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Multivariate Seasonal Adjustment, Economic
Identities, and Seasonal Taxonomy
Tucker MCELROY

Center for Statistical Research and Methodology, U.S. Census Bureau, Washington, DC 20233-9100
(tucker.s.mcelroy@census.gov)

This article extends the methodology for multivariate seasonal adjustment by exploring the statistical
modeling of seasonality jointly across multiple time series, using latent dynamic factor models fitted
using maximum likelihood estimation. Signal extraction methods for the series then allow us to calculate
a model-based seasonal adjustment. We emphasize several facets of our analysis: (i) we quantify the
efficiency gain in multivariate signal extraction versus univariate approaches; (ii) we address the problem
of the preservation of economic identities; (iii) we describe a foray into seasonal taxonomy via the
device of seasonal co-integration rank. These contributions are developed through two empirical studies
of aggregate U.S. retail trade series and U.S. regional housing starts. Our analysis identifies different
seasonal subcomponents that are able to capture the transition from prerecession to postrecession seasonal
patterns. We also address the topic of indirect seasonal adjustment by analyzing the regional aggregate
series. Supplementary materials for this article are available online.

KEY WORDS: Co-integration; Dynamic factor models; Seasonality; Time series; Trends; VAR.

1. INTRODUCTION

The notion that an observed time series is composed of sev-
eral unobserved components has a long history in economics,
going back to mid nineteenth century England, according to
Nerlove, Grether, and Carvalho (1979). The study of seasonal-
ity goes back to this epoch as well, in the field of meteorology
(Buys Ballot 1847); changing seasonality was noted by Gilbart
(1852). The view of an economic time series being composed
of trend, seasonal, cycle, and residual effects was exposited by
Persons (1919), which substantially impacted later work in the
20th century. The idea that the latent effects, especially the sea-
sonal, could be common to multiple series (or at least, highly
correlated) can be dated at least to Nerlove (1964, p. 263): “In-
deed, seasonality does not occur in isolated economic series, but
seasonal and other changes in one series are related to those in
another. Hence, ideally one should formulate a complete econo-
metric model in which the causes of seasonality are incorporated
directly in the equations.” Bell and Hillmer (1984) provided a
slightly dated, but still pertinent, overview of the literature and
topics of interest in the field of seasonal adjustment. Nerlove’s
proposal is the subject of this article.

This article studies the modeling and extraction of seasonality
in multiple time series, using an unobserved components frame-
work where each latent component is described via a dynamic
factor model. Our proposed model for m-variate time series data
{yt } takes the form

yt = μt + ξt + ιt

(1 − B)d μt ∼ WN(0, �μ)

(1 + B + B2 + · · · + Bp−1) ξt ∼ WN(0, �ξ )

ιt ∼ WN(0, �ι),

where B is the backshift operator, p is the seasonal period, and
the latent processes are trend {μt }, seasonal {ξt }, and irregu-
lar {ιt }. Each of these latent processes is driven by a vector

white-noise (WN) process of covariance �. As will be shown
later, the Cholesky factorization of each � matrix entails an
interpretation of each latent component as a dynamic factor
process, potentially of reduced dimension.

While there is a tremendous amount of economic literature
on dynamic factor models (Stock and Watson 2011 provided an
overview), there is somewhat less material on structural dynamic
factor models, wherein the identification of the factor ranks for
each latent component is considerably more challenging. There
are even fewer serious attempts at multivariate modeling and
seasonal adjustment using an unobserved components frame-
work. However, there exists persistent (and publicly expressed)
interest among economists in multivariate seasonal adjustment,
as has been highlighted recently by public concerns about the
performance of univariate seasonal adjustment procedures (such
as X-12-ARIMA) under the extreme economic conditions en-
gendered by the Great Recession (GR); see Zentner, Amemiya,
and Greenberg (2011), Alexander and Greenberg (2012),
Alexander, Zentner, and Greenberg (2012), and Feroli (2012).

In the last 20 years or so, development of the concept
of co-integration—along with its extension to component co-
integrating rank—and better techniques of computation (such
as state-space methods) have facilitated the multivariate signal
extraction project, although only a few articles have addressed
seasonal adjustment, such as Bartelsman and Cleveland (1993),
Krane and Wascher (1999), Birrell, Steel, and Lin (2011), Koop-
man, Ooms, and Hindrayanto (2012), and Greenaway-McGrevy
(2013). Facilitating the stochastic approach proposed by
Geweke (1978) is the software STAMP (Koopman et al. 2009),
which can be used to produce multivariate seasonal adjustments.
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This article develops tools to model and seasonally adjust
multiple economic time series, using the concept of component
co-integrating rank, and moreover explores the topics of: (i)
efficiency gain in multivariate signal extraction versus univariate
approaches, (ii) the preservation of economic identities, and (iii)
seasonal taxonomy via the device of seasonal co-integrating
rank. In Section 2, we introduce these three facets. Section 3
provides the modeling and seasonal adjustment methodology,
and Section 4 discusses two empirical illustrations. Section 5
concludes, and Section 6 reviews the supplementary materials—
Appendices, Data, and R code (the sigex program).

2. RANK, IDENTITIES, AND TAXONOMY

2.1 Dimension Reduction and Latent Rank

Dynamic factor models, which constitute our basic modeling
framework in this article, have been found to be quite empirically
useful; see Sargent and Sims (1977), Giannone, Reichlin, and
Sala (2005), and Stock and Watson (2011, 2012). We next pro-
vide the statistical motivation for dynamic factor models, from
the standpoint of dimension reduction and model parsimony.

Consider an m-variate time series {yt }. When m is large, it is
important to consider a dimension reduction approach to the data
analysis, because the number of parameters will otherwise be
too large for meaningful results. Bozik and Bell (1987) appeared
to be one of the first articles advocating principal components
analysis (PCA) to estimate a dynamic factor model, which can
then be used to reduce {yt } to a lower-dimensional factor time
series {xt }:

yt = �xt + ιt . (1)

Here {xt } is a latent vector seasonal process of dimension k and
{ιt } is the error process in this decomposition. � is an m × k

matrix, called the loading matrix. The hope of such a factor
analysis is that we can take k much smaller than m, while the
error {ιt } contributes little to the overall variation, and moreover
is not serially uncorrelated. If this is the case, one can estimate
� and the factor series using PCA, and proceed with modeling
the estimated factors.

However, when working with monthly or quarterly raw eco-
nomic time series such a decomposition often fails to result
in dimension reduction, as much of the interesting trend and
seasonal structure is shifted into the estimated errors, unless k
is taken quite large. Notwithstanding, some authors (Stock and
Watson 2012) have found this PCA approach to be useful on
seasonally adjusted data, and have drawn useful interpretations
from the resulting factor series. Unfortunately, when seasonality
is present in the data, it happens that the estimated factors have
trend, seasonality, and cyclicality all mingled together in each
factor series (i.e., each component of the vector process {xt }
will contain all the dynamics of the data process), and so this
type of decomposition is not useful for separating out different
dynamics. (Another approach to estimating such a decomposi-
tion is independent components analysis (ICA), but the same
empirical behavior has been observed by the author.)

Because the single factor model (1) is ineffective at dimension
reduction in seasonal time series, and cannot cleanly separate
disparate dynamics, it is natural to look for a more complex

decomposition that achieves these objectives. The key is to have
several factor components, each one associated with particular
dynamics that are present in the series. This takes the form

yt = μt + ξt + ιt . (2)

Equation (2) decomposes the observed series into trend {μt },
seasonal {ξt }, and irregular {ιt } processes. The trend and sea-
sonal in turn could be written as a dynamic factor model �xt ,
where xt is a latent trend or seasonal process, respectively, ef-
fectively generalizing (1). One could also introduce a latent
cyclical process to model moderate 2–10 year swings about the
long-term trend, but we avoid such devices in this article.

The framework of (2), when appropriately extended, has
proven useful in our empirical work for separating out dynam-
ics of different types (it is also used in Koopman, Ooms, and
Hindrayanto 2012), while also allowing for some dimension
reduction. This article adopts the latent dynamic factor frame-
work, and seeks to answer the following questions: how do we
fit models to economic time series, such that we allow for di-
mension reduction? Given the models, how can we estimate and
remove seasonality? What are the advantages over a univariate
approach? Although there are some recent publications treating
multivariate modeling and seasonal adjustment, there seems to
be no systematic treatment of latent rank, and its ramifications
on seasonal adjustment. In fact, our research has been partially
motivated by strong public criticism of univariate seasonal ad-
justment procedures, such as X-12-ARIMA, and the challenges
implicit in the GR. See Wright (2013) for an overview of these
concerns. One might hope that modeling multiple series would
facilitate superior estimation of latent seasonal effects, thereby
ensuring that quickly evolutive seasonality does not pollute trend
and business cycle extractions, such as can occur during epochs
of great change.

2.2 Maintaining Economic Identities

Although of little interest to the theoretician, economic ac-
counting rules are extremely important to the publishers and
consumers of economic data. These accounting rules may be ag-
gregation relations across stratifications (e.g., male unemploy-
ment plus female unemployment equals total unemployment),
regions (e.g., housing starts series for South, West, Northeast,
and Midwest, must sum to the Total series), or epochs (e.g.,
three monthly figures must sum to the corresponding quarterly
figure, for a flow time series). A discussion of accounting con-
straints is provided in Quenneville and Fortier (2012). The key
challenge that arises is that data arise from diverse sources (e.g.,
surveys and/or administrative records) of varying quality, and
are typically subject to sampling error—see Tiller (2012) for an
overview—and are revised over time. Various recipes, adapted
to the protocols and culture of each particular agency, are used
to balance accounting constraints and ensure economic identi-
ties hold—these recipes include raking and using controls (to a
more reliable data source).

Here, we are concerned with the disturbance of accounting
rules resulting from seasonal adjustment. Any signal extraction,
even when linear in the data, will disturb the raw data’s eco-
nomic identities. The naı̈ve solution is to declare the aggregate
variable’s seasonal adjustment to be the appropriate aggregation
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of the component variables’ seasonal adjustments—a procedure
known as indirect adjustment. However, in many cases this re-
sults in inadequate seasonal adjustment of the aggregate, as
seasonality yet remains. Where does it come from? One ex-
planation is that the component variables are cross-correlated
in their seasonal dynamics, and this is unaccounted for by a
univariate seasonal adjustment methodology (see the excellent
discussion in Geweke 1978), resulting in an aggregate seasonal
adjustment that still has seasonality.

Suppose that the seasonal coherency in the raw disaggregate
time series is modeled and measured, and accounted for in the
multivariate seasonal adjustment. Because the multivariate sea-
sonal adjustment is produced via a filter that acts upon all the
input series, we do not expect the cross-spectra to have seasonal
peaks. This heuristic argument says that indirect seasonal ad-
justment is safer when using a multivariate approach; see Planas
and Campolongo (2001) for support of this point, and a study of
the precision gains in the indirect approach. We pursue this idea
further in Section 4.3, through the analysis of regional housing
starts.

2.3 Seasonal Taxonomy

The pattern of seasonality varies greatly by industry and se-
ries type (e.g., retail vs. construction), but certain facets are
common to batches of coherent time series. It is of interest to
group and classify series by these features, to understand which
series are driven by a common latent seasonal process. This
classification, or taxonomy, can assist in detecting new patterns
(e.g., departure of one series from its cluster); it can help in un-
derstanding redundancies and coherence (e.g., do some series
lead or lag others with respect to their seasonal movements?);
and it can provide a general portrait of the economic variable
(Granger 1966). The applications of this taxonomy are at this
stage speculative, but may include the following: identification
of batches of series suitable for joint multivariate analysis and
adjustment (or forecasting); identification of structural changes
to the economy, when series that were formerly classified as
belonging to the same species no longer do so; identification of
data inaccuracies, when co-integrating relations are violated at
particular sample points.

Given that taxonomy is of interest, tools are needed to provide
measures of clustering. Coherence is the analog of correlation
for time series, but here we focus on seasonal coherence, that
is, high spectral coherence at seasonal frequencies (those of the
form 2πj/p for integer j, and p the seasonal period). The latent
component model (2) implies that the spectral density (of the
differenced series) evaluated at seasonal frequencies is equal
to the spectrum driving the seasonal {ξt }, so that there is an
immediate connection (further discussed in Definition 1). As
is shown in Section 3, reduced rank in the covariance matrix
of the white-noise driving {ξt } is known by the term “reduced
seasonal rank,” and implies there is seasonal co-integration in the
observed series; it corresponds to maximal possible coherence
at the seasonal frequencies. We propose to use seasonal rank as a
measure of taxonomic proximity. In particular, if m series have
seasonal rank equal to one, they belong to the same species,

all of them being driven by the same latent one-dimensional
seasonal process.

3. MODELING METHODOLOGY

This section provides a discussion of a multivariate time series
model involving latent components for trend, seasonality, cycle,
and irregular. We discuss co-integration and latent rank, and
review signal extraction methodology. For further background,
see Harvey (1989), Durbin and Koopman (2001), and Koopman,
Ooms, and Hindrayanto (2012).

3.1 Latent Component Models

Let us consider (2) in more detail; we will further decom-
pose the seasonal into its “atomic” components corresponding
to the complete factorization of the seasonal unit root differenc-
ing polynomial. The latent processes are related to the observed
m-dimensional time series {yt } via (2), and each latent process in
turn is a difference stationary vector time series driven by poten-
tially collinear white noise. When the white noise is collinear,
the latent process is said to be “common,” and there is a reduced
dimension representation. When the white noise is not collinear,
the latent process is said to be “related,” and there is no dimen-
sion reduction possible; if the white-noise covariance matrix is
also diagonal, then the latent process is said to be “unrelated.”

We assume that the latent trend process {μt } is differenced to
stationarity by application of (1 − B)d for d = 0, 1, 2, where
this scalar polynomial is applied to each component of the
process, that is,

(1 − B)dμt = ε
μ
t

for an m-variate white-noise process {εμ
t } of covariance ma-

trix �μ. Likewise, the latent seasonal process {ξt } is reduced
to stationarity by application of U (B) = 1 + B + · · · + Bp−1,
where p is the seasonal period. For some applications, it is pos-
sible to use the model U (B) ξt ∼ WN(0, �ξ ), referred to as the
aggregate seasonal model, but for some data a more flexible
structure is needed, which we next describe. The U (B) operator
is factorized into

U (B) =
p/2−1∏
j=1

(1 − 2 cos(2πj/p)B + B2) (1 + B)

when p is even, and when p is odd we obtain

U (B) =
(p−1)/2∏

j=1

(1 − 2 cos(2πj/p)B + B2).

We focus on the p even case below, as modifications for p odd are
trivial to make. We next introduce atomic seasonal processes
{ξ (j )

t } for 1 ≤ j ≤ p/2, which are defined such that a single
factor of U (B) reduces each atomic seasonal to stationarity.
By definition, the jth atomic seasonal {ξ (j )

t } for 1 ≤ j ≤ p/2
satisfies

(1 − 2 cos(2πj/p)B + B2) ξ
(j )
t = ε

(j )
t 1 ≤ j ≤ p/2 − 1

(1 + B) ξ
(p/2)
t = ε

(p/2)
t ,
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where each {εt } is m-variate white noise with covariance matrix
� (i.e., �(j ) for the jth atomic seasonal, and �ι for the irregular).
The latent seasonal process {ξt } is related to the atomic seasonal
components via aggregation

ξt =
p/2∑
j=1

ξ
(j )
t . (3)

It is easy to check that its minimal differencing polynomial is
U (B) when all the atomic seasonal processes are nonzero.

Although using atomic seasonals (as opposed to the simpler
aggregate seasonal) introduces additional parameters, it affords
the model an additional flexibility that is crucial for model-
ing retail and construction data over the GR. As elaborated in
Section 4, this more nuanced seasonal structure is able to cap-
ture the transition of seasonal behavior from pre- to post-GR.
Essentially, the atomic seasonals allow each of the six spec-
tral peaks in the spectral density to have separate parameters
controlling width and height. If instead only one parameter (or
matrix) controls all the spectral peaks’ features, then some peaks
may be modeled with heights and/or widths that are inappro-
priate. This can gravely impact seasonal adjustment: if a peak
is modeled too narrowly, then the resulting seasonal adjustment
filter’s frequency response function will have seasonal troughs
that are too narrow, and seasonality at that particular seasonal
frequency may well remain. This problem is of lesser concern
in times of economic regularity, but when transitioning between
economic regimes (e.g., from pre-GR to post-GR), the spectral
seasonal peaks grow wider, reflecting the more highly evolutive
nature of seasonality.

The difference polynomial for the aggregate {yt } is
(1 − B)dU (B), and by its application we obtain

(1 − B)dU (B)yt = gμ(B) ε
μ
t +

p/2∑
j=1

gj (B) ε
(j )
t + gι(B) ιt

gμ(B) = U (B)

gj (B) = (1 − B)d
∏
k �=j

δ(k)(B)

gι(B) = (1 − B)dU (B)

δ(j )(B) = 1 − 2 cos(2πj/p)B + B2 1 ≤ j ≤ p/2 − 1

δ(p/2)(B) = 1 + B. (4)

The differenced observed process on the left-hand side of (4)
will then be denoted by {∂yt }. For all of our applications (model
fitting and signal extraction), it is necessary to compute the
autocovariance function of each summand process in (4), so we
now discuss how these functions can be easily computed. First
note that the spectral density of {∂yt } is real-valued and is given
by

f (λ) = |gμ(z)|2 �μ +
p/2∑
j=1

|gj (z)|2 �(j ) + |gι(z)|2 �ι (5)

with z = e−iλ, under the assumption that all the latent process’
white noises are uncorrelated with one another, and are un-
correlated with {ιt }. Each summand of (5) is a known scalar
function times a covariance matrix �, and hence corresponds

to the spectral density of a simple vector moving average—the
autocovariance is then extremely easy to compute, and we can
simply sum up these autocovariances to obtain the sequence
for {∂yt }. These autocovariances, together with the multivariate
Durbin–Levinson algorithm (Brockwell and Davis 1991), pro-
vide a stable and efficient method for computing the Gaussian
likelihood. (For computation of the Gaussian likelihood, our R
code sigex adopts the paradigm of Bell (1984), wherein ini-
tial values are assumed to be uncorrelated with the various {εt }
white noises. This differs from the diffuse likelihood of state-
space approaches, as implemented in STAMP. See McElroy and
Trimbur (2015) for discussion.)

There are models implied for each of the individual series,
which of course can differ quite a bit from a univariate model fit-
ted to the particular series. Due to the extremely simple structure
of the unobserved component models, these implied models are
simple to derive. Let e� denote the �th unit vector of R

m, then the
�th series has trend innovation variance e′

��
μe� = �

μ

�,�, and so

forth. If we filter the �th series {y(�)
t } with the univariate signal

extraction filter (for details, see below) corresponding to this
implied univariate model, we obtain E[s(�)

t |{y(�)
t }], which can

be quite different from E[s(�)
t |{yt }]. Moreover, for a Gaussian

process the mean square estimate (MSE) that is generated from
the same methodology will correspond to var[s(�)|{y(�)

t }] rather
than the smaller var[s(�)|{yt }].

3.2 Collinearity, Orthogonality, and Co-Integration

The case of collinear latent innovations can now be discussed.
Each latent process (trend, irregular, etc.) in the model is driven
by a white-noise innovation process {εt } of covariance matrix
�. The various matrices �μ, �ι, etc., contain all the parameters
of the model (excepting an m-vector of means). Any or all
of these latent processes can have collinear innovations—this
happens if the corresponding � has reduced rank. Each such
covariance matrix � has a unit lower triangular generalized
Cholesky decomposition:

� = LD L′,

where L is unit lower triangular and D is diagonal with nonneg-
ative entries. In such a decomposition, the diagonal entries of D
are interpretable as partial variances (see Appendix A for discus-
sion). If the rank is k ≤ m, then m − k of these partial variances
will be zero; let J denote the subindices of {1, 2, . . . , m} such
that dj > 0 for j ∈ J . Then with L·j denoting the jth column of
L, we can write

� =
∑
j∈J

dj L·j L′
·j . (6)

Note that the partial variances need not be ordered, so that zero
values of the diagonals can occur at any index (however, a value
of d1 = 0 will typically not occur in practice, as it means that
the first variable of that latent component is deterministic). If
estimating � through a parametric model—say via maximum
likelihood estimation (MLE)—we can proceed as described in
Pinheiro and Bates (1996): all lower triangular values of L are
unconstrained real numbers, whereas the nonzero values of D
can be described as the exponentials of real numbers. Clearly,
the number and format of such parameters depends on knowing
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the rank k, and also the sub-indices composing J; each choice of
J constitutes a different model, requiring separate estimation.

So each configuration J of restrictions on the rank of D con-
stitutes a nested model within the nesting model, which is the
fully unconstrained case wherein all covariance matrices have
full rank. To obtain a more parsimonious model, it is of inter-
est to determine whether the innovations are collinear. Because
co-integration tests in the econometric literature are focused
on the case of common trends (see Nyblom and Harvey 2000,
2001), we take a fresh approach to the problem of seasonal co-
integration that is based on the MLEs. Our method here lacks
a distribution theory, although given the asymptotic distribution
of the MLEs it seems plausible that such a theory could be de-
veloped. (Although Busetti (2006) made extensions of Nyblom–
Harvey to the seasonal case, his procedures conduct inference
on the rank k and not on the configuration J.) We are looking
for any partial variances that are suitably close to zero—this is
further developed in the next subsection.

Given one or more small values for the partial variances, we
consider the nested model given by setting these quantities to
zero, thereby obtaining the index set J of size k. The corre-
sponding columns of L are also eliminated—these are the L·j
for j �∈ J in (6). Labeling the resulting rectangular lower tri-
angular matrix by � and the diagonal matrix of corresponding
nonzero partial variances by �, it is seen that this � exactly
corresponds to the factor loading matrix described in (1). The
corresponding factor time series corresponds to a (nonstation-
ary) latent stochastic process of dimension k, which has no
cross-correlation; indeed, the innovations driving the factor la-
tent stochastic process (whether trend or seasonal) will have
covariance matrix �. This is the latent dynamic factor model
interpretation of the model described herein.

Determining which partial variances to replace with zero re-
quires some care (next subsection), but note that any such zeroes
result in a model that is nested on the boundary of the param-
eter space (since each dj ≥ 0). The likelihoods for the nested
and nesting models can then be directly compared. Because the
distribution—under the null hypothesis that the nested model is
correct—of the log-likelihood ratio is not χ2, and the true mix-
ture distribution is unknown, we recommend instead that one
should do an Akaike information criterion (AIC) comparison.
An important caution is that such zeroes should not be placed
in �ι, because then the spectral density f will be noninvertible.
Actually, f is allowed to be noninvertible at a finite number of
frequencies (see the discussion in McElroy and Trimbur 2015).
For example, it is permissible to have collinear trend innovations
and/or collinear seasonal innovations, so long as the irregular
has full rank.

The entries of L have a statistical interpretation—in particular,
the ij th entry of L is proportional to the partial covariance
between the ith and jth variables (i.e., components ε

(i)
t and ε

(j )
t

of the vector εt ), conditional on variables one through j − 1
(see Appendix A for more discussion). Hence, a zero value in L
corresponds to conditional uncorrelation, and hence if all the off-
diagonal entries are constrained to be zero there will be no cross-
correlation between components of the corresponding random
vector. This restriction is tantamount to fitting a univariate model
to each series, with model fit determined in an aggregate sense
across all m series. We refer to this particular submodel as the

orthogonality restriction; in a sense it is the opposite of the
collinear innovations case, and also involves a reduction in the
number of parameters, from

(
m+1

2

)
down to m.

The decision to replace a small entry of L with a zero can be
made on the basis of the statistical uncertainty of the parameter.
Because we use a Gaussian likelihood, the inverse of the Hessian
of the log-likelihood provides an estimate of the parameter error
covariance matrix, due to the efficiency of MLEs. The result-
ing nested model can be checked against the nesting competitor
via the generalized likelihood ratio (GLR) test, using χ2 quan-
tiles, because the parameter restriction of zero does not lie on
the boundary of the parameter space. Because collinearity can
eliminate entire columns of the L matrix, one should determine
collinearity first, and then pursue orthogonality.

We next discuss the relationship to co-integration, which is
also discussed in McElroy and Trimbur (2015). Generalizing
the basic concepts presented in Engle and Granger (1987) and
Stock and Watson (1988), we say that when an m-vector α

exists such that {α′yt } has reduced nonstationarity, then α is a
co-integrating vector. By reduced nonstationarity, we mean that
the minimal differencing polynomial required to reduce {α′yt }
to stationarity (up to fixed effects) has lower degree than the
polynomial required for the original {yt }. If {α′yt } has only
trend nonstationarity, α is said to be a seasonal co-integrating
vector, whereas if there only seasonal nonstationarity remains,
α is said to be a trend co-integrating vector.

Given our particular latent factor model, α is a jth atomic
seasonal co-integrating vector if and only if α is a left null-vector
of �(j ), whereas α is a trend co-integrating vector if and only if
α is a left null-vector of �μ. This follows from the form of our
model—see Equation (5). A basis for the co-integrating vectors’
space can be computed from the rows of L−1, using the rows that
correspond to zero dj values. For example, a rank of one implies
that there exists a basis of m − 1 co-integrating vectors. From
the standpoint of taxonomy, we say that all such time series
belong to the same latent species, where the type of species
is defined by the particular latent frequency. For example, if
�(j ) has rank one we say that all the series belong to the same
jth-atomic seasonal species.

Observe that � (excepting the case of the irregular covariance
matrix) is the value of the spectral density f of the differenced
time series at the latent process’ corresponding frequency, that
is, �μ = f (0) and �(j ) = f (πj/p). This discussion leads to
the following definition.

Definition 1. Two time series following a latent dynamic fac-
tor model are j-equivalent if and only if the bivariate spectrum
evaluated at the jth seasonal frequency (0 ≤ j ≤ p/2) has rank
one. We denote this equivalency with the notation ∼j .

This is well-defined, in the sense that permuting the series’
order does not change the rank. Moreover, we have the following
result:

Proposition 1. ∼j is an equivalence relation, and therefore
partitions the set of difference stationary time series.

We make a few comments about this result. First, when es-
timating the covariance matrix of multiple time series, we can
only make probabilistic assertions about the rank, and therefore
statistical errors can arise; also, changing samples can alter the
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species classification. Second, there is a classification pertaining
to each frequency 2πj/p, so that up to p/2 different partitions
exist for these types of time series. Two series might be equiv-
alent according to frequency zero, but might not be according
to frequency j = 1. This concept is applied in Section 4.1, with
j = 6.

3.3 Taxonomic Identification

Having proposed a theoretical definition for taxonomy, it is
crucial to have an empirical procedure for its application on
data. Formal tests for whether particular dj ’s are zero are the
ideal target for the statistician, but using the Hessian—as with
the partial covariances in L—will lead to incorrect inference be-
cause the parameter space for the partial variances has boundary.
Our recommendation is to examine the dj parameter estimates
in the context of other entries in �, and thereby obtain nested
models—by reducing the rank of each � matrix—and finally to
use AIC comparisons to evaluate the models. To that end, we
describe how condition numbers can be defined from the partial
variances of each correlation matrix.

First consider the m = 2 case, which contains the main fea-
tures of the general case as well. The partial correlation between
the first and second variables (it is the same as the unconditional
correlation) is

κ21 =
√

d1 L21√
d1 L2

21 + d2

.

This formula (see Lemma 1 of Appendix A) shows that the
absolute correlation approaches unity as L21 → ±∞, or if d2 →
0. Defining τ2 = log(d2) − log(L2

21 d1 + d2), we have κ2
21 = 1 −

eτ2 , and values of τ2 tending to −∞ correspond to the rank of
� going from two to one. Observe that the determinant of �

is equal to the product of the diagonal entries times 1 − κ2
21,

which represents a scale-free quantity. We can define a condition
number by computing the scale-free determinant of � in log-
scale, that is,

log(1 − κ2
21) = τ2.

For example, if |κ21| = 0.9 then τ2 = −1.66, whereas |κ21| =
0.99 corresponds to τ2 = −3.92, and |κ21| = 0.999 implies τ2 =
−6.22. The advantage of examining τ2 and κ21 to determine
approximate singularity is that we have removed the scale of
the series from the analysis.

Now let us generalize to m > 2: defining for i > j the partial
correlation κij = corr(ε(i)

t , ε
(j )
t |ε(1)

t , . . . , ε
(j−1)
t ), and with R the

m-dimensional correlation matrix corresponding to �, it follows
from Theorem 1 of Appendix A that the jth partial variance of
R is equal to

i−1∏
j=1

(1 − κ2
ij ).

Letting τi denote the log of this quantity, we have the proposed
condition number

log det R =
m∑

i=1

τi .

The τi can be conveniently calculated as the logged ith partial
variance of R. So for a given i, any values of κ2

ij close to unity (or
equivalently, large negative values of τi)—for any j—indicate
that the ith variable can potentially be eliminated. We apply
these measures to a trivariate analysis in Section 4.1; the goal
of such elimination of variables is primarily parsimony—and
secondarily, taxonomy.

3.4 Multivariate Filtering

Here, we consider the main application of the preceding mod-
eling methodology to signal extraction by describing the min-
imum MSE linear filters corresponding to the fitted structural
model. We rely upon the formulas derived in Theorem 2 of
McElroy and Trimbur (2015). To implement the smoothing for-
mula, we write the data vector as collected by time and listed
over vector components. Then the covariance matrices for the
differenced latent components can be computed quite easily. Let
s and n denote signal and noise, where s consists of the sum of
any components given in (2) that are of interest, and n consists
of the remaining components. For example, n could consist of
the sum of all p/2 atomic seasonals, and s consist of the sum
of trend and irregular; then the signal extraction corresponds to
seasonal adjustment.

Identification of the signal components of interest in turn
implies a signal differencing operator δs(B), and a spectrum
fs for the differenced signal; similarly, we will have a noise
differencing operator δn(B) and noise spectrum fn. The signal
and noise spectra will actually correspond to various summands
of (5), in the following sense: the squared gain of the noise
differencing operator will multiply the signal spectrum in (5),
whereas the squared gain of the signal differencing operator
will multiply the noise spectrum. In the seasonal adjustment
example, the noise differencing operator is U (B) and the signal
spectrum is

fs(λ) = �μ + |1 − z|2d �ι.

On the other hand, the signal differencing operator is (1 − B)d

and the noise spectrum is

fn(λ) =
p/2∑
j=1

|
∏
k �=j

δ(k)(z)|2 �(j ).

This is just one example; we might be interested in various
atomic seasonals as signals, or combinations of such, and in
each case fs and fn can be defined. The signal extraction filter
for a bi-infinite sample has frf given by

fs(λ) f (λ)−1 |δn(z)|2,

as proved by McElroy and Trimbur (2015) for cases including
co-integration. For samples of finite length we instead use a
matrix filter F, whose formula is also computed from the signal
and noise spectra, as well as the differencing operators. For a
sample of size T , there are two alternative ways of stacking the
data into a matrix. First, we have

Y = [y1 y2 . . . yT ],
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which is m × T dimensional. We call this series-by-time, and is
conventional in many textbooks. The other representation is

Y ′ = [y(1) y(2) . . . y(m)],

where y(j ) is a T-vector consisting of all observations for the jth
series. Thus, Y ′ is T × m dimensional, and is referred to as the
time-by-series representation. The description of F in McElroy
and Trimbur (2015) presumes the time-by-series representa-
tion, so that F vec[Y ′] yields vecced signal extraction estimates
written in time-by-series format.

Now the application of F to the vectorization of the time-
by-series data matrix Y ′ is appropriate when the mean is zero.
When the mean of the differenced series is nonzero, say given
by an m-vector m, then instead we apply F to the mean-
corrected time-by-series data, where the mean correction in-
volves subtracting m ⊗ τ from vecY ′, where τ is a column
vector τ = [1d , 2d , . . . , T d ]

′
for d ≥ 0. For the seasonal, cycle,

and irregular components, we compute F [vecY ′ − m ⊗ τ ], but
for the trend we compute m ⊗ τ + F [vecY ′ − m ⊗ τ ]. This
procedure is justified in Appendix A.

Moreover, the error covariance matrix—whose diagonal en-
tries are the signal extraction MSEs, or conditional variances—is
given by a matrix V , which is expressed (McElroy and Trimbur
2015) as the difference of two positive definite matrices. Essen-
tially, the first matrix corresponds to univariate signal extraction
error, and the second matrix brings cross-series information
into play, to increase precision when warranted. Clearly, when
series’ latent components are orthogonal, the multivariate ap-
proach offers no additional signal extraction precision over the
univariate approach, while in the case of a common component
the precision gain is maximal. In between these extremes is the
case of related components, and there may be substantial gains
to precision in this case (see discussion in Geweke 1978).

Section 4.2 further explores the precision increases due to
multivariate signal extraction. As discussed in Section 3.1, we
propose to measure the ratios

var[s(j )
t |{yt }]

var[s(j )
t |{y(j )

t }]
(7)

for each 1 ≤ j ≤ m; here the numerator is given by the appro-
priate entries of the matrix V , and the denominator is computed
from V under the assumption that all series are uncorrelated
with one another. This ratio of MSEs will give an idea of how
much reduction in MSE is attributable to the multivariate filter-
ing. (Birrell, Steel, and Lin (2011) employed the same measure
in their work.)

3.5 Indirect Seasonal Adjustment

The problem of indirect seasonal adjustment is that the total
of the seasonal adjustments of several disaggregate series (e.g.,
corresponding to regions) might not equal the seasonal adjust-
ment of the total, if this latter adjustment is done separately; see
Ghysels (1997) for background. This problem is actually a reper-
cussion of conditional expectation calculations, and has nothing
to do per se with nonlinearity of filtering. The direct seasonal
adjustment of the aggregate would be E[

∑
j n

(j )
t |{∑j y

(j )
t }],

where n
(j )
t is the jth series’ nonseasonal component; indirect

multivariate adjustment proceeds by summing the disaggregate
multivariate adjustments, namely,

∑
j E[n(j )

t |{yt }]. Note that the
latter information set includes the information set of the direct
case, so we should favor indirect adjustment. We should also
prefer this indirect multivariate adjustment to univariate adjust-
ment, which proceeds by summing the univariate disaggregate
adjustments:

∑
j E[n(j )

t |{y(j )
t }].

We propose adopting the indirect multivariate seasonal ad-
justment, as its expectation conditions on the most amount of
information. The economic identity—which, for example, states
that the total shall equal the sum of the disaggregate series—is
preserved automatically, and both the total seasonal adjustment
and the individual seasonal adjustments are coherent, as they
are computed from the same information set. Part of the prob-
lem with direct seasonal adjustment is that it proceeds from the
information set {∑j y

(j )
t }, which can be quite different from the

univariate information sets.
The signal extraction MSE for the total can be determined

from the error covariance matrices for the individual series; if
V is the error covariance matrix for the multivariate seasonal
adjustment, then

[[1, 1, . . . , 1] ⊗ 1T ] V [[1, 1, . . . , 1] ⊗ 1T ]′ (8)

is the error covariance matrix for the aggregate, whose diagonal
entries provide the time-varying MSEs (here 1T is the T × T

identity matrix). This concept is further explored in Section 4.3.
This approach becomes problematic if the data have been

log transformed. The application of a log transformation im-
plies a multiplicative decomposition in the original scale of the
data, so that yt = st · nt for signal and noise vectors st and
nt , and · denoting Hadamard product. The total is defined as
zt = [1, 1, . . . , 1]′yt , and it is unclear how to define the corre-
sponding signal and noise decomposition for zt , since it equals

zt =
m∑

j=1

s
(j )
t n

(j )
t . (9)

If st is the seasonal, and nt is the nonseasonal component, then
one possibility is to arbitrarily define

∑m
j=1 n

(j )
t as the nonsea-

sonal component of the aggregate zt , and their quotient as the
seasonal. To apply classical signal extraction methodology, a log
transformation is applied to each component of yt , which trans-
forms the multiplicative decomposition into an additive decom-
position. After applying the signal extraction methodology in the
log domain, one can exponentiate all the estimates to translate
results into the original scale. (Some statistical agencies (e.g.,
the Bureau of Economic Analysis) prefer using a log transform,
so that the final seasonal adjustment results can be interpreted
as percentage adjustments, and use benchmarking algorithms to
enforce accounting rules. This approach is alien to the method-
ology of this article, which employs model-based methods so
as to carefully quantify signal extraction uncertainty.) Unfortu-
nately, these transformations will interfere with quantifying the
MSE of the indirect multivariate adjustment. More fundamen-
tally, such an approach implicitly views

∑m
j=1 n

(j )
t as the target

nonseasonal component of zt in (9), and this is an ad hoc choice
corresponding to setting s

(j )
t = 1.

An alternative to this nonlinear procedure is to shorten the
series’ length to a degree such that a log transformation is
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no longer necessary. (Many series manifest their seasonal am-
plitude as proportional to the trend level, and thus warrant a
multiplicative decomposition; by shortening the series, the im-
pact of trend growth becomes linearized.) For monthly data,
10 years of data are typically sufficient to fit common univari-
ate models, and longer spans actually seem to warrant more
complicated models (e.g., time-varying coefficient models, or
regime-switching models). When modeling multivariately, we
have additional sample cross-sectionally, and hence there is less
danger in restricting the series length. We henceforth proceed to
work with such shortened spans, finding that our simple models
work quite well without a log transformation.

3.6 Implementation and Computation

We here provide an overview of the methods discussed above,
which we have implemented in the R code sigex. We first sup-
pose the data have been cleaned of outliers and moving hol-
iday effects (see Appendix C for details). The analyst makes
choices about whether to log transform the series, and which
latent components to include in the initial nesting model. In
sigex, each desired component is specified through the associ-
ated differencing polynomial δ(B) and the rank configuration
J. For example, an I (1) trend for trivariate data, where the sec-
ond partial variance is set to zero, would have δ(B) = 1 − B

and J = {1, 3}. For the nesting model used for the retail and
construction examples of this article, there are eight latent com-
ponents with J = {1, 2, . . . , m} in each case, with differencing
operators (1 − B)2 for trend and δ(j )(B) for the jth atomic sea-
sonal (1 ≤ j ≤ 6), given in (4).

For fast estimation, sigex uses a method of moments (MOM)
based on Equation (5), discussed in Appendix B. One can check
the residuals from this fit, and if adequate (assessed via exam-
ination of the autocorrelation plot) the analyst can proceed to
dimension reduction. If more time is available, MLEs for the
nesting model can be determined via nonlinear optimization of
the Gaussian likelihood. Model inadequacy at this stage may in-
dicate the merit of including additional latent components, such
as a stochastic cycle or vector autoregression—but such variants
are rarely needed for seasonal adjustment of retail, manufactur-
ing, import, or construction data.

Supposing the model is adequate, the condition number
log det R can be computed for each latent component, and de-
composed in terms of the log partial variances τi (1 ≤ i ≤ m).
Any such τi that is less than our threshold is flagged, and the
corresponding index i is deleted from the rank configuration set
J. The default threshold is −6.22, corresponding to a partial
correlation of 0.999. In this way J is determined for each com-
ponent, and a proposed nested model is formed. Note that these
calculations can be done for both MOM and MLE estimates,
but in the latter case we can refit the data to the nested model.
Finally, if the nested model has adequate diagnostics, we can do
an AIC comparison to judge whether there is a substantial loss
indicated by the collinearity restrictions.

When the threshold for τi is set to a small number such as
−6.22, the actual entries of � change extremely little (relative to
the matrix’ scale) when the matrix is altered to the reduced rank
version, because the partial variance is very close to zero in such
a case. (This follows from the representation (6).) We could now

consider orthogonality restrictions, or replacing certain entries
of each latent component’s L matrix with a zero, if the MLE is
small relative to its standard error.

Next, the analyst can proceed to signal extraction. In sigex,
one specifies any desired aggregation of latent components as a
signal. For example, in the monthly atomic seasonal model with
trend and irregular, specifying components 2 through 7 yields
ξt = ∑6

j=1 ξ
(j )
t as the target signal, whereas the first component

is the trend, and the eighth component is the irregular. The
software computes matrices F and V for each such desired
signal, as described in Section 3.4. Applying F to the data vector
(accounting for the mean, if the signal is composed of trend)
then yields the signal extraction, and confidence intervals can
be constructed using V . If some aggregation over series’ signals
is desired (e.g., a total trend), sigex can be used to take linear
combination of signal extractions.

We close with a few comments on computation. Everything
described above (except the MOM) could be implemented in
state space, though sigex does not do this, using recursive algo-
rithms instead. Likelihood evaluation via the Kalman filter and
the Durbin–Levinson algorithm is comparable in terms of speed
and stability, though the values can differ slightly (see discus-
sion in McElroy and Trimbur 2015). Signal extraction estimates
are more quickly computed using a state-space smoother, as
opposed to direct matrix formulas, but if the full matrix V is
needed than the latter approach is preferable. Slightly different
assumptions about the data-generating process are used in each
approach, but the resulting MLEs and signal extractions differ
very little in our experience.

4. EMPIRICAL ILLUSTRATIONS

We first model three retail series, and give an application of
taxonomy; then, we consider multivariate seasonal adjustment
of four regional construction series, with application to indirect
adjustment.

4.1 Retail Series and Seasonal Taxonomy

In the course of modeling retail and construction series, we
found that inclusion of a business cycle component gives little
improvement to the overall models, and moreover had an ob-
noxious impact on seasonal adjustment: either one allows the
cycle period to freely vary—in which case it can become coinci-
dent with seasonal frequencies and lead to misidentification—or
one constrains the cycle period arbitrarily to some band. This
latter choice produced period estimates on the boundary, and
moreover there was little evidence in the estimated spectra to
indicate a cycle’s existence in the first place. Thus, we employ
the atomic seasonal model given by (2) and (3), without a cycle.

For our first example, we study three series from the Advance
Monthly Sales for Retail and Food Services data (representing a
preliminary estimate of each series, featuring the largest retail-
ers), which are published each month. We consider the follow-
ing fairly highly aggregated series: 448 (Clothing and Clothing
Accessories Stores); 451 (Sporting Goods, Hobby, Book, and
Music Stores); and 452 (General Merchandise Stores). The sam-
pling period was 1992 through 2012, and values pertain to the
entire U.S. geography. Each series was first cleaned of fixed
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Table 1. Log partial variances by component for trivariate retail
analysis

Series
Ranks

Component 448 451 452 J

Trend 0.00 −0.09 −2.23 {1, 2, 3}
First seasonal 0.00 −0.04 −1.03 {1, 2, 3}
Second seasonal 0.00 −0.08 −0.48 {1, 2, 3}
Third seasonal 0.00 −0.07 −1.59 {1, 2, 3}
Fourth seasonal 0.00 −0.44 −1.65 {1, 2, 3}
Fifth seasonal 0.00 −0.05 −1.32 {1, 2, 3}
Sixth seasonal 0.00 −0.02 −14.60 {1, 2}
Irregular 0.00 −0.10 −0.24 {1, 2, 3}

effects such as outliers, trading day effects, and moving Easter
effect (details in Appendix C), and then modeled with an un-
restricted model including I (2) trend, irregular, and six atomic
seasonals.

There are 6 parameters governing each latent component,
and 3 mean parameters, for a total of 51 in the initial nesting
model. Focusing on MLEs in our discussion, all estimates (with
t statistic significance) are given in Appendix C. (MOM results
are also discussed in Appendix C.) The AIC was −1006.64,
and residuals indicate an adequate model. The τi are directly
computed from the MLEs, and are given in Table 1; using the
threshold −6.22, the given rank configurations J are readily
deduced.

The initial trivariate model can be modified to allow for co-
integration at the sixth frequency. The partial correlations for
the sixth atomic seasonal are κ21 = 0.147, κ31 = 0.99994, and
κ32 = 0.99999. The first two are actually interpretable as straight
correlations, whereas the third (κ32) is the correlation for series
451 and 452 conditional on series 448. The straight correla-
tion between 451 and 452 is 0.158. Thus, at the sixth seasonal
frequency series 448 and 451 have little relationship, whereas
448 and 452 are highly linked. The co-integration measures are
τ2 = −0.02 and τ3 = −14.6; the latter value indicates that d3

should be set to zero to get a nested model.
The nested model with 50 parameters has AIC of −1008.64,

which is definitely superior—in fact, the likelihoods (up to nu-
merical precision) are the same for both models, so that the
nested model is preferred. Signal extraction estimates for trend
as well as the six seasonals (and their aggregate) for the three
series are given in Figure 1. In this case, the signal extraction un-
certainty was quite low, but there is a subtle shading around each
estimate corresponding to a two standard error width confidence
interval.

It is possible to consider three sets of bivariate analyses—
the pairings (448, 451), (451, 452), and (448, 452)—and the
results should be compatible with the trivariate analysis. This
is indeed the case, but we only provide summaries here. The
first two analyses were run with unconstrained models, and no
co-integration (for any of the components) was identified. The
third analysis—as expected given the structure of the trivariate
covariance matrix for the sixth atomic seasonal—yields a high
degree of correlation (0.9999996) between the two series, ar-
guing that we can reduce to a rank one nested model. This is

confirmed by the second log partial variance: τ2 = −14.09. Re-
fitting, the AIC drops from −370.76 to −372.75 with the loss
of one parameter; the likelihoods are virtually the same.

In terms of taxonomy, we have 448 ∼6 452, whereas 448 �∼6

451 and 451 �∼6 452. The co-integrating vector β for the three
series, that is, that vector such that its application reduces the
nonstationarity by the factor 1 + B, is given by taking the nest-
ing trivariate model and computing the bottom row of L−1, or
in other words

β ′ = [L32 L21 − L31,−L32, 1] = [−0.947,−0.058, 1].

If we apply β ′ to the three series, we should obtain a se-
ries that has reduced order of integration. That is, except-
ing possible deterministic terms in the null space of 1 + B

(i.e., sequences proportional to (−1)t ), the application of
(1 − B)2(1 + B2 + · · · + B10) (observe that U (B) divided by
1 + B equals 1 + B2 + · · · + B10) should reduce the series to
stationarity. To the extent that the signal extraction estimates
share the co-integration properties of the underlying signals, we
can expect that application of the co-integrating vector to the
sixth seasonal extraction will be a stationary time series, plus
a deterministic function of period 2. This is exactly the case:
we computed the application of β to the sixth seasonal extrac-
tion, and find the result to be purely deterministic sine wave
of period 2; similarly, the co-integrating vector for the third
bivariate analysis is β ′ = [−0.947, 1], and again its applica-
tion to the sixth seasonal extraction is purely deterministic with
frequency π .

This confirms that 448 and 452 are in the same species (ac-
cording to ∼6), and as a result their sixth seasonal extractions are
approximately—up to a deterministic function—scale multiples
of one another, across all time points. While this has some bear-
ing on the seasonal adjustment (Figure 1), of main interest is the
taxonomy of the series. A full taxonomic classification of the re-
tail database would provide insight into how different variables
are related, and also indicate which batches of series would
be amenable to multivariate seasonal adjustment. This could
have possible ramifications to missing data problems, changing
sampling frequency, and anticipation of data revisions—these
speculations are left unto future work for refinement, but are
only mentioned here to provoke interest.

4.2 Modeling Housing Starts

For a second illustration, we consider housing starts data that
are published by the U.S. Census Bureau on a monthly basis,
for the regions corresponding to South, West, Northeast (NE),
and Midwest (MW). We study “New Residential Construction
1964–2012, Housing Units Started, Single Family Units” from
the Survey of Construction of the U.S. Census Bureau, available
at http://www.census.gov/construction/nrc/how_the_data_are_
collected/soc.html. We use the co-integration techniques de-
scribed in the previous subsection rather freely, and will report
only the ultimate refined models.

The four series were first cleaned of fixed effects, such as
trading day and outliers (Appendix C), and then multivariate
structural models involving I (2) trend, irregular, and six atomic
seasonals were applied. As mentioned before, results involving
a cycle and/or an aggregate seasonal gave poor results, and were
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Figure 1. Left panel: retail series (black) for 1992–2012 period, for 448, 451, and 452, with seasonal adjustment (blue) and seasonal (green)
extractions based on the best (MLE) fitted trivariate model. Right panel: seasonal extractions for first through sixth seasonal components. Shaded
bands correspond to confidence intervals of width given by two standard errors.

D
ow

nl
oa

de
d 

by
 [

U
S 

C
en

su
s 

B
ur

ea
u]

, [
T

uc
ke

r 
M

cE
lr

oy
] 

at
 1

4:
26

 2
2 

Se
pt

em
be

r 
20

17
 



McElroy: Multivariate Seasonal Adjustment, Economic Identities, and Seasonal Taxonomy 621

Table 2. Log partial variances by component for quadvariate starts
analysis

Series
Ranks

Component South West NE MW J

Trend 0.00 −2.76 −2.65 −15.29 {1, 2, 3}
First seasonal 0.00 −1.82 −1.40 −11.86 {1, 2, 3}
Second seasonal 0.00 −0.01 −2.68 −5.21 {1, 2, 3, 4}
Third seasonal 0.00 −10.23 −0.01 −11.09 {1, 3}
Fourth seasonal 0.00 −0.33 −10.18 −9.27 {1, 2}
Fifth seasonal 0.00 −0.08 −0.48 −11.57 {1, 2, 3}
Sixth seasonal 0.00 −0.50 −9.26 −10.38 {1, 2}
Irregular 0.00 −0.15 −0.04 −5.86 {1, 2, 3, 4}

abandoned. The atomic seasonal model is necessary, because the
data span covers the GR; the data reflect a change to trend as well
as seasonal patterns. We have run analyses for the entire span
of data, but here focus our discussion on the span 2004–2012,
9 years that include both pre- and post-GR time periods. The
sample size is T = 108 with m = 4 series; the unconstrained
nesting model has AIC of 1009.11, with 84 parameters (in each
latent component, there are six parameters in L and four param-
eters in D, plus four mean parameters), whereas the restricted
nested model has AIC of 984.11 with 71 parameters. This sub-
stantial increase in parsimony is achieved by using a nested
model determined from the τi computed from the unrestricted
MLEs (see Table 2). (The likelihoods for both models were the
same, up to numerical error, so the AIC discrepancy is purely
attributable to the reduction of 13 parameters.)

As usual, the irregular is enforced to have full rank. In terms
of taxonomy, the four series belong to different species, al-
though it is likely that certain pairs can be classified in the
same species. We observe that our selection of rank threshold
(−6.22) results in quite conservative refinements of the nesting
model—the resulting discrepancy in each � matrix is so minute,
that likelihoods tend to be numerically the same at both the un-
constrained and constrained optima. Relaxing this threshold to
−3.92 or −1.66 can result in the likelihoods being different, and
then the AIC comparison is less trivial (and there is potentially
much greater gains in terms of parsimony).

The final residuals from both this nested model, as well as
the nesting model, are both adequate, neither set of plots indi-
cating any substantive residual serial correlation. All MLEs for
the nested model are given in Appendix C. Signal extraction
results, including the aggregate seasonal and the seasonal ad-
justment along with shaded uncertainty, are given in Figure 2.
Multivariate signal extraction has increased precision over uni-
variate approaches, due to the information we can glean from
other related series; this precision gain is measured via the rel-
ative precision of (7). MSE can be reduced substantially in the
case of starts—more than 30% in some cases. (See Appendix C
for details.)

We make several observations about the series and the results.
The data are initially rising, but by the end of 2006 the decline
has begun. Although the low frequency behavior of the series is
of substantial interest, we draw attention to the rapidly evolving
seasonal pattern. We enunciate here a stylized fact that is well

known to the seasonal adjustment community, but is yet to be
absorbed by the broader enclave of economists—the seasonal
pattern can change rapidly, making the antiquated use of sea-
sonal regressors a dire mistake. The seasonal pattern is fairly
stable when focus is restricted to the pre-GR years, but the tran-
sition to mid- and post-GR behavior involves a gradual and yet
substantial change to the seasonal pattern. The change is on
both amplitude and yearly pattern. Standard checks—spectral
plots of seasonal extractions and seasonal adjustments, as well
as autocorrelation plots—indicate that the resulting adjustment
is adequate.

The integrated random walk trend model is evidently flexible
enough to accommodate rapid changes in level, and moreover—
at least for this sample period—the trend disturbances are so
highly cross-correlated as to support a related trend specifica-
tion (there are three stochastic trends driving the four series).
Although Wright (2013) suggested that failure to adequately
capture changing trend dynamics will lead to distortions in
seasonal adjustment (Greenaway-McGrevy 2013 emphasized
multivariate trend modeling to improve the estimation of the
seasonal component), in our experience it is more vital to have
a sufficiently nuanced seasonal model (such as the atomic sea-
sonal). The aggregate seasonal model (not displayed), in con-
trast, failed to capture the post-GR shift in seasonal pattern,
essentially passing the pre-GR seasonal pattern forward to the
GR years; this resulted in salient residual seasonal swings in the
irregular component seasonal adjustment in years 2010, 2011,
and 2012. Essentially, pre-GR seasonal patterns were imposed
on post-GR years. This error can be avoided by using seasonal
adjustment filters constructed from a sufficiently flexible sea-
sonal model that captures the highly evolutive seasonality. In
short, the extracted trend and seasonal dynamics seem to be
suitably separated by our proposed model.

A potential criticism of the results in Figure 2 is that the result-
ing new seasonal is much more dynamic and swiftly changing
than many seasonal adjusters would be comfortable with. How-
ever, this directly follows from the model that we used, applied
to the highly evolutive period of the GR. This model accom-
modates regime change in seasonal patterns, and thus offers a
gradual and gentle alternative to modeling the GR with ramp re-
gressors or other intervention effects, as some statisticians have
pursued (see Buszuwski and Scott (1988) for background, and
Ciammola, Cicconi, and Marini (2010) and Maravall and Pérez
(2012) for recent efforts).

We proceed to analyze seasonal adjustment sensitivity to
model span. We look at eight prior spans of the construction
series, each beginning in 1996 and extending through 2005,
2006, 2007, 2008, 2009, 2010, 2011, and 2012, respectively.
The same atomic seasonal nesting model was fitted to each,
but different nested models were derived in each case—less
collinear restrictions tend to be identified when the sample size
grows longer. Appendix C contains the resulting seasonal adjust-
ments; overall the pattern of revisions are dramatically reduced
by the second full year of new data (i.e., the first annual revision
can have some substantial changes, but the later revisions are
relatively small). Of course, altering the collinearity thresholds
τi will alter the results, potentially making the results more sen-
sitive to revision—our own choices have been conservative (less
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Figure 2. Housing starts (black) for 2004–2012 period, for four regions of the United States (in thousands of housing units), with seasonal
adjustment (blue) and seasonal (green) extractions based on the best (MLE) fitted multivariate model. Shaded bands correspond to confidence
intervals of width given by two standard errors.

parsimonious than could be attempted empirically), resulting in
smaller revisions.

4.3 Regional Aggregation of Housing Starts

It is also of interest to seasonally adjust the Total series, de-
fined to be the straight sum of the four regional series; we wish
this to be true of the signal extraction estimates as well. We
proceed to illustrate the indirect multivariate seasonal adjust-
ment procedure on the housing starts data. We begin with fitting
univariate models (these consist of I (2) trend, irregular, and
six atomic seasonals, for nine parameters total) to each of the
four series, and display the signal extraction results in Appendix
C. Comparing with Figure 2, there is indeed a discrepancy be-
tween signal extraction results, although ultimately both sea-
sonal adjustments—multivariate and univariate—are adequate,

both having the ability to adapt their extraction filters to the
GR regime change. We may then very well ask: what are the
advantages of the multivariate method?

One can simply add the univariate extractions to get an indi-
rect extraction for totals, but there will be no quantification of
uncertainty—one must either model the regional series jointly,
or model the totals directly to get signal extraction uncertainty.
This type of “univariate” indirect extraction yields results that
are ultimately similar, in this case, to the multivariate extraction
for totals shown in the left panel of Figure 3. Uncertainty for the
total is obtained by (8). Alternatively, one can model totals with
a univariate model and produce a direct adjustment, with signal
extraction error quantified, but there is no longer any guarantee
that aggregation constraints are respected (they are not); this
estimate is displayed in the right panel of Figure 3. Comparing
both panels of this figure, we see that the multivariate indirect
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Figure 3. Housing starts (black) for 2004–2012 period, for total starts of the United States (in thousands of housing units), with seasonal
adjustment (blue) and seasonal (green) estimates. Shaded bands correspond to confidence intervals of width given by two standard errors. The
indirect adjustment (left panel) is constructed from the multivariate model, whereas the direct adjustment (right panel) is constructed from the
univariate model fitted to totals.

extractions and the univariate direct extractions are broadly sim-
ilar, and both seasonal adjustments are indeed adequate, but the
MSE for the former (left panel) is less than for the latter (right
panel).

These results agree with previous literature (e.g., Geweke
1978). To summarize, the multivariate indirect method seems
to be superior to both the univariate indirect method and the
univariate direct method: against the former methodology, the
advantage is quantification of uncertainty; against the latter
methodology, the advantage is the respecting of accounting
rules. This discussion has omitted the possibility of raking or
other ad hoc reconciliation measures (Quenneville and Fortier
2012), because these nonparametric techniques destroy all pos-
sibility of quantifying signal extraction uncertainty.

We mention that some modelers may prefer to take a log
transformation of the data, although there are some drawbacks
(Section 3.5). Model-fitting results are not reported here, but
were similar or slightly simpler than the results given above for
no transformation. The signal extraction estimates are extremely
similar, although the uncertainty for the four regions is quite a
bit lower—this benefit can be weighed against the lack of an
uncertainty quantification for the Total.

4.4 Discussion

To summarize these analyses, we have successfully modeled
and extracted both trend and seasonal dynamics in retail and
construction data. We emphasize that the signals are cleanly
separated by the atomic seasonal model, which is vital for the
highly evolutive seasonality occurring in housing starts data
over the GR. However, such features of adequacy are not the
ultimate motivation of this multivariate methodology—because
many univariate methods are also capable of generating an ade-
quate separation of trend and seasonal dynamics. The preceding

analyses actually demonstrate the method’s capacity to address
taxonomy, increased precision, and accounting rules.

Sections 3.2 and 3.2 lay out the tools (the log partial vari-
ance τi) for identifying co-integration, and the trivariate retail
analysis of Section 4.1 shows how this is applied to taxonomy.
This application is repeated on the construction data (Section
4.2), where we also quantify precision gains over univariate
methods (details in Appendix C). Section 4.3 emphasizes how
the multivariate indirect method—while yielding an adequate
separation of signals—can preserve accounting rules, and still
quantify uncertainty.

5. CONCLUSION

This article addresses an important and long-standing ques-
tion in seasonal adjustment and signal extraction, namely, is
there a benefit to multivariate techniques? Our proposals herein
rely on available tools of multivariate time series analysis (en-
coded in sigex). We have motivated these models as latent dy-
namic factor models that expand the basic dynamic factor model
(1) in a manner that takes account of time series structure, as-
sociating additional latent dynamic factors with frequencies of
interest in the process’ spectral density. The factor loadings of
each latent factor are then naturally associated with the lower
Cholesky factors of the respective innovations’ covariance ma-
trix. Each entry of these lower Cholesky factors is interpretable
as a scaled partial covariance, and therefore gives some infor-
mation about how the respective time series are related to one
another at trend or seasonal frequencies.

A pleasing facet of these models is their ready interpretabil-
ity. The reduced rank in a latent process’ innovation covariance
matrix, corresponding to collinear innovations, is easily mod-
eled, and moreover can be interpreted as frequencies of nonin-
vertibility for the differenced process’ spectral density. This in
turn implies a co-integration interpretation for the undifferenced
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series, in a generalized sense; the basis of the co-integrating
spaces are obtained at once by taking the appropriate rows of
the inverse of the lower Cholesky factors. It has been shown that
application of these co-integrating vectors reduces the order of
nonstationarity of the original process, by exactly eliminating
the need for the differencing operator corresponding to that par-
ticular latent process. We elaborate this interpretation with a
trivariate retail analysis.

Having identified the ranks of each latent component, we
can then contemplate taxonomy of economic data, because co-
integration for such processes is the same thing as full spectral
coherency among series at the respective frequency. We pro-
pose that fully reduced rank, of unity, be used as the definition
of species, and establish some preliminary results for taxonomic
classification. A key empirical facet is the ability to determine
the actual rank of each latent process’ innovation covariance
matrix, and we describe some new tools involving partial corre-
lations to define condition numbers, which enable one to tease
out viable reduced rank models. We illustrate this procedure
on the three retail series, showing how these partial correlation
measures do indeed indicate which series are redundant for a
particular latent component (the sixth atomic seasonal in our il-
lustration). Once the full and restricted models have been fitted,
an AIC comparison can be used to decide between competitors;
other parameters (the entries of the lower Cholesky factors, or
factor loading matrices) can also be zeroed out if warranted by
a likelihood ratio test. A central aspect of this methodology is
the ability to compute likelihoods and signal extraction results
with relative ease.

One benefit of the multivariate signal extraction methodol-
ogy is increased precision, as demonstrated through the preci-
sion comparisons on the housing starts data. Another benefit is
the improvement of the indirect method of seasonal adjustment
for preservation of economic identities. The direct method—
running a univariate methodology on the totals—fails to pre-
serve aggregation relations, while univariate indirect methods
(summing the individual adjustments) will not take into account
cross-series correlation, and will not allow for quantification
of the aggregate series’ signal extraction uncertainty. The mul-
tivariate indirect method addresses both of these latter issues,
while preserving economic identities.

Given the benefits in terms of interpretability, taxonomic clas-
sification, and preservation of economic identities, what are the
demerits of the multivariate methodology? We explored signal
extraction revisions for construction series, demonstrating that
the models are able to adapt to pre- and post-GR phenomena,
indeed having the flexibility to accommodate rapidly changing
seasonal patterns. This accommodation resulted in moderate re-
visions, which is no surprise given that the new information
radically altered prior understandings of trend and seasonal pat-
terns. Overall, the revisions behavior seemed satisfactory, al-
though we noted that the actual models identified (the particular
co-integrating ranks) can change dramatically as the data span
is altered.

In our own opinion, the chief criticism is in the additional time
required of the analyst to perform the modeling task; second,
and related, is the huge number of parameters involved when
m = 4 or higher. Third, the use of log transformations inter-
feres with our proposed method of handling the preservation of

economic identities—but only if quantification of uncertainty
is requisite. Regarding the first two points, to achieve parsi-
mony and a feasible computation time, one is naturally led to
seeking co-integrating relationships and other reductions of the
parameter space. The chief bottle-neck is not likelihood eval-
uation (even for m = 10, this is rapid), but optimization over
high-dimensional parameter manifolds.

Two promising avenues for further research are the method-
of-moments estimator proposed herein (Appendix B), and po-
tential further parameter dimension reduction achieved through
informative metadata—for example, if series are geographically
connected, a spatial covariance function could possibly be used
to govern the values of each �.

SUPPLEMENTARY MATERIALS

Appendices: Appendix A (Proofs and Derivations), Ap-
pendix B (Method of Moments), Appendix C (Data Analysis).
(pdf)

Data: Processed retail and construction data. (zip file multi-
SAdata)

R-code: Script and code for analyses used in the article. (zip
files Scripts and sigex)
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