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Abstract

Randomized response (RR) methods have long been suggested for protecting respondents’

privacy in statistical surveys. However, how to set and achieve privacy protection goals

have received little attention. We give a full development and analysis of the view that a

privacy mechanism should ensure that no intruder would gain much new information about

any respondent from his response. Formally, we say that a privacy breach occurs when an

intruder’s prior and posterior probabilities about a property of a respondent, denoted p and

p∗, respectively, satisfy p∗ < hl(p) or p∗ > hu(p), where hl and hu are two given functions.

An RR procedure protects privacy if it does not permit any privacy breach. We explore

effects of (hl, hu) on the resultant privacy demand, and prove that it is precisely attainable

only for certain (hl, hu). This result is used to define a canonical strict privacy protection

criterion, and give practical guidance on the choice of (hl, hu). Then, we characterize all

privacy satisfying RR procedures and compare their effects on data utility using sufficiency

of experiments and identify the class of all admissible procedures. Finally, we establish an

optimality property of a commonly used RR method.
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1. Introduction

In recent years, businesses, organizations and government agencies have been gathering increas-

ingly vast amounts of data from surveys, commercial transactions, on-line searches and postings,

medical records and other sources, and heavily using data analytics in making business and policy

decisions. Simultaneously, concerns about privacy and data confidentiality have been increas-

ing substantially. Protecting privacy and personal information is essential for legal reasons and

for upholding public trust and support. Several books, e.g., Willenborg and de Waal (2001),

Aggarwal and Yu (2008), Hundepool et al. (2012) and Torra (2017), and many papers discuss

various privacy and confidentiality protection methods such as grouping, data swapping, cell

suppression, imputation and response randomization.

Privacy violations occur in many forms depending on data type, privacy desires and intruders’

knowledge and behavior. Thus, various privacy concepts and measures have appeared in the

literature, including identity disclosure, differential privacy, k-anonymity and l-diversity (see

Chen et al., 2009). Fung et al. (2010) present a systematic review of different approaches.

However, as Kifer and Lin (2012) noted, most privacy measures are developed intuitively and

can lead us astray, and thus one should use privacy criteria that are logically sound and practical.

Evfimievski et al. (2003) introduced one such criterion, called ρ1-to-ρ2 privacy, in the context

of randomized response (RR) surveys of categorical variables. Nayak et al. (2015) proposed

a similar criterion, called β-factor privacy. The main objectives of this paper are to present

some new perspectives on these two criteria and develop and explore the underlying ideas in

full generality. Interestingly, we find that any privacy specification amounts to putting an upper

bound on all Bayes factors. Thus, privacy needs should be assessed most appropriately in terms

of Bayes factors. We obtain a complete characterization of all RR procedures that satisfy any

specified privacy criterion. Moreover, we compare all privacy preserving procedures by data

utility and identify the admissible procedures.
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To describe the context and concepts, we consider a categorical survey variable (or a cross-

classification of several variables) X with the set of possible categories SX = {c1, . . . , ck}. Let

πi, i = 1, . . . , k, denote the population level relative frequencies of c1, . . . , ck, which are unknown.

We collect data to estimate π = (π1, . . . , πk)
′ and make other inferences about π. To protect

privacy, an RR survey asks each respondent to use a given random mechanism to generate

and report a perturbed version Z of his/her true value of X. We refer to Warner (1965),

Chaudhuri and Mukerjee (1988), Chaudhuri (2010) and Nayak et al. (2016) for review of RR

theory and additional references. Denote the output space by SZ = {d1, . . . , dm}. The transition

probabilities pij = P (Z = di|X = cj), i = 1, . . . ,m, j = 1, . . . , k, are prespecified and embedded

in the randomization device. The matrix P = ((pij)), called the transition probability matrix

(TPM), determines all statistical properties of the RR mechanism, and designing an RR survey

essentially reduces to choosing P . Thus, we shall identify an RR procedure by its underlying

P . We shall require that each row of P contains at least one nonzero element to define m and

SZ unambiguously. Note that if the ith row of P is zero, then P (Z = di) is always zero and di

is irrelevant. The columns of P are also called channel distributions; see Duchi et al. (2016).

Note that the sample spaces SX and SZ of X and Z, respectively, need not be the same, or even

have the same cardinality. For example, in the RAPPOR algorithm of Erlingsson et al. (2014),

m = 2k.

Clearly, an RR survey generates data on Z (and not on X). Under simple random sampling,

the distribution of Z is determined by

λ = Pπ. (1.1)

Thus, the data on Z can be used to estimate λ. To estimate π, essentially one would need to

use (1.1) and an estimate of λ, say λ̂. If k = m and P is non-singular, π is estimated using

π̂ = P−1λ̂, see e.g., Chaudhuri and Mukerjee (1988). If m < k, or more generally if the columns

of P are not linearly independent, the model for Z is not identifiable with respect to π and hence
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π is not estimable. Thus, inference and data utility considerations suggest to use m ≥ k and P

with rank k. In a parametric model, if π is a function of fewer parameters, identifiability might

hold even when m < k. However, identifiability with respect to π ensures that the data set can

be analyzed using different models for various (possibly unforeseen) purposes. Gouweleeuw et

al. (1998) used RR to propose a method for protecting data confidentiality.

In the preceding framework, Evfimievski et al. (2003) defined ρ1-to-ρ2 privacy, taking a

Bayesian view. For a target respondent B, suppose an intruder R’s prior probability of X = cj

is αj , and let α = (α1, . . . , αk)
′. Note that an intruder’s prior α about a target may be quite

different from π. For a given prior α, Pα(Z = di) =
∑k

l=1 αlpil and the posterior probability of

X = cj given B’s response Z = di, is

Pα(X = cj |Z = di) =
Pα(X = cj , Z = di)

Pα(Z = di)
=

αjpij∑k
l=1 αlpil

. (1.2)

Also, R’s prior and posterior probabilities of any Q ⊆ SX = {c1, . . . , ck} are:

Pα(X ∈ Q) =
∑
j:cj∈Q

αj and Pα(X ∈ Q|Z = di) =
∑
j:cj∈Q

Pα(X = cj |Z = di). (1.3)

For brevity, we shall denote Pα(X ∈ Q) by Pα(Q) and Pα(X ∈ Q|Z = di) by Pα(Q|di).

Definition 1.1. (Evfimievski et al., 2003) Let 0 < ρ1 < ρ2 < 1 be two numbers. (a) An RR

procedure is said to permit an upward ρ1-to-ρ2 privacy breach with respect to Q ⊆ SX and a

prior distribution α if for some 1 ≤ i ≤ m with Pα(Z = di) > 0,

Pα(Q) < ρ1 and Pα(Q|di) > ρ2. (1.4)

Similarly, a procedure is said to admit a downward ρ2-to-ρ1 privacy breach if Pα(Q) > ρ2 and

Pα(Q|di) < ρ1 for some di with Pα(Z = di) > 0.
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(b) An RR procedure is said to provide ρ1-to-ρ2 privacy protection if it does not permit an

upward ρ1-to-ρ2 privacy breach or a downward ρ2-to-ρ1 privacy breach with respect to any Q and

any prior α.

Definition 1.2. (Nayak et al., 2015) For a given β > 1, an RR procedure admits a β-factor

privacy breach, with respect to Q ⊆ SX and a prior α if Pα(Q) > 0 and

Pα(Q|di)
Pα(Q)

> β or
Pα(Q|di)
Pα(Q)

<
1

β
(1.5)

for some di such that Pα(Z = di) > 0.

An RR procedure provides β-factor privacy if it does not allow a β-factor breach with respect

to any Q and any α.

The above two criteria are very strong, as they require no privacy breach for any di, Q and α.

Thus, no answer (di) of a respondent B would give “much” new information to any intruder R

(characterized by α) about any property (Q) of B with respect to X. Evfimievski et al. (2004)

introduced a similar concept of privacy breach in privacy preserving association rule mining. In

practice, values of (ρ1, ρ2) and β should be chosen based on the sensitivity of X and privacy

concerns. Here, the β-factor privacy is simpler as it requires us to specify only one number (β).

Interestingly, the strict privacy requirements of the two criteria are achievable, as summarized

below.

Definition 1.3. (Nayak et al., 2015) The ith row parity of P is defined as

ηi(P ) = max
{pij
pil
| j, l = 1, . . . , k

}
=

maxj{pij}
minj{pij}

, (1.6)

with the convention 0/0 = 1 and a/0 =∞ for any a > 0.

Furthermore, the parity of P is defined as η(P ) = maxi{ηi(P )}.
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Theorem 1.1. (Evfimievski et al., 2003) A sufficient condition for an RR procedure with tran-

sition probability matrix P to guarantee ρ1-to-ρ2 privacy is:

η(P ) ≤ ρ2(1− ρ1)
ρ1(1− ρ2)

. (1.7)

Theorem 1.2. (Nayak et al., 2015) An RR procedure guarantees β-factor privacy if and only

if η(P ) ≤ β.

We shall see later that (1.7) is also a necessary condition for P to provide ρ1-to-ρ2 privacy. We

should mention that Boreale and Paolini’s (2015) concept of “worst-case breach” is essentially

the same as β-factor breach. They also proved a version of Theorem 1.2. The concept of parity

is very similar to γ-amplification of Evfimievski et al. (2003). Clearly, η(P ) ≥ 1 and it is finite

if and only if all elements of P are positive. Also, for any given η0, it is possible to construct

P with parity η0; see Evfimievski et al. (2003) and Agrawal et al. (2009). In particular, for

m ≥ k, one P with η(P ) = η0 is obtained by taking pii = η0/[η0 + m − 1], i = 1, . . . , k, and

pij = 1/[η0 +m− 1] for all i 6= j.

The rest of the paper is organized as follows. In Section 2, we present some new perspectives

on ρ1-to-ρ2 and β-factor privacy, including a geometric view and equivalency with ε-differentially

local privacy, and then propose a general privacy criterion (in Definition 2.2) that covers def-

initions 1.1 and 1.2 as special cases. Essentially, we pursue the spirit of ρ1-to-ρ2 and β-factor

privacy to the fullest extent and permit any (reasonable) privacy breach criterion. In Section 3,

we explore implications and practicality of the general criterion. We develop a canonical form

of the general criterion and characterize all RR procedures that provide required privacy. In

Theorem 3.1, we prove that P satisfies a specified privacy demand if and only if η(P ) is ap-

propriately small. In Section 4, we compare data utility of all privacy satisfying P . Employing

Blackwell’s concept of sufficiency of experiments, which is agnostic about inferential goals and
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loss functions, we characterize the class of all admissible privacy preserving procedures. We also

prove a particular optimality property of a simple RR procedure. We note some concluding

remarks in Section 5.

2. A General Criterion

To motivate a general criterion, we shall first discuss some logical and practical features of

definitions 1.1 and 1.2. The ρ1-to-ρ2 and β-factor privacy criteria are very strong, but it should

be noted that those are applicable only when an intruder R knows his/her target B’s value

of Z. Typically, this happens at data collection time, with R being the data collector. In

commercial data mining context, Agrawal et al. (2009) refer to this as business-to-customer (or

B2C) privacy. Definitions 1.1 and 1.2 are not applicable if R gets access only to an anonymized

version of the original data set, where B’s records cannot be ascertained with certainty. In other

words, ρ1-to-ρ2 and β-factor privacy criteria presumes disclosure of B’s identity to an intruder.

Related to the preceding point, we also want to mention that while privacy and confidential-

ity have often been used synonymously, those should be distinguished due to some important

differences (Nayak et al., 2015). In legal terms, privacy is a person’s right to freedom from

intrusion into his/her information. Privacy emerges as a desire to share no or only obscured

information with a data collector. Thus, privacy protection should occur at the time of data

collection. In contrast, confidentiality is an obligation to prevent unauthorized access to pri-

vate information. People often give their information trusting that their data will be used by

researchers and policy makers only to learn about the population as a whole and not about

any individual. Privacy applies to individuals whereas confidentiality applies to the data, which

may be addressed after data collection. One important technical (and practical) implication is

that one may examine the whole data set for choosing a suitable method for confidentiality pro-

tection. In contrast, methods for privacy protection need to be selected before data collection.
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Consequently, some concepts, such as k-anonymity and l-diversity, and related methods apply

for protecting confidentiality and not privacy.

As we discuss next, logically ρ1-to-ρ2 and β-factor privacy directly address the core of pri-

vacy concern, which is: how much information an intruder might gain about a respondent from

his/her response (possibly perturbed)? One compelling view of information, as Basu (1988) ar-

ticulated, is: “Information is what information does. It changes opinion.” Furthermore, opinion

can be expressed precisely only using subjective probability. An intruder’s prior and posterior

probabilities describe respectively his/her initial and revised opinion, after learning a respon-

dent’s reported value. These constitute a strong argument that privacy should be discussed in

terms of intruders’ prior and posterior probabilities (instead of technical information measures,

e.g., mutual information and f -divergence, that were developed in other contexts). Definitions

1.1 and 1.2 coincide with the above view and are thus highly relevant to privacy considerations.

The changing of a prior to posterior occurs only through the likelihood function, and the

change is small if the likelihood function is relatively flat. In our setting, for response di, the

likelihoods for c1, . . . , ck are pij , j = 1, . . . , k, and they are fairly close to each other when ηi(P )

is small. Consequently, the likelihood functions for all possible responses are fairly flat if and

only if η(P ) is fairly small. This comes out precisely in theorems 1.1 and 1.2.

We now mention a connection to the following concept (see, Duchi et al., 2016) of differential

local privacy.

Definition 2.1. An RR method provides ε-differentially local privacy (ε-DLP), for ε > 0, if

max
{P (Z ∈ S|X = cj)

P (Z ∈ S|X = cl)
| S ⊆ SZ , 1 ≤ j, l ≤ k

}
≤ exp(ε). (2.1)

It can be seen that (2.1) is equivalent to η(P ) ≤ exp(ε). So, in view of Theorem 1.2, ε-DLP

and β-factor privacy are equivalent, with β = exp(ε). An equivalency of ε-DLP and ρ1-to-ρ2
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Figure 1: ρ1-to-ρ2 and β-factor privacy breach regions.

privacy can be observed similarly. Clearly, the thinking behind Definitions 1.1, 1.2 and 2.1 are

different, but mathematically, they are equivalent as each one corresponds to an upper bound

on η(P ).

Figure 1 gives a helpful geometrical perspective of ρ1-to-ρ2 and β-factor privacy. The two

shaded rectangles represent the privacy breach region (PBR) of ρ1-to-ρ2 privacy, as any (prior,

posterior) pair, to be denoted generically by (p, p∗), falling in this region signifies a privacy

breach. The two shaded triangles constitute the PBR of β-factor privacy. In practice, visual

inspection of various PBRs might help to choose the parameter values, e.g., (ρ1, ρ2) or β, of

a privacy criterion, and also to compare different privacy guarantees. Naturally, a larger PBR

implies a stronger privacy guarantee. Among two PBRs in Figure 1, none is a subset of the

other one, but as the β-factor PBR has a larger area and covers most of the other PBR, one

might reasonably consider it stronger. As such, two overlapping PBRs, as in Figure 1, are
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Figure 2: A general privacy breach region.

not comparable, but we shall see in Section 3 that privacy demands of any two PBRs can be

compared meaningfully.

One main goal of this paper is to explore the central idea of ρ1-to-ρ2 and β-factor privacy

in full generality. Thus, we now consider a general privacy breach region W , as shown by the

shaded region in Figure 2, and require that no (prior, posterior) pair must fall in W . So, the

unshaded part (W c) is the privacy holding region. Describing the down and up privacy breach

boundaries of W with two functions hl and hu, we introduce the following.

Definition 2.2. Let hl and hu be two functions from [0, 1] to [0, 1] such that 0 ≤ hl(a) ≤ a ≤

hu(a) ≤ 1 for all 0 ≤ a ≤ 1. An RR procedure is said to provide strict information privacy

(SIP) with respect to hl and hu, to be abbreviated (hl, hu)-SIP, if

hl(Pα(Q)) ≤ Pα(Q|di) ≤ hu(Pα(Q)) (2.2)
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for i = 1, . . . ,m and all α,Q ⊆ SX .

Clearly, the general idea is that for privacy protection, if the prior probability of an event is p,

then its posterior probability must be between hl(p) and hu(p). Obviously, this covers definitions

1.1 and 1.2 as special cases. Mathematically, we do not need to put additional conditions on

hl and hu, but intuitively, they should be nondecreasing. (We shall see in the sequel that all

precise PBRs satisfy this condition.) Definition 2.2 specifies a privacy demand with its PBR

W [hl, hu] = {(p, p∗), 0 ≤ p, p∗ ≤ 1 : p∗ < hl(p) or p∗ > hu(p)}. On the other hand, the privacy

provided by any RR procedure can be described by its PBR as defined next.

Definition 2.3. We define the PBR of any RR procedure P as the collection of all non-attainable

(prior, posterior) pairs under P , and denote it by WP . Thus, WP is the complement (with

respect to the unit square) of P ’s privacy holding region: {(p, p∗), 0 ≤ p, p∗ ≤ 1 : Pα(Q) = p and

Pα(Q|di) = p∗ for some di, α and Q ⊆ SX}.

Definition 2.4. We shall call a general privacy breach region W precise if there exists an RR

procedure P such that WP = W .

The preceding two definitions will be useful to comparing and matching privacy demand with

privacy provided by different procedures. Clearly, an RR procedure P provides (hl, hu)-SIP if

and only if W [hl, hu] ⊆ WP . However, if W [hl, hu] is not precise, to guarantee (hl, hu)-SIP one

must use an RR procedure P for which WP is strictly larger than W [hl, hu], and in such cases,

we should report WP , the PBR of the procedure actually used, to communicate the privacy

guarantee precisely and maximally. This also implies that to determine privacy requirement we

should think only in terms of precise PBRs. These observations raise some natural questions,

such as: What are the precise PBRs? Which procedures satisfy a given precise PBR? For given

hl and hu, is there a minimal WP satisfying W [hl, hu] ⊆WP ? We answer these questions in the

next section.
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3. Characterization of Strict Information Privacy

We begin this section with some analytic simplifications of the (hl, hu)-SIP criterion. First, note

that Pα(Q) = 0 implies Pα(Q|di) = 0 and Pα(Q) = 1 implies Pα(Q|di) = 1, for all di. So, (2.2)

holds automatically when Pα(Q) is 0 or 1, and to establish (hl, hu)-SIP, we need to verify (2.2)

only for all α,Q ⊆ SX such that 0 < Pα(Q) < 1. Second, observe that the first ≤ in (2.2) is

equivalent to 1− hl(Pα(Q)) ≥ 1− Pα(Q|di) or Pα(Qc|di)) ≤ 1− hl(1− Pα(Qc)). So, the first ≤

in (2.2) holds for all Q ⊆ SX if and only if Pα(Q|di) ≤ 1 − hl(1 − Pα(Q)) for all Q ⊆ SX , i.e.,

the condition for downward privacy breach is equivalent to an upward privacy breach criterion.

(Evfimievski et al. (2003) made a similar observation for ρ1-to-ρ2 privacy.) Combining the two

upward breach conditions and defining [hl ? hu](a) = min{hu(a), 1 − hl(1 − a)}, for 0 ≤ a ≤ 1,

we obtain the following:

Lemma 3.1. Let hl and hu be as in Definition 2.2 and [hl ? hu] be defined as above. Then, an

RR procedure P provides (hl, hu)-SIP if and only if

Pα(Q|di) ≤ [hl ? hu](Pα(Q)) (3.1)

for all i = 1, . . . ,m and all α and Q ⊆ SX such that 0 < Pα(Q) < 1.

The conditions 0 ≤ hl(a) ≤ a ≤ hu(a) ≤ 1 imply that a ≤ [hl?hu](a) ≤ 1 for all 0 ≤ a ≤ 1. In

view of Lemma 3.1 and preceding discussions, we may define a privacy criterion more succinctly

only in terms of upward breaches as follows.

Definition 3.1. Let h : [0, 1] → [0, 1] be a function satisfying a ≤ h(a) ≤ 1 for all 0 ≤ a ≤ 1.

An RR procedure is said to provide canonical strict information privacy with respect to h, to be

abbreviated h-CSIP, if

Pα(Q|di) ≤ h(Pα(Q)) (3.2)
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Figure 3: Connection between privacy breach regions of (hl, hu)-SIP and [hl ? hu]-CSIP.

for i = 1, . . . ,m and all α and Q ⊆ SX such that 0 < Pα(Q) < 1.

It can be seen that h-CSIP also provides the downward privacy guarantee that Pα(Q|di) ≥

h̃(Pα(Q)) for i = 1, . . . ,m and all α and Q ⊆ SX , where h̃(a) = 1−h(1−a), 0 ≤ a ≤ 1. Thus, the

upper and lower boundaries of the PBR of h-CSIP are given by h and h̃, respectively. Lemma

3.1 shows that for any hl and hu, (hl, hu)-SIP and [hl ?hu]-CSIP are equivalent, in the sense that

if an RR procedure guarantees one of the two, it must also guarantee the other one. However,

the PBR given by some (hl, hu)-SIP can be a proper subset of the PBR of the corresponding

[hl ? hu]-CSIP. This is illustrated in Figure 3, where the PBR of [hl ? hu]-CSIP is the PBR of

(hl, hu)-SIP (shown as the region shaded with solid lines) plus the two dotted lined parts A

and B. The two PBRs would be identical only when hl(a) = 1 − hu(1 − a), 0 ≤ a ≤ 1. While

Definition 3.1 is technically most concise, in real applications, it might be more convenient to

specify hl and hu, defining lower and upper privacy breaches, and then take h = [hl ? hu].
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Subsequently, we shall explore only h-CSIP, because it is the analytical crux of any privacy

criterion as seen above. For any given h, define

B(h) = inf
0<p<1

(1− p
p

)( h(p)

1− h(p)

)
, (3.3)

where we take h(p)/[1 − h(p)] = ∞ when h(p) = 1. (Alternatively, we can take the infimum

over {0 < p < 1 : h(p) < 1}.) The following results characterize all RR procedures that provide

h-CSIP, for any given h.

Lemma 3.2. An RR procedure P provides h-CSIP, with a specified h, if and only if

Pα(X = cj |Z = di) ≤ h(Pα(X = cj)) (3.4)

for all i, j and α such that Pα(X = cj) > 0 and Pα(Z = di) > 0.

Lemma 3.3. A necessary and sufficient condition for an RR procedure P to satisfy (3.4) for

all i, j and α is that η(P ) ≤ B(h).

Theorem 3.1. For any given h, an RR procedure P provides h-CSIP if and only if η(P ) ≤ B(h).

Interestingly, Lemma 3.2 says that to assure (3.2) for all Q ⊆ SX , it suffices to verify (3.2)

only for {X = cj}, i.e., for the atomic events of X. The ‘only if’ part of this lemma is obvious

and Theorem 3.1 follows readily from the two lemmas. The remaining proofs are given in the

Appendix. Theorems 1.1 and 1.2 can be obtained form Theorem 3.1 by calculating B(h) for

relevant h functions.

The necessary and sufficient condition in Theorem 3.1 depends on h only through B(h) and

on P only through its parity η(P ). Thus, in h-CSIP context, B(h) quantifies the privacy demand

of h and η(P ) is the privacy level of P . We can measure of the privacy demand of any general

PBR, with downward and upward breach boundaries hl and hu, as B(h), where h = [hl ? hu];
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Figure 4: Plots of precise up breach boundaries h(γ).

recall that [hl ? hu](a) = min{hu(a), 1 − hl(1 − a)}, 0 ≤ a ≤ 1. Using this measure, we can

compare privacy demands of any two PBRs, even when they overlap as in Figure 1. Likewise,

we can compare the privacy level of all RR procedures (P ) using parity.

Consider an RR procedure P with η(P ) = γ > 1. Then, by Theorem 3.1 and (3.3), P

guarantees h-CSIP for all h such that

γ ≤
(1− p

p

)( h(p)

1− h(p)

)
for all 0 < p < 1,

or equivalently h(p) ≥ h(γ)(p), where h(γ)(p) is defined as

h(γ)(p) =
γp

1 + (γ − 1)p
, 0 < p < 1. (3.5)

Thus, h(γ)(.) is the up breach boundary of any P with parity γ. The corresponding down
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boundary is h̃(γ)(p) = 1− h(γ)(1− p). Note that the PBR of P is determined only by its parity.

So, all P with a common parity have the same PBR. It also follows that W is a precise PBR if

and only if its up and down breach boundaries are h(γ) and h̃(γ), respectively, for some γ > 1.

As γ increases, h(γ)(p) shifts upward and the PBR gets smaller, as shown in Figure 4.

Let H = {hγ(.); γ > 1}, i.e., the class of all function of the form hγ(.). Then, h-CSIP with

all h ∈ H represent all precise PBRs, which are most relevant to choosing privacy requirement

and communicating privacy guarantee. A logical conclusion is that for strict privacy protection,

we should think only in terms of h-CSIP and limit h to H. A practical meaning of h(γ)-CSIP

may not be immediate, but as we show next, this amounts to imposing a bound on all Bayes

factors.

For given α, the prior odds of Q is Pα(Q)/[1−Pα(Q)] and its posterior odds given Z = di is

Pα(Q|di)/[1− Pα(Q|di)]. Now, take any γ > 1 and consider the following privacy requirement:

Pα(Q|di)
1− Pα(Q|di)

1− Pα(Q)

Pα(Q)
≤ γ (3.6)

for all α,Q and di such that 0 < Pα(Q) < 1 and Pα(Z = di) > 0. The left side of (3.6) is the

ratio of posterior odds of Q to its prior odds, or the Bayes factor for testing X ∈ Q against

X /∈ Q; see Kass and Raftery (1995) for a very informative discussion of Bayes factor. Thus,

(3.6) requires all Bayes factors to be less than or equal to γ. Considering Qc, it can be seen that

(3.6) also implies that all Bayes factors are at least 1/γ. In summary, (3.6) requires all Bayes

factors to be between γ−1 and γ. The above criteria is analogous to β-factor privacy; while (3.6)

uses the ratio of posterior and prior odds, β-factor privacy uses the ratio of the two probabilities.

In other words, β-factor privacy uses probability scale whereas (3.6) uses odds scale.

By routine algebra, it can be seen that (3.6) is equivalent to

Pα(Q|di) ≤
γPα(Q)

1 + (γ − 1)Pα(Q)
. (3.7)
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Notice that the right side of (3.7), considered as a function of Pα(Q), is the same as the function

hγ(.) defined in (3.5). So, h(γ)-CSIP is equivalent to the privacy requirement of (3.6) and γ can

be interpreted conveniently as the upper bound on all Bayes factors (and the lower bound is

γ−1). It is also seen that any precise PBR corresponds to the privacy requirement of (3.6), with a

matching value of γ. Based on previous discussions we reach the following practical conclusions.

(1) While ρ1-to-ρ2 and β-factor privacy and more generally (hl, hu)-SIP are intuitively sensi-

ble, we should discuss, assess and communicate privacy only in terms of h-CSIP with h ∈ H, or

equivalently in terms of bounds on Bayes factors as in (3.6). Both the graphical representation,

as in Figure 4, and the Bayes factor interpretation should be helpful for choosing suitable values

of γ in practical applications. Kass and Raftery (1995) recommend to interpret a Bayes factor

20 or larger as strong evidence, which suggests that values around 20 might be suitable for γ in

our context.

(2) Satisfying any privacy requirement reduces strictly to using a procedure with a sufficiently

small parity, as stated in Theorem 3.1. We can always find a procedure to provide required

privacy, but not uniquely because for any γ > 1, there exists many P with η(P ) = γ. We

should compare data utility to choose one procedure among all privacy satisfying procedures.

We discuss this in the next section.

4. Comparison of Data Utility

In earlier sections, we observed that a randomization procedure P provides strict privacy pro-

tection if and only if η(P ) ≤ γ, where γ > 1 is determined by the privacy requirement. Recall

that Pm×k must be a transition probability matrix (TPM) and each row of P must contain at

least one nonzero value. We also argue that no two rows of P should be proportional to each

other. The ith row is the (nonparametric) likelihood function when Z = di. So, from likelihood

perspective, if rows i and j are proportional, the statistical information from observing Z = di
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and Z = dj are the same and the two outcomes (and the corresponding rows) should be merged.

Alternatively, two proportional rows can be viewed as obtained from randomly splitting one

outcome into two. (This is analogous to irrelevantly splitting one choice into two in discrete

choice analyses; e.g., splitting “bus” into “blue bus” and “green bus” in mode of transportation

choice.) Also, if proportional rows are allowed, then SZ and m cannot be defined uniquely.

With the natural constraints discussed above, the class of all privacy preserving procedures,

at a desired level γ, is:

Cγ = {Pm×k : m ≥ 2, η(P ) ≤ γ and P has no proportional rows}.

As we noted earlier, one may also impose m ≥ k and rank(P ) = k, for model identifiability.

However, these are not needed for our results. Intuitively, we should compare data utility to

select a procedure from Cγ for application. However, “data utility” is difficult to define and

measure as the data may be used and analyzed in different ways and for various purposes. It

may not even be possible to anticipate all future usage of the data at the time of the survey.

Recognizing this, we shall first discuss some admissibility results using Blackwell’s (1951, 1953)

notion of sufficiency of experiments, which is agnostic about inferential goals and loss functions.

4.1. Admissibility

Adopting Blackwell’s (1951, 1953) criterion to our context, we introduce the following:

Definition 4.1. For two randomization procedures Ar×k and Pm×k, we say that P is at least as

informative (or good) as A, to be denoted P � A, if there exists a transition probability matrix

Cr×m such that A = CP . In this case, P is also said to be sufficient for A.

If P � A and also A � P , then A and P are equivalent and will be denoted P ∼ A. We say

that P is better than A and write P � A if P � A but A is not sufficient for P , i.e., A 6� P .
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Definition 4.2. A randomization procedure P ∈ Cγ is said to be inadmissible within Cγ if there

exists A ∈ Cγ such that A � P . Otherwise, P is called admissible.

It is easy to see that if C and P are TPMs, then A = CP is also a TPM. The intuitive idea

behind Definitions 4.1 and 4.2 is that if A = CP , then the procedure A is equivalent to further

randomizing (by C) the output of P , and because of the additional randomization, A cannot

be more informative than P . Mathematically, it follows that if P is sufficient for A, then for

any inference problem with a given loss function and any inference rule δ based the data from

A, there exists a rule δ∗ based on P such that the risk of δ∗ is never larger than the risk of δ.

Naturally, one should use only admissible procedures. In privacy literature, Blackwell’s criterion

has been used by Kairouz et al. (2016b).

Remark 4.1. The restriction that our TPMs must not contain proportional rows can be

further justified as follows. Consider a procedure Am×k and suppose its first two rows, denoted

~a1 and ~a2 are proportional and ~a1 = δ(~a1 + ~a2), 0 < δ < 1. Construct P ∗(m−1)×k by merging the

first two rows of A. Then, A and P ∗ are equivalent, as A = CP ∗ and P ∗ = C∗A with C and C∗

defined as:

C =


δ 0

1− δ 0

0 I

 and C∗ =

 1 1 0

0 0 I

 .

We can repeat this process to eliminate all proportional rows and thus obtain a P such that P

has no proportional rows and P ∼ A.

Remark 4.2. Intuitively, permuting the rows of Pm×k, i.e., relabeling the elements of

SZ , should have no effect on either privacy or data utility. Mathematically, this holds easily.

Specifically, it can be seen that if Cm×m is a permutation matrix and A = CP , then (i) η(A) =

η(P ) and (ii) A ∼ P (as C−1 is a also a permutation matrix and hence TPM). We also have the

following result, whose proof is given in the Appendix.
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Theorem 4.1. Two procedures Am×k, Pr×k ∈ Cγ are equivalent if and only if m = r and

A = CP , where C is a permutation matrix.

Lemma 4.1. Suppose Cm×r and Pr×k are two TPMs, η(P ) = γ and let Am×k = CP . Then,

η(A) ≤ γ.

Proof. Note that η(P ) = γ implies that puj ≤ γpul for all u, j and l. So, for all i, j and l,

aij =

r∑
u=1

ciupuj ≤
r∑

u=1

ciu(γpul) = γail (4.1)

and thus ηi(A) ≤ γ for i = 1, . . . ,m, and consequently η(A) ≤ γ.

This result is intuitive: further randomization should not reduce privacy (by increasing

parity). It also exhibits a trade-off between privacy and data utility: if P is at least as informative

as A, in the sense of P � A, then A provides at least as much privacy (by parity measure) as P .

Next, let C0γ denote all P in Cγ satisfying the following two conditions:

C1: ηi(P ) = γ for all i

C2: Each row of P contains exactly two distinct values.

We shall prove that a randomization procedure P is admissible within Cγ if and only if P ∈ C0γ .

We organize this result in several parts.

Theorem 4.2. Any randomization procedure A ∈ C0γ is admissible within Cγ.

Proof. Take any A ∈ C0γ . We shall prove that if any P ∈ Cγ is sufficient for A, then A must be

equivalent to P . Suppose there exist Pr×k ∈ Cγ and a TPM Cm×r such that A = CP . Each row

of C must contain at least one nonzero element, as A does not have any zero row. We shall see

that ciu 6= 0 implies that the uth row of P , denoted ~pu, is proportional to ~ai, the ith row of A.

For each i, as ηi(A) = γ, by C1, there exist j and l such that aij = γail. For such aij and ail,
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equality holds in (4.1) and since ciu 6= 0, we must have puj = γpul. This holds for all j and l

such that aij = γail. Since ~ai contains exactly two distinct (nonzero) values, by C2, considering

all pairs (aij , ail) with aij = γail, it is seen that ~pu ∝ ~ai.

The preceding result implies that each row of C has exactly one nonzero entry; otherwise, P

will have proportional rows. Then, if m < r, C must have some zero columns hence would not

be a TPM. Also, if m > r, at least two rows of C must be proportional, and the corresponding

rows of A are also proportional, which is a contradiction. So, we must have m = r and C must

be a permutation matrix, to be a TPM, and thus A ∼ P .

We should note that in the preceding proof we not only showed that A ∼ P but also that

P must be a permutation of the rows of A. Consequently, P ∈ C0γ , as A ∈ C0γ , and we have

following.

Corollary 4.1. If A ∈ C0γ , then no P ∈ (Cγ \ C0γ) can be equivalent to P . Stated another way,

if A ∈ C0γ , P ∈ (Cγ \ C0γ) and A � P , then A � P .

Lemma 4.2. Suppose Am×k ∈ Cγ and 1 < ηi(A) < γ for some i. Then, A is inadmissible.

Proof. Suppose, without loss of generality, 1 < η1(A) = a11/a12 < γ. Then, there exists a row

i such that ai1 < ai2 because each column of A adds to 1. For brevity suppose that a21 < a22.

Construct Pm×k as follows: ~p1 = ~a1 + (1 − ξ)~a2, ~p2 = ξ~a2, where ξ ≥ 1 is a constant (to be

chosen suitably) and ~pi = ~ai, i = 3, . . . ,m. Note that as all elements of A are positive, implied

by η(A) ≤ γ, there exists ξ0 such that P is a TPM for all 1 ≤ ξ < ξ0. Also, ηi(A) = ηi(P ) for

i = 2, . . . ,m and so, any difference in η(A) and η(P ) comes from the difference between η1(A)

and η1(P ). Next, note that

η1(P ) = max
ij

{ p1i
p1j

}
= max

ij

{ a1i + (1− ξ)a2i
a1j + (1− ξ)a2j

}

is a continuous function of ξ, and for ξ = 1, η1(P ) = η1(A) < γ. So, there exists 1 < ξ < ξ0
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for which η1(P ) ≤ γ and consequently, η(P ) ≤ γ. Take such a value ξ∗ and use that in the

construction of P .

Finally, note that P = CA and A = C−1P , with

C =


1 1− ξ∗ 0

0 ξ∗ 0

0 0 I

 and C−1 =


1 1− 1/ξ∗ 0

0 1/ξ∗ 0

0 0 I

 .

Now, as ξ∗ > 1, C−1 is a TPM and hence P � A. Also, as C is nonsingular, P = DA only with

D = C. But, C is not a TPM, as ξ∗ > 1, and hence A is not sufficient for P . In summary,

P � A and hence A is inadmissible.

Lemma 4.3. Suppose A ∈ Cγ, ηi(A) equals 1 or γ for all i, and ηi(A) = 1 for some i. Then,

there exists P ∈ Cγ such that P � A and P satisfies the condition C1.

Proof. Note that A can have at most one constant row because A ∈ Cγ and thus cannot have

proportional rows. For notational simplicity, suppose that η1(A) = 1, i.e., the all values in

row 1 of A are the same, say δ. Then, from likelihood perspective, the response d1 does not

give any information about π. Intuitively, we may eliminate the response d1 and distribute its

probability (proportionally) to other responses. Specifically, construct P , from A, by deleting

the first row and multiplying all other elements by (1 − δ)−1. It can be seen easily that row

parity of the retained rows remain the same and Am×k = Cm×(m−1)P(m−1)×k, where all elements

of the first row of C are δ and the remaining rows constitute (1− δ)Im−1. Thus, P satisfies C1

and P � A.

If P as constructed in Lemma 4.3 also satisfies C2, i.e., P ∈ C0γ , then from Corollary 4.1, it

follows that P � A and hence A is inadmissible. As we shall show next, if P does not satisfy

C2, then P is inadmissible, which implies A is also inadmissible. Note that together lemmas
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4.2 and 4.3 cover all forms of violations of C1. The following lemma also completes the proof of

Theorem 4.3, stated below.

Lemma 4.4. Any randomization procedure A ∈ Cγ that satisfies the condition C1 but not C2 is

inadmissible within Cγ.

Proof. Suppose Am×k ∈ Cγ satisfies C1 but not C2. Thus, ηi(A) = γ for i = 1, . . .m, and at least

one row of A contains more than two distinct values. For notational simplicity, suppose the first

row contains three or more distinct values and a11 is a “middle” value, i.e., t < a11 < T , where

t = mini{a1i} and T = maxi{a1i}. Note that T/t = γ as A satisfies C1. Let δ = (T−a11)/(T−t).

Consider P ∗(m+1)×k whose rows are: ~p1 = δ(t, a12, . . . , a1k), ~p2 = (1 − δ)(T, a12, . . . , a1k) and

~pi = ~ai−1, i = 3, . . . ,m + 1. It can be verified easily that P ∗ is a TPM, ηi(P
∗) = γ for

i = 1, . . .m + 1 and A = CP ∗, with C =

 1 1 0

0 0 I

 and thus P ∗ � A. Repeat the process

to eliminate all “middle” values of A and if it creates any proportional rows, add those as per

Remark 4.1. The resulting P belongs to C0γ and P � A. Finally, in view of Corollary 4.1, we

can conclude that P � A and thus A is inadmissible.

Theorem 4.3. A randomization procedure P ∈ Cγ is admissible within Cγ only if P satisfies C1

and C2, i.e., P ∈ C0γ .

4.2. Optimality Results

Generally, the class C0γ of all admissible procedures contains many P . However, for k = 2, it

can be seen easily that if Pm×2 satisfies the condition C1 and has no proportional rows, then

we must have m = 2. Moreover, C0γ consists of only two TPMs, which are also equivalent (by

permutation). Thus, both are optimal procedures, one of which is reported below.

Proposition 4.1. For binary X (i.e., k = 2), an optimal procedure at privacy level γ is given

by m = 2, p11 = p22 = γ(γ + 1)−1 and p12 = p21 = (γ + 1)−1.
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For k ≥ 3, choosing an optimal procedure from C0γ requires specific utility (or loss) functions.

For a wide class of utility functions, Kairouz et al. (2016b) showed that under ε-DLP (which

is equivalent to η(P ) ≤ eε), an optimal procedure, under given π, can be obtained by solving a

linear programming problem. Kairouz et al. (2016a) proved a close version of our Proposition

4.1. Duchi et al. (2016) obtained bounds on minimax risks. In the following, we shall present

one result in a common setting.

Frequently, the categories of the survey variable are used as possible response categories, i.e.,

m = k and di = ci, i = 1, . . . k, and consequently SZ = SX . In such cases, a common desire

is to retain the original category as much as possible while meeting the privacy requirement.

One mathematical formulation of this idea is to choose Pk×k to maximize
∑

i pii, the trace of

P , subject to η(P ) ≤ γ, where γ is specified. The optimal P for this objective is given below.

Theorem 4.4. Suppose Pk×k is a TPM with η(P ) ≤ γ. Then,

(a)
∑k

i=1 pii ≤
γk

γ+k−1 and

(b) P attains the upper bound in (a) if and only if pii = γ
γ+k−1 for all i and pij = 1

γ+k−1 for all

i 6= j.

Proof. Take any Pk×k satisfying η(P ) ≤ γ, which implies that pii ≤ γpij for all i 6= j. For fixed

i, summing over j 6= i and then adding pii to both sides, we get

(γ − 1 + k)pii ≤ γ
k∑
j=1

pij or pii ≤
γ

γ + k − 1

k∑
j=1

pij .

Then, adding both sides of the last inequality over i, and using the fact that for each j,
∑k

i=1 pij =

1, we obtain the inequality in (a).

The “if” part of (b) is easy to verify. For the “only if” part, the chain of inequalities in the

preceding proof shows that equality in (a) holds if and only if pij = pii/γ for all i 6= j. This

implies that pij = ai/γ for all i 6= j, where a1, . . . , ak denote the diagonal elements of P . Now,
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as each column of P adds to 1, i.e., aj + 1
γ

∑
i 6=j ai = 1 we obtain:

aj
(
1− 1

γ

)
+

1

γ

k∑
i=1

ai = 1 or aj =
γ

1− γ

[
1−

k∑
i=1

ai

]

for all j = 1, . . . , k. Thus, we must have a1 = · · · = ak and hence pii = γ
γ+k−1 for all i and

pij = 1
γ+k−1 for all i 6= j, as each column of P must add to 1.

Let P0 denote the optimal TPM (for given k and γ) given above. Thus, the elements of P0

are: pii = γ
γ+k−1 for all i and pij = 1

γ+k−1 for all i 6= j. This P0 has some attractive features and

has received much attention. Note that P0 is in C0γ and hence admissible. Agrawal et al. (2009)

refer to P0 as “the Gamma-Diagonal matrix” due to its structure; it has a common diagonal

value and also a common off-diagonal value. They also proved an optimality property of P0,

in terms of lowest condition number, among all symmetric positive definite P with η(P ) ≤ γ.

Kairouz et al. (2016b) refer to P0 as “the randomized response mechanism” and present certain

mutual information optimality of P0.

5. Discussion

In this paper, we investigated the logic underlying the ρ1-to-ρ2 and β-factor privacy criteria in full

generality. We gave new insight and clarity using geometrical representation of privacy breach

regions. We introduced the concepts of precise PBR and canonical strict information privacy to

accurately describe the privacy demands of any stated criterion. Our Theorem 3.1, which gives

necessary and sufficient conditions for attaining desired privacy, is a significant result. It also

yields a numerical measure of the privacy demand of any given PBR, and shows that the parity

of an RR procedure determine its privacy guarantee. It also gives a set of practically relevant

PBRs and tells us to choose one of those in setting privacy requirement in real applications.

We compared data utility of privacy satisfying RR procedures using sufficiency of exper-
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iments, which is a strong criterion that does not rely on any specific loss function or utility

measure. The class of all privacy preserving admissible RR procedures, C0γ , is an important

finding. We also obtained the optimum procedure under a specific criterion, viz., maximize the

trace of P subject to privacy constraints.

We believe that the requirement of no privacy breach for any property Q is overly stringent.

Cell collapsing (or generalization) is a common privacy protection tool, which can be viewed as

a special case of RR, with P (Z = di|X = cj) = 1 if cj is collapsed within di (or di contains

cj) and 0 otherwise. But, the parity of any such TPM is infinity, unless m = 1, in which case

data utility is null. So, cell collapsing cannot give any strict information privacy without totally

destroying data utility. It will be useful to modify the criterion by requiring no privacy breach

for a subset of properties Q but for all priors. We leave choosing Q and appropriately modifying

our results as future research topics.

Acknowledgment. We thank Dr. Martin Klein for some helpful remarks on an earlier draft.

6. Appendix: Proofs

Proof of Lemma 3.2. The ‘only if’ part of the lemma follows readily. So, we shall prove only

the ‘if’ part. Suppose (3.4) holds. Now, take any α, Q ⊆ {c1, . . . , ck} and di such that Pα(Q) > 0

and Pα(Z = di) > 0. Suppose cq ∈ Q is such that piq ≥ pij for all j such that cj ∈ Q. Consider

the prior α̃ with elements: α̃j = αj if cj /∈ Q, α̃q = Pα(Q), and α̃j = 0 for all other j. Then, we
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have Pα̃(X = cq) = α̃q = Pα(Q) and

Pα(Q|Z = di) =

∑
j:cj∈Q αjpij∑

j:cj∈Q αjpij +
∑

j:cj /∈Q αjpij

≤
piq(
∑

j:cj∈Q αj)

piq(
∑

j:cj∈Q αj) +
∑

j:cj /∈Q αjpij

=
α̃qpiq∑k
j=1 α̃jpij

= Pα̃(X = cq|Z = di)

≤ h(Pα̃(X = cq)) = h(Pα(Q)),

where the first inequality holds by the fact that for a > 0, ψ(x) = x
x+a is an increasing function

of x over (0,∞) and the second inequality follows from (3.4).

Proof of Lemma 3.3. We shall prove that P satisfies (3.4) if and only if ηi(P ) ≤ B(h) for

i = 1, . . . ,m. Take any (fixed) i, and note that (3.4) holds if αj = 0 or 1, or pij = 0. Take any j

such that pij > 0 (which exists as each row of P contains at least one nonzero element). Then,

for 0 < αj < 1, we can write:

P (X = cj |Z = di) =
αjpij∑k
l=1 αlpil

=
[
1 +

(1− αj
αj

) 1

pij

∑
l:l 6=j

( αl
1− αj

)
pil

]−1
. (6.1)

In view of (6.1), for our fixed i and chosen j, (3.4) holds for all α if and only if

∑
l:l 6=j

(
αl

1− αj
)(
pil
pij

) ≥ (
αj

1− αj
)(

1− h(αj)

h(αj)
) (6.2)

for all α such that 0 < αj < 1.

Letting wl =
αl

1− αj
for l 6= j, it is seen that (6.2) is equivalent to

∑
l:l 6=j

wl(
pil
pij

) ≥ (
αj

1− αj
)(

1− h(αj)

h(αj)
)
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for all 0 < αj < 1 and all {wl} such that 0 ≤ wl ≤ 1 and
∑

l 6=j wl = 1. This holds if and only if

inf
{wl}

(
∑
l:l 6=j

wl(
pil
pij

)) ≥ sup
0<p<1

(
p

1− p
)(

1− h(p)

h(p)
). (6.3)

The infimum in (6.3) is min{ pilpij | l = 1, . . . , k, l 6= j} ≤ 1. So, it can also be written as

min{ pilpij | l = 1, . . . , k}. Moreover, it must be positive in order to satisfy (6.3), because h(p)

cannot be 1 for all 0 < p < 1 and hence right side of (6.3) is positive. This implies that pij must

be positive for all j = 1, . . . , k. So, for our fixed i, (3.4) holds for all j and α if and only if (6.3)

holds for j = 1, . . . , k, or equivalently,

min{ pil
pij
| j, l = 1, . . . , k} ≥ sup

0<p<1
(

p

1− p
)(

1− h(p)

h(p)
). (6.4)

Note that both sides of (6.4) are positive and finite, and the above inequality can be recognized

as [ηi(P )]−1 ≥ [B(h)]−1, which yields ηi(P ) ≤ B(h).

Proof of Theorem 4.1. The ‘if’ part follows easily as noted in Remark 4.2. To prove the ‘only

if’ part, suppose A and P are equivalent, i.e., there exist two TPMs Cm×r and C∗r×m such that

A = CP and P = C∗A. Then, (C∗C)r×r and (CC∗)m×m are TPMs. Also, C∗CP = C∗A = P or

(C∗C−I)P = 0, and similarly, (CC∗−I)A = 0. These imply, by Lemma 6.1 (given below), that

both (CC∗) and (C∗C) are identity matrices and consequently we must have m = r (since both

of them are of full rank) and C−1 = C∗. Now, since both are TPMs, C must be a permutation

matrix (Minc, 1988, p. 3).

Lemma 6.1. Suppose Bm×m and Pm×k are two transition probability matrices, P has no zero

or proportional rows and (B − I)P = 0. Then, B = I, the identity matrix of order m.

We shall use the following concepts and results to prove this lemma.

Definition 6.1. (Chakravarti, 1975) A square matrix Bm×m is said to be reducible if there
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exists a permutation matrix Q such that

Q−1BQ =

R 0

L N

 , reduc (6.5)

where R and N are square matrices. Otherwise, B is called irreducible.

If B is the TPM of a Markov chain, then B is irreducible means that one can always

find a path between any two states. Note that Q−1BQ permutes the diagonal entries of B

by exchanging the corresponding row and columns. We call this diagonal permutation in the

following. In (6.5), if R or N are still reducible, they can be further reduced to the above form

through diagonal permutation. Actually, if B is reducible, then through diagonal permutation,

we can get a block lower-triangular matrix with irreducible diagonal blocks.

Theorem 6.1. (Chakravarti, 1975) If a non-negative matrix Bm×m = ((bij)) is irreducible, then

the matrix F = B−D(r) must have rank m− 1, where D(r) is the diagonal matrix with entries

(r1, r2, . . . , rm), and rj =
∑m

i=1 bij.

Definition 6.2. (Taussky, 1949) The column j of a square matrix B = ((bij)) is called weakly

diagonal dominant, if
∑

i 6=j |bij | ≤ |bjj |. It is called strictly diagonal dominant if ‘<’ holds.

Theorem 6.2. (Taussky, 1949) Suppose Bm×m is an irreducible matrix, and all columns of

B are weakly diagonal dominant and at least one is strictly diagonal dominant. Then, B is

nonsingular.

Proof of Lemma 6.1. First, suppose Bm×m is irreducible, if possible. Let V0 denote the vector

space that is orthogonal to the row space of (B−I). Note that if (B−I)P = 0, then all columns

of P must be in V0. Applying Theorem 6.1 to B, noting that each column of B adds to 1 as B

is a TPM, we obtain rank(B− I) = m−1. This implies that the dimension of V0 is 1 and hence

all columns of P are proportional. Actually, they are identical (as the sum of each column is
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1) and hence all rows of P are also identical. This contradicts the assumption that P has no

proportional rows. Thus, B cannot be irreducible.

Next, suppose B is reducible. Then, there exists a permutation matrix Q such that Q−1BQ

is a block lower-triangular matrix with irreducible diagonal blocks R1, R2, ..., Rg. If all of these

blocks are 1 × 1 identity matrices, then B = I as Q−1BQ is TPM. If not, suppose Rt+1 with

dimension s×s is the first block that is not 1×1 identity matrix. This implies all the off-diagonal

entries on the first t columns of Q−1BQ must be 0 (when t ≥ 1). Take such a Q and denote

R = Rt+1 = ((rij)) to obtain

Q−1BQ =


It 0 0

0 Rs×s 0

0 L N

 . (6.6)

Note that (B − I)P = 0 implies that QQ−1(B − I)QQ−1P = 0 or

(Q−1BQ− I)P ∗ = 0, (6.7)

where P ∗ = Q−1P , which is also a TPM with no proportional rows. In view of (6.6), equation

(6.7) implies that (R− I)Ps = 0, where Ps consists of the t+ 1 to t+ s rows of P ∗. Here, each

column of Ps is orthogonal to the rows of (R − I), and hence must be in V1, the orthogonal

space to the row space of (R− I). We shall consider two cases to examine rank(R− I) and its

implication.

(i) L = 0 or L does not exist (i.e., s = m− t). Here, R is a TPM. Also, s ≥ 2, since R is not

1× 1 identity matrix. Apply Theorem 6.1 to R and the arguments used earlier (for irreducible

B) to see that rank(R − I) = s − 1. So, the dimension of V1 is 1, implying that all columns

of Ps are constant multiples of a common vector and consequently all rows of Ps are the same.

This contradicts the fact that P ∗ has no proportional rows. So, L cannot be a null matrix.
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(ii) L 6= 0. Here, we shall apply Theorem 6.2 to R∗ = (R − I) = ((r∗ij)). First, R∗ is

irreducible, as R is so. Next, as each column of the right side of (6.6) adds to 1, we get∑s
i=1 rij ≤ 1 for j = 1, . . . , s, and ‘<’ holds for at least one j, as L 6= 0. This shows, in view of

0 ≤ rij ≤ 1, r∗ii = rii − 1 and r∗ij = rij for i 6= j, that
∑s

i 6=j |r∗ij | ≤ |r∗jj |, for j = 1, . . . , s and ‘ <’

holds for some j. Thus, R∗ satisfies the conditions of Theorem 6.2 and hence rank(R∗) = s,

i.e., (R − I) is nonsingular. Now, (R − I)Ps = 0 implies that Ps = 0, which is a contradiction.

From the above discussion of all possible cases we must conclude that B = I.
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