a time-

varying asymmetric filter. The resulting estimates are referred to as Wiener-Kolmogorov or

W-K estimates.

Starting from the always symmetric, usually bi-infinite filters introduced here, AMBSA soft-

ware that does not apply state space methods or matrix formulas will apply W-K filters and

the algorithm of Tunnicliffe-Wilson published in the Appendix of Burman (1980). The algo-
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rithm exploits the fact that, because recursion relations from the model can be used, the desired

finite-sample MMSE estimates can be obtained from rapidly from a relatively small number of

forecasts and backcasts from the finite available ARMA or ARIMA data.

We first consider estimation of a two-component decomposition, Zt = St + Nt for Zt with

an invertible ARIMA model.

To obtain the MMSE estimates Ŝt and N̂t, −∞ < t < ∞, from bi-infinite data8 Zm,

−∞ < m < ∞, the Requirements 1 and 2 and Assumption A of Subsection 9.2 are retained.

Requirement 3 is reformulated for Ut = δS (B)St and Vt = δN (B)Nt as EUtVt−j = 0 for all

j = 0,±1,±2, . . ..

Under these conditions, the symmetric filters

βS (B) = βS,0 +

∞∑
j=1

βS,j
(
B−j +Bj

)
, βN (B) = βN,0 +

∞∑
j=1

βN,j
(
B−j +Bj

)
of the bi-infinite data estimates,

Ŝt = βS (B)Zt = βS,0Zt +

∞∑
j=1

βS,j (Zt+j + Zt−j)

and N̂t = βN (B)Zt, with βN (B) = 1− βS (B), have W-K transfer functions defined by ratios

(13.1) of p-sds of St, Nt and Zt. It is now helpful to use the fact that the defining formulas

(5.13) of sds and (7.1) of p-sds are each functions of ei2πλ. We will write gZ
(
ei2πλ

)
instead of

gZ (λ) and similarly for all other p-sds. The W-K formulas are

βS
(
ei2πλ

)
=
gS
(
ei2πλ

)
gZ (ei2πλ)

, βN
(
ei2πλ

)
=
gN
(
ei2πλ

)
gZ (ei2πλ)

. (13.1)

With stationary Zt, sds replace p-sds in these formulas and the St series is assumed to be un-

correlated with the Nt series. Appendix A of Findley, Lytras and Maravall (2015) provides

an elaboration of the derivation of Whittle (1963) for the stationary case formula βS
(
ei2πλ

)
=

gS
(
ei2πλ

)
/gZ

(
ei2πλ

)
and of the estimation error spectral density formula: in the original nota-

tion ge (λ) = gS (λ) gN (λ) /gZ (λ), an analogue of the formula Σee = ΣSSΣ−1ZZΣNN of (4.4).

The ps-d generalization of (5.12) shows that multiplying the squares of the transfer functions

(13.1) by the p-sd or sd of Zt yields the p-sds or sds of the component estimates. From these the

estimates’ARIMA or ARMA models are revealed, see Findley et al. (2016) for examples. These

models provide seasonal adjustment quality diagnostics, see Maravall (1987), Findley, McElroy

and Wills (2005) and their references.

8Bell (1984) shows how the infinite past Zm, m ≤ 0 can be generated recursively from the degree d differencing
polynomial δ (B) of Zt, the starting values Z1, . . . , Zd, and the stationary process wt = δ (B)Zt,−∞ < t < ∞.
This was illustrated with the random walk, which has d = 1 and δ (B) = (1−B), in Subsection 9.1.
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Analogous W-K formulas apply for decompositions with more components, e.g., with seasonal

st, trend pt, and irregular ut,

βs
(
ei2πλ

)
=
gs
(
ei2πλ

)
gZ (ei2πλ)

, βp
(
ei2πλ

)
=
gp
(
ei2πλ

)
gZ (ei2πλ)

, βu
(
ei2πλ

)
=
gu
(
ei2πλ

)
gZ (ei2πλ)

. (13.2)

14. W-K Filter Formula Examples

14.1. Rederiving the AR(1)r Symmetric Filters

From (13.1), we can quickly re-obtain (6.9): First, from (6.4 ) and (6.3),

βN
(
ei2πλ

)
=
gN
(
ei2πλ

)
gw (ei2πλ)

=
(1 + Φ)

−2

|1− Φei2πrλ|−2
= (1 + Φ)

−2 ∣∣1− Φei2πrλ
∣∣2 . (14.1)

Next, for translations from transfer functions of the form
∣∣Σjαjei2πrλ∣∣2 to filters, we can adopt

a device of Maravall and Pierce (1987), replacing e±i2πjλ by B±j to obtain symmetric filter

formulas, ∣∣ΣjαjBj∣∣2 =
(
ΣjαjB

j
) (

ΣjαjB
−j) . (14.2)

From (14.1) and (14.2),

βN (B) = (1 + Φ)
−2

(1− ΦBr)
(
1− ΦB−r

)
= (1 + Φ)

−2 (−ΦBr +
(
1 + Φ2

)
− ΦB−r

)
.

This is the filter that produces (6.9).

14.2. Infinite W-K Filters

A W-K filter is infinite if and only if the model for Zt has a moving average component.

14.2.1. A Stationary Case: The Invertible Seasonal MA(1)r

Suppose Zt = (1− θBr) at, with r ≥ 2, σ2a = 1, 0 < |θ| < 1. Then

gZ (λ) =
∣∣1− θei2πrλ∣∣2 and the white noise sd gN (λ) = σ2 has

σ2 = min
λ

∣∣1− θei2πrλ∣∣2 = (1− |θ|)2 .

Thus its W-K transfer function is

βN
(
ei2πλ

)
=

σ2

gZ (ei2πλ)
= (1− |θ|)2

∣∣1− θei2πrλ∣∣−2 .
From (5.13), this has the form of the sd of a seasonal AR(1)r with AR coeffi cient θ, white noise

variance (1− |θ|)2, and thus variance (1− |θ|)2 (1 − θ2)−1 = (1− |θ|) (1 + |θ|)−1. Hence, from
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(6.2) and (5.3), the filters are symmetric and infinite:

βN (B) =
1− |θ|
1 + |θ|

1 +

∞∑
j=1

θj
(
Bjr +B−jr

) ,

βS (B) = 1− βN (B) =
2 |θ|

1 + |θ| +

∞∑
j=1

{
−1− |θ|

1 + |θ|θ
j

}(
Bjr +B−jr

)
.

Therefore

N̂t = βN (B)Zt =
1− |θ|
1 + |θ|

Zt +

∞∑
j=1

θj (Zt−jr + Zt+jr)

 , (14.3)

Ŝt = βS (B)Zt =
2 |θ|

1 + |θ|Zt +

∞∑
j=1

{
−1− |θ|

1 + |θ|θ
j

}
(Zt−jr + Zt+jr) . (14.4)

The filter coeffi cients are nonzero only at lag zero and seasonal lags. Lag zero has the largest

magnitude coeffi cient. The magnitudes at seasonal lags decrease exponentially with increasing

seasonal lag. For θ > 0, the seasonal lag jr ≥ 1 coeffi cients are positive for the white noise

estimate N̂t and negative for the signal estimate Ŝt. The coeffi cients decay exponentially at the

rate |θ|j starting at j = 1.

Next we consider the nonstationary case, starting with a general result.

14.2.2. Transfer Function Form and Coeffi cient Decay Rate of ARIMA W-K Filters

All W-K transfer functions like those in (13.2) have the form of the sd of an ARMAmodel because

the differencing operator factor of gZ
(
ei2πλ

)
, e.g.,

∣∣δS (ei2πλ)∣∣−2 ∣∣gN (ei2πλ)∣∣−2 in the general
two-component case, becomes the numerator factor

∣∣δS (ei2πλ)∣∣2 ∣∣gN (ei2πλ)∣∣2 in gZ (ei2πλ)−1,
cancelling any differencing factors of gS

(
ei2πλ

)
and gN

(
ei2πλ

)
. It follows that the coeffi cients

of the W-K filter β (B) coincide with the autocovariances γj of this ARMA model,

β (B) = γ0 +

∞∑
j=1

γj
(
B−j +Bj

)
. (14.5)

This formula reveals the important property that, as in Figures 3 and 4, the weight γ0 given

by W-K filters to the contemporaneous datum Zt in the estimate β̂t = β (B)Zt is positive and

greater in magnitude than all other coeffi cients, γ0 >
∣∣γj∣∣ for all j > 1, because

∣∣γj/γ0∣∣ < 1

holds for ARMA autocorrelations. These properties were established for the filters of every

canonical two-component finite-sample decomposition in Subsection 9.4.

For specific examples of an ARIMA model’s component filters, we return to the fundamental

model of Subsection 8.1.
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14.2.3. Nonstationary Case: IMA(1,1) Trend-Irregular Decomposition Filters

For the trend-irregular decomposition (8.1) of the model (1−B)Zt = (1− θB) at,−1 < θ < 1,

the sd and p-sd functions of the irregular and trend estimates, gu (λ) and gp (λ) = 1 − βu (λ),

were obtained in (8.6). Here we derive the formulas of the components’estimation filters and

note some features that generalize. From the formulas of (8.6) for gu (λ) and of (7.5) for gZ (λ),

the transfer function (13.2) for the bi-infinite data estimate ût = βu (B)Zt of the white noise

irregular component is

βu (λ) = σ2ugZ (λ)
−1

=
1

4
(1 + θ)

2

∣∣1− ei2πλ∣∣2
|1− θei2πλ|2

. (14.6)

From (8.4), this is the sd of an ARMA(1,1) with AR coeffi cient θ, MA coeffi cient 1, and white

noise variance (1 + θ)
2
/4. The transfer function of the trend component,

βp (λ) = gp (λ) gZ (λ)
−1

=
1

4
(1− θ)2

∣∣1 + ei2πλ
∣∣2

|1− θei2πλ|2
, (14.7)

is the sd of an ARMA(1,1) with AR coeffi cient θ, MA coeffi cient −1 and innovation variance

(1− θ)2 /4. By (14.5), each has as filter coeffi cients the autocovariances of its sd’s model. We
calculate the formula for βp (B) in this way and then obtain βu (B) as 1 − βp (B) . Applying

the recursions (3.4.7) of Box and Jenkins (1976) for ARMA(1,1) autocovariances to (14.7), we

obtain

βp (B) =
2

1− θ

1 +
1

2

(
B +B−1

)
+

1

2

∞∑
j=2

θj−1
(
Bj +B−j

) .

βu (B) = 1− βp (θ) =
2

1− θ

1 + θ

2
− 1

2

(
B +B−1

)
− 1

2

∞∑
j=2

θ j−1 (B j +B− j
) .

The coeffi cients decay exponentially at the rate |θ|j starting9 at j = 2. For θ > 0, the midpoint

(j = 0) coeffi cients, 2 (1− θ)−1 for βp (B) and (1 + θ) (1− θ)−1 for βu (B), are the largest in

magnitude. Also, for the trend estimate, all coeffi cients are positive. For the irregular estimate,

except at the midpoint, all are negative.

15. Biannual Seasonal Random Walk Filters*

It is useful to consider detailed results for the 3-component decomposition of (8.15) with r = 2.

The results illustrate AMBSA for the rather rare case of a model with no MA component. Here,
9 In general, when the model of Zt has a total AR polynomial ϕ (B) (including any differencing operator)

and an MA polynomial with no zeroes of order greater than one, it can be shown that decay rate τ j begins at
j = degϕ (B) + 1 with τ equal to the maximum magnitude of the reciprocals of the zeroes of the MA polynomial
Θ (z). For example, in the MA(1) case, Θ (z) = 1− θz is zero for z = θ−1, whose reciprocal is θ.
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unless the data interval is short, symmetric filters can be applied in an interior interval and

asymmetric filters are required only near the two ends of the series. So one wants to be aware

of differences in the properties of the two kinds of filters.

From (8.16),

gZ (λ)
−1

= σ−2a
∣∣1− ei2π2λ∣∣2 = σ−2a

∣∣1 + ei2πλ
∣∣2 ∣∣1− ei2πλ∣∣2 . (15.1)

Multiplication into (8.17) provides the filter transfer functions of the canonical decomposition,

βs
(
ei2πλ

)
=

1

16

∣∣1− ei2πλ∣∣4 , βp
(
ei2πλ

)
=

1

16

∣∣1 + ei2πλ
∣∣4 , βu

(
ei2πλ

)
=

1

8

∣∣1− ei2π2λ∣∣2 ,
(15.2)

with βsa
(
ei2πλ

)
= 1− βs

(
ei2πλ

)
for the seasonal adjustment filter.

15.1. The Symmetric Filters

For the symmetric filters, (15.2) yields the length 5 formulas

βs (B) =
1

16
|1−B|4 =

1

16

(
B2 − 4B + 6− 4B−1 +B−2

)
. (15.3)

βp (B) =
1

16
|1 +B|4 =

1

16

(
B2 + 4B + 6 + 4B−1 +B−2

)
. (15.4)

βsa (B) = 1− βs (B) =
1

16

(
−B2 + 4B + 10 + 4B−1 −B−2

)
.

βu (B) =
1

8

(
1−B2

) (
1−B−2

)
=

1

8

(
−B2 + 2−B−2

)
. (15.5)

For n ≥ 6, these filters produce estimates for times 3 ≤ t ≤ n− 2.

15.2. The Asymmetric Filters

Forecasts of the series values at times n + 1 and n + 2 are needed for component estimates at

t = n − 1, n. So are backcasts for t = 1, 2. We illustrate with odd n, n = 2m + 1, for which

Ẑ2m+2 = Z2m, Ẑ2m+3 = Z2m+1 and Ẑ−1 = Z1, Ẑ0 = Z2 are needed for component estimates.

The resulting filters are asymmetric. Subsection 8.2 of Findley et al. (2016) derives these results

and the asymmetric filter formulas for the initial year and final year. Only final year filters are

displayed below. We identify forecasts Ẑ only for û2m, û2m+1 and ŝ2m+1.

û2m =
1

8

{
−Z2m−2 + 2Z2m − Ẑ2m+2

}
=

1

8
{−Z2m−2 + Z2m} =

1

8

(
1−B2

)
Z
2m
.

û2m+1 =
1

8

{
−Z2m−1 + 2Z2m+1 − Ẑ2m+3

}
=

1

8
{−Z2m−1 + Z2m+1} =

1

8

(
1−B2

)
Z
2m+1

.

ŝ2m+1 =
1

16

{
Z2m−1 − 4Z2m + 6Z2m+1 − 4Ẑ2m+2 + 2Ẑ2m+3

}
(15.6)

=
1

16

{
B2 − 8B + 7

}
Z2m+1 =

1

16
(7−B) (1−B)Z2m+1.
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ŝ2m =
1

16

{
B2 − 4B + 7− 4B−1

}
Z2m =

1

16

(
−B + 3− 4B−1

)
(1−B)Z2m.

ŝa2m =
1

16

{
−B2 + 4B + 9 + 4B−1

}
Z2m =

1

16

(
−B + 5 + 4B−1

)
(1 +B)Z2m,

ŝa2m+1 =
1

16
{−B2 + 8B + 9}Z2m+1 =

1

16
(9−B) (1 +B)Z2m+1.

p̂2m =
1

16

{
B2 + 4B + 7 + 4B−1

}
Z2m =

1

16

(
B + 3 + 4B−1

)
(1 +B)Z2m.

p̂2m+1 =
1

16

{
B2 + 8B + 7

}
Z2m+1 =

1

16
(7 +B) (1 +B)Z2m+1. (15.7)

Since
(
1−B2

)
= (1−B) (1 +B), the factored formulas on the right for both types of

filters show that the trend and seasonal differencing operator factors of an asymmetric filter

are of lower degree than those of the symmetric filters. For example, whereas the factorization

βs (B) = B−2 (1−B)
4of (15.3) shows that βs (B) can annihilate a cubic trend to estimate the

seasonal st, the concurrent filters of ŝ2m and ŝ2m+1 involving forecasts and backcasts can only

annihilate a constant mean.

16. Differencing Operators of General ARIMA Filters

In the nonstationary case, with δ(B) denoting the differencing operator of the ARIMA model of

Zt, the denominator factors
∣∣δ (ei2πλ)∣∣2 in (7.1) give rise to factors of δ(B)δ(B−1) in the filters

(13.2). For example, if δ(B) = (1−B) (1 +B) = δp(B)δs(B) as in the SRW2 , then βs (B) and

βu (B) will contain the factor (1−B)
(
1−B−1

)
= B−2 (1−B)

2, which will annihilate a linear

trend a+ bt because differencing lowers the degree of a polynomial by one,

e.g., (1−B) t2 = t2−(t− 1)
2

= 2t−1. Consequently, the trend filter βp (B) = 1−βs (B)−βu (B)

will preserve such a trend without change.

The SRW2 asymmetric filter only has a single 1−B factor, as the filter formulas of Section

15 show. Therefore only a constant level term is annihilated by βs (B) and βu (B) and preserved

by βp (B). Similarly, in the asymmetric case, only the first power of (1 + B) occurs in βp (B).

The filter βu (B) annihilates a period r = 2 deterministic seasonal component a (−1)
t which is

preserved by βs (B).

16.1. What Seasonal Decomposition Filters Annihilate or Preserve

The tables of Bell (2012, 2015) cover the annihilation and preservation properties of more general

differencing operators and also several generations of symmetric and asymmetric X-11 filters.

Table 2 of Bell (2012) summarizes the main results for the practical case of asymmetric filters.
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17. Canonical Decomposition and Smoothing Trade-Offs*

White noise has neither seasonal features nor the smooth properties expected of a trend or any

other component of interest for cyclical analysis. Therefore specifying all components other than

the irregular in a way that makes them white noise free (after differencing if needed), as the

canonical decomposition does, is appropriate. Hillmer and Tiao (1982) shows that the ARIMA

models of the canonical seasonal and the canonical trend have smaller one-step-ahead forecast

error variances than all noncanonical models for these components. Thus the seasonal and trend

components are more predictable one period ahead, a kind of increased smoothness —something

that always has a cost. Corollary 3 of Maravall (1986) shows that each canonical non-irregular

component has a larger revision variance than a noncanonical specification for the component.

Mostly summarizing Maravall, this is the price paid for cleaning the signal of white noise. It is

an instance of an important phenomenon mentioned in Section 10: greater smoothing is usually

associated with some kind of increased statistical instability. Another example: the AMBSA

trend is a smoothed version of the AMBSA seasonal adjustment, see Findley et al. (2016), and

concurrent trend estimates generally have statistically larger revisions than concurrent seasonal

adjustments. Maravall and Planas (1999) analyze features and costs of an interesting variety of

conceptually less simple alternatives to the canonical p-sd specification.

18. Structural Models: A Trend Estimation Example

The models known as Structural Time Series Models offer a different approach to component

estimation by directly specifying models of a simple form for the components and jointly es-

timating the parameters of their sum, which is the implied model for the data. See Harvey

and Koopman (2000). This approach requires less modeling background and modeling effort

than ARIMA modeling, possibly at the cost of reduced forecast performance and goodness of fit

compared to what can be obtained from direct ARIMA modeling of the data. However, unless

parameter estimation fails, this approach always yields an admissible p-sd decomposition.

We illustrate with the simplest structural trend model for nonstationary Zt. This prescribes

a random walk trend p∗t and a white noise irregular N
∗
t ,

Zt = p∗t +N∗t

(1−B) p∗t = b∗t , (18.1)

with mutually uncorrelated white noise N∗t and b
∗
t . The parameters to be estimated are σ

2
b

and q = σ2N/σ
2
b . For wt = (1−B)Zt, the prescriptions result in wt = b∗t + (1−B)N∗t being

a stationary process with γ0 = σ2b∗ + 2σ2N∗ , γ±1 = −σ2N∗ and γk = 0, for |k| > 1. Thus wt
is an MA(1) process, wt = at − θat−1, with a negative lag one autocorrelation ρ1 = γ1/γ0 =

−σ2N
(
2σ2N∗ + σ2a

)−1
. Since also ρ1 = −θ/

(
1 + θ2

)
, necessarily θ > 0. Thus a differently
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parameterized constrained IMA(1,1) model with the constraint θ > 0 is prescribed. Its trend

model (18.1) differs from that of the canonical decomposition (8.7).

This ARIMA model representation is the reduced form of the Structural Model. Structural

Models always have a parameter-constrained ARIMA reduced form whose parameters can be

determined from the autocovariances. See Section 19 and, for this example, also Subsection

19.1. The reduced form is not needed to derive the likelihood function and is not usually of

interest.

Unfortunately, Structural Models tend to have parameter estimation problems, see Bell

(1993) for example. Eurostat does not recommend the use of Structural Models for seasonal

adjustment.

19. Spectral Factorization

A nonzero function of the form

Q (λ) = γ0 +

q∑
j=1

γj
(
ei2πjλ + e−i2πjλ

)
, q ≥ 1 (19.1)

that is nonnegative for all λ is the spectral density of an MA(q) process with autocovariances

γj , 0 ≤ j ≤ q. More specifically,

Q (λ) = σ2

∣∣∣∣∣∣1−
q∑
j=1

θje
i2πjλ

∣∣∣∣∣∣
2

, (19.2)

with MA(q) polynomial θ (z) = 1 −
∑q
j=1 θjz

j such that θ (z) 6= 0 for |z| < 1, a property

that uniquely determines the coeffi cients θj and σ2, see Findley (2012). The determination of

θ (z) from ( 19.1) is known as the spectral factorization of Q (λ). It can be accomplished by

constructing a polynomial of degree q, scaled to have θ (0) = 1 at z = 0, whose zeroes are the

zeroes of γ0+
∑q
j=1 γj

(
zj + z−j

)
having |z| ≥ 1 (usually found by numerical methods if q > 1).

Some AMBSA software does not use spectral factorization to calculate component estimates,

but uses it for other purposes, e.g., to express the ARIMA or ARMA models of the bi-infinite

seasonal, trend and irregular estimators in a familiar form for diagnostic purposes. The effi cient

algorithm derived in Appendix A of Maravall and Mathis (1994) is used. (In formula (A.4) of

this reference, zj should be be z
−1
j .)

19.1. The MA(1) Case

When q = 1, the quadratic formula provides (19.2): For an MA(1) Zt = at− θat−1 with |θ| ≤ 1,

the coeffi cient θ and the first order autocorrelation ρ1 = γ1/γ0 = −θ/
(
1 + θ2

)
are connected
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by the properties that θ = 0 if and only if ρ1 = 0 and, for ρ1 6= 0, θ2 + ρ−11 θ + 1 = 0. Thus θ

satisfies

θ =
−ρ−11 ±

√
ρ−21 − 4

2
.

For θ (z) = 1 − θz, the requirement that θ (z) 6= 0 for |z| < 1 is equivalent to |θ| ≤ 1, which

determines the ± choice. Finally γ0 =
(
1 + θ2

)
σ2a yields σ

2
a =

(
1 + θ2

)−1
γ0.

20. Regarding AMBSA Software Model Choices and Decomposition
Components

Terminology. An ARIMA model is balanced if the numerator and denominator functions on
the right in (7.1) have the same degree, (deg ϑ = deg δ+degϕ), bottom heavy if the denominator

has larger degree, (deg δ + degϕ > deg ϑ), and top heavy if the numerator has larger degree

(deg ϑ > deg δ + degϕ).

The automatic ARMA or ARIMA modeling procedures of AMBSA software are biased to-

ward balanced models because these more often have p-sds with admissible decompositions.

With top heavy p-sds, the partial fraction decomposition used to obtain their components al-

ways yields an additive moving average component in addition to a balanced component, see

Wikipedia Contributors (2011). Among the p-sd examples of Section 7, (7.3) is bottom heavy,

and (7.5) and (7.7) are balanced. Model (6.3) of Hillmer and Tiao (1982) is a top heavy model

whose canonical p-sd decomposition is shown by the authors to be admissible for a range of para-

meter values. With balanced and bottom heavy models, the nature of the p-sd decomposition is

determined by a factorization of the total autoregressive polynomial ϕ (B) = δ (B)φ (B) Φ (Br)

and a corresponding decomposition of the p-sd ϕ (z).

21. Additional Components of Some AMBSA Software Decompositions

For ARIMA seasonal time series, the differencing operator usually has the form

δ (B) = (1−B)
d

(1−Br) = (1−B)
d+1

U(B), d ≥ 0,

with even-length seasonal period r ≥ 2 and U (z) = 1 +
∑r−1
j=1 z

j . Assuming d+D > 0, the zero

z = 1 of (1− z)d+D is the trend unit root. The r − 1 zeroes of U(z) are the seasonal unit roots.

These always include zr/2 = −1 and for r > 2, also zk = ei2πk/r, k = ±1, . . . ,± (r/2− 1) , r/2.

The associated functions zk (λ) = ei2πλ(k/r), k = 0,±, 1 . . . , r/2 are periodic, repeating |k|
times a year.
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21.1. Stationary Components

When the ARIMA model has a stationary autoregressive polynomial ϕ (z) = φ (z) Φ (zr) with

zeroes close to the seasonal unit roots and/or to the trend root, and/or certain other unit roots, it

is decomposed as ϕ (z) = φseas (z)φtrend (z)φother (z), with any factor set equal to 1 when there

are no zeroes that qualify for inclusion of the factor. The magnitude of "close" is defined by a soft-

ware default, often a user-changeable magnitude. With these AR factors, the p-sd decomposition

can include a seasonal component p-sd with denominator
∣∣ϕseas (ei2πλ)∣∣2, where ϕseas (ei2πλ) =

U(ei2πλ)φseas
(
ei2πλ

)
, a trend component p-sd with denominator

∣∣ϕtrend (i2πλ)∣∣2,
where ϕtrend

(
ei2πλ

)
=
(
1− ei2πλ

)d+1
φtrend

(
ei2πλ

)
, and possibly a spectral density for a sta-

tionary component not connected to trend or seasonal, with denominator
∣∣φother (ei2πλ)∣∣2, which

is generally called a transitory component, with ϕtrans
(
ei2πλ

)
= φother

(
ei2πλ

)
in the total

AR notation. However, in the monthly case, if φother (z) is of degree 2 and has complex ze-

roes with arguments λ close in magnitude to the main trading frequency 0.348 cycles/month,

i.e. |λ| .= ±0.348, then it is called a stochastic trading day component, with ϕtd
(
ei2πλ

)
=

φtrans
(
ei2πλ

)
. If φother (z) is of degree 3 and contains such a degree 2 factor, then it is

factored as φother (z) = ϕtd (z)ϕtrans (z) resulting in denominator factors
∣∣ϕtd (ei2πλ)∣∣2 and∣∣ϕtrans (ei2πλ)∣∣2. Then, with the irregular, there are five possible stationary decomposition

components.

21.2. A Trend-Cycle Decomposition Option for Long Series

If a monthly ARIMA series has an estimated nonstationary trend component p̂t of length at least

least ten years, then by (changeable) default, some AMBSA software automatically applies a

Hodrick-Prescott (HP) filter (see Wikipedia (2017c)), here denoted H (B), to the trend estimate

p̂t extended by forecasts and backcasts. The result is an estimate Ĉt = H (B) p̂t of a stationary

cycle Ct and the estimate T̂t = p̂t− Ĉt of the nonstationary long-term trend Tt. Expressed in

terms of transfer functions, the trend filter transfer function gp
(
ei2πλ

)
is decomposed as the

sum of transfer functions gC
(
ei2πλ

)
=
∣∣H (ei2πλ)∣∣2 gp (ei2πλ) and gT

(
ei2πλ

)
= gp

(
ei2πλ

)
−

gC
(
ei2πλ

)
.

Kaiser and Maravall (2001) and Maravall (2005) give further background, as do McElroy

(2006) and McElroy and Holan (2012), who provide matrix formulas for MMSE finite-sample

estimates and their mean square errors, and also results of simulation experiments. Trend-Cycle

decompositions are also available with other observation frequencies, e.g. quarterly data, from

some AMBSA software for suffi ciently long series. Wikipedia (2017c) discusses limitations of HP

filters for cycle extraction, but doesn’t consider the situation in which, as here, an ARIMA model

for the p̂t can be derived from which any needed forecasts and backcasts can be be obtained.

Many users of seasonally adjusted data are interested in detecting cyclical movements in the

adjusted data. But validation and interpretation of cycle estimates is not part of the discipline

42



of seasonal adjustment. It belongs to a less developed discipline requiring substantial data

knowledge and practical training as well as technical knowledge. It is not amenable to high

volume production.

22. Model-Based SA versus X-11 Filter SA

Maravall and Peréz (2012) illustrates the application by experts of AMBSA to an important

economic indicator at a time of economic instability. It was stimulated by preceding results

obtained at a different central bank with different software using X-11 filter estimates. Its focus

is not the comparison of estimation methods but rather the versatility of the tools available in

the AMBSA software and the greater versatility of the model-based approach. It cannot be

assumed a priori that model-based filters will provide a better seasonal adjustment than X-11

filters (for X-11 details see Ladiray and Quenneville (2001)). Although AMBSA has a wider

range of filters, the results are often very similar, as the filters can also be, see Bell, Chu and

Tiao (2012). What is clearly advantageous about the AMBSA approach with an admissible

decomposition is that it specifies ARIMA models and other properties of the canonical seasonal

and nonseasonal components and their estimates. This provides a context for the seasonally

adjusted series that is rich in auxiliary information of interest, for example statistical precision,

not only for seasonal adjustments (for X-11 adjustments, see Bell and Kramer (1999) and Scott,

Pfeffermann and Sverchkov (2012)) but also for derived quantities, such as seasonally adjusted

growth rates, and covariances of component estimates, from which quality diagnostics can be

derived, see Maravall (1987) and Findley, McElroy and Wills (2005). The X-11 approach has

no such rich and coherent context. In particular, its traditional adjustment quality diagnostics

are ad hoc and diffi cult to validate.

Advantageous features of the X-11 filter method include the directness of its time-tested

multiplicative decomposition procedure, which avoids the level bias of log-additive adjustment,

and the conceptual simplicity of its filters and iterative procedure (if its complicated extreme

value procedure is not considered, for which the outlier identification and adjustment procedure

of AMBSA software is a possible substitute). This simplicity makes it easier to explain SA to

non-experts and reduces the time series background and amount of training required for new

users, compared to AMBSA.

Modern software makes it easy to obtain and compare AMBSA and X-11 method adjust-

ments. When they are close, confidence in each adjustment is increased.
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