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Covariance matrices corresponding to samples of multivariate time series or spatial random fields have a block-Toeplitz struc-
ture that has a nested pattern. Also, non-lattice data samples yield nested covariance matrices, although they are no longer
block-Toeplitz. The nested structure of such matrices facilitates the computation of their inverses, among other related quan-
tities. Recursive algorithms, based upon this nested structure, are presented, yielding applications such as the simulation of
vector time series, the evaluation of Gaussian likelihoods and Whittle likelihoods, the computation of spectral factorization,
and the calculation of projections. Both multivariate time series applications and two-dimensional random fields applications
are discussed, as well as applications to non-lattice data.
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1. INTRODUCTION

This article develops recursive algorithms for the computation of block-nested covariance matrices that arise in
statistical model-fitting. For many applications, such as when handling multivariate time series data or lattice
random field data, the covariance matrix of the sample is block-Toeplitz, and this special structure can be uti-
lized to yield fast algorithms for matrix inversion. In other types of applications, the covariance matrix may not
be block-Toeplitz, though it will still be block-nested and block non-negative definite. The modified Cholesky
decomposition (MCD) described in Newton and Pagano (1983) is essentially a block version of the well-known
Cholesky–Banachiewicz algorithm, which is also described in Golub and Van Loan (1996). This article describes
the MCD and makes several applications, including likelihood evaluation and projections.

The MCD is used in Newton and Pagano (1983) to obtain a faster way to compute predictors and likelihoods for
stationary (univariate) processes, with a focus on ARMA processes. The basic concept is to write a block-nested
matrix Γ as L D L′, with L unit block lower triangular and D block diagonal (from now on, we suspend the adjective
‘block’, and assume it throughout the paper). If we iterate on the dimension of the matrices, an elegant nested
structure emerges from the nested form; this allows one to recursively compute the final row of L from the new
entries (e.g. in the time series case these are the autocovariances) and previous iterates. This recursion follows
easily from the derivations in Newton and Pagano (1983) and does not rely on an ARMA assumption. Here we
develop this structure into so-called forward and backward decompositions, which allow rapid calculation of Γ−1.
Furthermore, the quantities arising from the MCD can be interpreted as partial covariances, suggesting a natural
statistical parameterization.
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2 T. MCELROY

These recursions are useful in statistical applications that involve vector time series or spatial data. This work
supplies a few gaps in the literature: for time series not embeddable in state space (e.g. long memory processes),
or for spatial data, it is important for practitioners to be able to compute likelihoods and projections in a stable
and efficient manner. For such processes, the new recursions render applications such as forecasting and signal
extraction feasible. As for processes that are embeddable in state space (see Durbin and Koopman 2001 for an
overview), neither the Whittle likelihood nor spectral factorization can be computed from state space algorithms,
and an alternative approach such as that advocated by this article is required. A potential advantage of this article’s
approach over state space algorithms occurs when there are many latent structures present in the process, such
that the state vector becomes very long – the order of operations in the Kalman filter depends on the dimension
of the state vector. In contrast, the projection approach of this article depends only on sample size and time series
dimension, assuming that the process’ autocovariances have been computed.

While the forward and backward decompositions of Section 2 are related to the finite forward and backward pre-
dictors encountered in time series literature (see Haykin 1996 Chapter 6), our treatment is slightly more general,
allowing for non-Toeplitz matrices — this allows for broader applications to spatial data or non-lattice covari-
ance structures. The basic recursions are discussed in Section 2, and they are applied in Section 3 to generate
algorithms for simulation, likelihood evaluation, and spectral factorization for multivariate time series. Appli-
cations to spatial data are discussed at the end of Section 3, and Section 4 gives a few numerical illustrations.
Appendix S1, Supporting Information contains proofs and an extensive treatment of the application of signal
extraction – as well as R code for the Gaussian likelihood algorithm.

2. NESTED MATRIX RECURSIONS

We consider matrices that have a block-nested structure, and review the recursive algorithms for calculation of the
MCD for both the matrix and its inverse. These recursions help us to illustrate the nested structure of the Cholesky
factors, which is further developed through various applications in Section 3. There are two versions of this, the
lower and upper versions, depending on whether we take the Cholesky factors in the MCD to be either lower
triangular or upper triangular respectively. Early literature on such decompositions includes Bauer (1955), Akaike
(1973), and Pagano (1976), followed by Newton and Pagano (1983). The innovations algorithm of Brockwell and
Davis (1991) is related to the MCD approach – this is discussed in Section 3.2.

A lower nested matrix is defined to be a sequence of block matrices Γt with structure

Γt+1 =

[
Γt 𝛾 t

𝛾 ′
t

gt+1

]
. (1)

We suppose that Γt is a tm× tm-dimensional block matrix, and the block matrix 𝛾
t
is tm×m-dimensional, while

gt+1 is m × m-dimensional.
For example, for a block-Toeplitz matrix corresponding to a covariance stationary vector time series process

{xt} 𝛾 ′
t
= [𝛾(t),… , 𝛾(1)] and gt+1 = 𝛾(0), where 𝛾(h) is the autocovariance function of the process defined via

𝛾(h) = Cov(xt+h, xt). In this case, 𝛾
t−1

is identical with the latter t−1 block elements of 𝛾
t
; however, there are cases

of interest where Γt is not Toeplitz, so that 𝛾
t−1

and 𝛾
t

have no redundancy in their elements. This can happen if
the time series is nonstationary or is irregularly sampled (see Section 3.6 for further discussion).

Throughout this section and the paper, 1 will denote an identity matrix of dimension corresponding to the con-
text, and 0 will denote a matrix of zeroes of appropriate dimension. Usually, these matrices are m×m-dimensional.
A lower triangular matrix with block diagonals given by the identity matrix is said to be unit lower triangular. An
upper nested matrix is defined similar to (1), but now with the formula

Γt+1 =

[
gt+1 𝛾

′
t

𝛾 t Γt

]
. (2)
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COMPUTATION FOR BLOCK-NESTED COVARIANCE MATRICES 3

This 𝛾 t is also tm × m-dimensional, and in the case of a stationary vector time series it would correspond to
𝛾
′
t = [𝛾(−1),… , 𝛾(−t)], in contrast to 𝛾 ′

t
.

The MCD for the lower nested matrices is Γt = Lt Dt L′
t for unit block lower triangular matrices Lt and block

diagonal matrices Dt, whereas the MCD for the upper nested matrices is Γt = Ut Ct U′
t for unit upper triangular

matrices Ut and block diagonal matrices Ct. First we describe the nested structure of these MCDs and how the
lower and upper nested matrices can be computed recursively.

Proposition 1. A lower nested matrix has MCD given by Γt = Lt Dt L′
t , where the unit block lower triangular

matrix Lt and block diagonal matrix Dt have the form (for t ≥ 1)

Lt+1 =
[

Lt 0

𝓁′
t+1 1

]
Dt+1 =

[
Dt 0

0 dt+1

]
.

The new entries are 𝓁t+1 and dt+1, and they are updated via the equations

𝓁t+1 = D−1
t L−1

t 𝛾
t

dt+1 = gt+1 − 𝓁′
t+1 Dt 𝓁t+1.

An upper nested matrix has MCD given by Γt = Ut Ct U′
t , where the unit block upper triangular matrix Ut and

block diagonal matrix Ct have the form (for t ≥ 1)

Ut+1 =
[

1 u′
t+1

0 Ut

]
Ct+1 =

[
ct+1 0

0 Ct

]
.

The new entries are ut+1 and ct+1, and they are updated via the equations

ut+1 = C−1
t U−1

t 𝛾 t ct+1 = gt+1 − u′
t+1 Ct ut+1.

The proof of this result follows directly from writing out the block matrices and matching appropriate expres-
sions. The initialization for the lower MCD is L1 = 1 and D1 = g1 = Γ1, whereas the initialization for the upper
MCD is U1 = 1 and C1 = g1 = Γ1. We can also modify these MCDs such that the triangular matrices are no longer
unit, with the square root of the diagonal entries of the block diagonal matrices featured on the diagonals.

These recursions have application to spectral factorization, to the computation of the covariance matrix of a
vector autoregressive moving average (VARMA) process (Lütkepohl 2007), and to the calculation of signal extrac-
tion filters. However, it is also useful to have recursions to compute the inverses of nested matrices, as these are
used to calculate Gaussian likelihoods and projections (such as forecasts).

Introduce the notation A† = A′−1 for the inverse transpose of A. If a nested matrix has a lower MCD Γt = Lt Dt L′
t ,

then its inverse has a lower MCD as well, given by Γ−1
t = L†

t D−1
t L−1

t , although the inverse matrix is no longer
nested. Similarly, the upper MCD for the upper nested matrix is Γ−1

t = U†
t C−1

t U−1
t . The next result shows that, if

we have calculated the MCD of Γt recursively, we can obtain Γ−1
t fairly easily.

Proposition 2. A lower nested matrix has MCD for its inverse given by Γ−1
t = L†

t D−1
t L−1

t , where the unit block
lower triangular matrix L−1

t and block diagonal matrix D−1
t have the form (for t ≥ 1)

L−1
t+1 =

[
L−1

t 0
−𝓁′

t+1 1

]
D−1

t+1 =
[

D−1
t 0

0 d−1
t+1

]
.

The new entries are 𝓁t+1 and d−1
t+1, and they are updated via

𝓁t+1 = L†
t 𝓁t+1 = Γ−1

t 𝛾
t

dt+1 = gt+1 − 𝛾 ′
t
𝓁t+1,
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4 T. MCELROY

so long as dt+1 is invertible. The inverse matrix does not have a lower nested form, but can be updated via (for t ≥ 1)

Γ−1
t+1 =

[
Γ−1

t + 𝓁t+1 d−1
t+1 𝓁

′
t+1 −𝓁t+1 d−1

t+1

−d−1
t+1 𝓁

′
t+1 d−1

t+1

]
. (3)

An upper nested matrix has MCD for its inverse given by Γ−1
t = U†

t C−1
t U−1

t , where the unit block upper
triangular matrix U−1

t and block diagonal matrix C−1
t have the form (for t ≥ 1)

U−1
t+1 =

[
1 −ũ′

t+1

0 U−1
t

]
C−1

t+1 =

[
c−1

t+1 0

0 C−1
t

]
.

The new entries are ũt+1 and c−1
t+1, and they are updated via (for t ≥ 1)

ũt+1 = U†
t ut+1 = Γ−1

t 𝛾 t ct+1 = gt+1 − 𝛾
′
t ũt+1,

so long as ct+1 is invertible. The inverse matrix does not have an upper nested form, but can be updated via

Γ−1
t+1 =

[
c−1

t+1 −c−1
t+1 ũ′

t+1

−ũt+1 c−1
t+1 Γ−1

t + ũt+1 c−1
t+1 ũ′

t+1

]
. (4)

Remark 1. The quantities dt+1 and ct+1 are Schur complements (of Γt+1 with respect to Γt – see Axelsson 1996)
in the lower and upper nested cases respectively. For block-Toeplitz matrices that are block positive definite, such
Schur complements will be positive definite themselves, and hence invertible. More generally, the block positive
definite property of covariance matrices follows from Mercer’s Theorem (Tanaka 1996); see further discussion in
Section 3.6.

From (3), it is evident that a knowledge of dt+1 and 𝓁t+1 is sufficient to generate the new Γ−1
t+1 from the previous

Γ−1
t . Similarly, from (4) we can compute Γ−1

t+1 if we know ct+1 and ũt+1. The next section considers an application
that intertwines both the lower and upper MCDs to yield an algorithm for computing the Gaussian likelihood,
which in the case of block-Toeplitz covariance matrices is identical with the Levinson–Durbin algorithm.

We can also provide a statistical interpretation of the quantities L and D in the MCD; this is similar to the known
fact about the entries of Γ−1 being partial covariances, but is actually a different result. The proposition is stated
for a lower nested MCD, but a similar result also holds for the upper nested MCD. We suppose that Γt is the
covariance matrix of some random vector x, and the individual random vectors are denoted xj for 1 ≤ j ≤ t. Let
CovZ(x, y) = Cov(x − PZ(x), y − PZ(y)) denote the partial covariance, given conditioning variables Z, where PZ(x)
denotes the linear projection of x onto Z, i.e. PZ(x) = Cov(x,Z)Var(Z)−1 Z.

Proposition 3. In the lower nested MCD, the Schur complement dj is equal to Covx1,…,xj−1
(xj, xj). Also, when d−1

j

exists, the kjth block entry of the lower Cholesky factor L is given by the transpose of d−1
j Covx1,…,xj−1

(xj, xk).

Because the MCD is a block decomposition, each partial covariance is actually a matrix. When k = j, we
obtain the identity matrix as the block diagonal of L, and when k < j the partial covariance is zero (because in
this case xk is included in the conditioning set). This new result can be constrasted with the known result that the
precision matrix Γ−1

t has block entries given by partial covariances, where the conditioning is on all the variables;
Proposition 3 describes the entries of L as (scaled) sequential partial covariances.

This interpretation can be useful when modeling multivariate data, and one wishes to impose some sparsity
on Γt – in this case, placing a zero in Lt corresponds to imposing that a partial covariance is zero. Moreover,
it suggests a parameterization of Γt that is useful for model fitting. Allowing the lower block entries of L to be
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COMPUTATION FOR BLOCK-NESTED COVARIANCE MATRICES 5

generic real matrices, and parameterizing the Schur complements dj as symmetric positive definite matrices, we
find by Proposition 3 that the product of such is interpretable as a partial covariance. McElroy (2017) provides an
application of this parameterization to model seasonally co-integrated economic data.

3. APPLICATIONS OF THE RECURSIONS

3.1. Simulation of Multivariate Time Series

Here we present a known algorithm for generating simulations of a Gaussian m-variate time series, with a sample
of length T . If the autocovariance function for the generating model is known, we can compute the entries of ΓT . If
ZT is a Tm-vector of i.i.d. normal random variables, then Γ1∕2

T ZT will be a normal random vector with covariance
matrix ΓT , and hence is a simulation of the time series. Here, our interest focuses on quickly computing the matrix
square root Γ1∕2

T .
Let Zt be the tm-vector, for all 1 ≤ t ≤ T , corresponding to the first t block-components of ZT , and let zj denote

an individual element for 1 ≤ j ≤ T . So z1,… , zT are i.i.d. normal random vectors with covariance matrix 1m.
Similarly, let XT = Γ1∕2

T ZT , which consists of individual elements xj, and sub-vectors Xt. Then

Zt+1 =
[

Zt

zt+1

]
Xt+1 =

[
Xt

xt+1

]
,

and utilizing the formula for Lt+1 in Proposition 1 prompts the definition Xt = Lt D1∕2
t Zt – it is immediate that the

covariance matrix of Xt for each 1 ≤ t ≤ T is Γt. It then follows that

Xt+1 = Lt+1 D1∕2
t+1 Zt+1 =

[
Xt

𝓁′
t+1Xt + d1∕2

t+1 zt+1

]
,

so that the sequence of simulations at time t, namely Xt, gets appended with the new value 𝓁′
t+1Xt + d1∕2

t+1 zt+1. This

derivation uses 𝓁′
t+1Zt = 𝓁′

t+1LtD
1∕2
t Zt = 𝓁′

t+1Xt. The step requires order of t calculations (ignoring the impact of
m) in general, and the computation of 𝓁′

t+1Xt is discussed in the next section .

3.2. Calculation of Gaussian Likelihoods

Here we present a Gaussian likelihood algorithm, which is essentially the same as the Levinson–Durbin algorithm
and shares the form of the innovations algorithm in Brockwell and Davis (1991) – where one computes a Gaussian
likelihood by subtracting from an observation xt+1 its best linear predictor 𝓁′

t+1 Xt and square, normalizing by
the prediction error variance dt+1. This topic has been well studied (e.g. see Whittle 1963), and illustrates a key
application of the MCD.

Given a sample {x1, x2,… , xT} from a stationary m-variate time series, a time series model can be fitted via
maximizing the Gaussian likelihood. Let Xt = vec{x1, x2,… , xt}. Once the values for the parameters have been
selected, the model’s autocovariance sequence {𝛾(h)} can be calculated for −T < h < T , and the Toeplitz matrix
ΓT can be computed, where by definition the jkth m × m block of ΓT is 𝛾(j − k). The log determinant we write as
lT , while the quadratic form is denoted QT , so that the log Gaussian likelihood is defined to be

lT + QT = log |ΓT | + X′
T Γ

−1
T XT . (5)

Brute-force inversion of ΓT involves order T3 flops, whereas a straight Cholesky decomposition is much faster.
When a block-Toeplitz structure is available, as in the case of a stationary time series, an even faster recursive
method is available. Consider viewing QT in (5) as the sum of squared model residuals Zt = Γ−1∕2

t Xt for each t.

J. Time Ser. Anal. (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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6 T. MCELROY

The notation is the same as in the previous subsection, but now we imagine that Γt corresponds to the covariance
structure of a fitted model. Utilizing Proposition 2 with Zt = L−1

t Xt, we easily obtain that

Zt+1 = L−1
t+1Xt+1 =

[
Zt

d−1∕2
t+1 [xt+1 − 𝓁′

t+1Xt]

]
.

This recursion is initialized with Z1 = Γ−1∕2
1 x1. In order to compute the next entry of the residual, we must compute

𝓁t+1 = Γ−1
t 𝛾

t
and dt+1 = gt+1 − 𝛾 ′

t
𝓁t+1. This 𝓁t+1 is the one-step-ahead predictor, i.e. the best forecast of xt+1 from

Xt is 𝓁′
t+1 Xt. We proceed to discuss the efficient calculation of 𝓁t+1.

Proposition 4. A recursive algorithm to compute (5) is given by the initializations ũ2 = 𝛾−1(0) 𝛾(1), 𝓁2 =
𝛾−1(0) 𝛾(−1), c2 = 𝛾(0) − 𝛾

′
1 ũ2, d2 = 𝛾(0) − 𝛾 ′

1
𝓁2, Q2 = x′1 𝛾

−1(0) x1 + (x2 − 𝓁′
2 x1)

′
d−1

2 (x2 − 𝓁′
2 x1), and l2 =

log |𝛾(0)| + log |c2|, followed by the loop for 2 ≤ t ≤ T − 1 of

𝜉t = 𝛾(t) − 𝛾 ′
t−1

ũt (6)

𝓁′
t+1 =

[
𝜉t c−1

t , 𝓁′
t − 𝜉t c−1

t ũ′
t

]
(7)

ũ′
t+1 =

[
ũ′

t − 𝜉′t d−1
t 𝓁′

t , 𝜉
′
t d−1

t

]
(8)

ct+1 = 𝛾(0) − 𝛾
′
t ũt+1 (9)

dt+1 = 𝛾(0) − 𝛾 ′
t
𝓁t+1 (10)

Qt+1 = Qt + (xt+1 − 𝓁′
t+1 Xt)

′
d−1

t+1(xt+1 − 𝓁′
t+1 Xt) (11)

lt+1 = lt + log |ct+1|. (12)

The total computation cost is of order T2.

When a Markovian structure on the covariances exists, other algorithms can be entertained – this is the founda-
tion for the efficient state space approach to likelihood evaluation, called the innovations algorithm of the Kalman
filter (Durbin and Koopman 2001). A Markov structure implies that the partial autocovariances are eventually
zero for high lags. Such a property could be used in the definition of 𝓁′

t+1, in order to come up with an alternative
recursive approach to its computation; the quantity 𝜉t equals the partial autocovariance Cov[xt, x0|Xt−1], and hence
is zero whenever t exceeds the Markov order p – indicating by (7) that 𝓁t+1 and ũt+1 require no additional updat-
ing (neither will ct+1 or dt+1) when t > p. Thus, (6)– (10) are accomplished in p steps. This shows that dramatic
computational gains are possible when an additional structure is present.

In the case of a univariate time series, analysts sometimes work with the concentrated likelihood – in the case
where the innovation variance is a separate parameter in the time series model, one can algebraically solve for this
parameter’s minimizer in terms of the others, and then re-substitute. The result is called the concentrated likelihood,
being an objective function that depends on one less parameter. If ΓT above corresponds to the ‘innovation-free’
covariance matrix, i.e. the calculation of the covariance matrix pretending that the innovation variance equals
unity, then QT∕T is the maximum likelihood estimator of the innovation variance, and the concentrated likelihood
then equals T + T log(QT∕T) + lT (here we would likewise compute lT = log |ΓT | under the assumption that
ΓT is innovation-free). These quantities are generated by the above algorithm, so it follows that the concentrated
likelihood can also be efficiently computed.

3.3. Calculation of Exact Whittle Likelihoods

Given a sample {x1, x2,… , xT} from a stationary m-variate time series, a time series model can be fitted via min-
imizing the exact Whittle likelihood. We use the adjective ‘exact’ to delineate the Whittle likelihood described

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. (2017)
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COMPUTATION FOR BLOCK-NESTED COVARIANCE MATRICES 7

in Taniguchi and Kakizawa (2000), which considers the periodogram at all possible frequencies, which is dis-
tinct from the ‘approximate’ Whittle likelihood, which considers the periodogram only at Fourier frequencies.
The exact Whittle likelihood has the advantage over the approximate Whittle likelihood in that the latter is a step
further away from the asymptotic objective function, i.e. the exact Whittle likelihood is a closer approximation to
the Kullback–Leibler divergence between the true spectral density and the postulated model; see Taniguchi and
Kakizawa (2000).

Once values for the parameters have been selected, the model’s inverse autocovariance sequence {𝜔(h)} can be
calculated for −T < h < T , and the Toeplitz matrix ΩT can be computed, where, by definition, the jkth m × m
block of ΩT is 𝜔(j − k). Recall that inverse autocovariances have the defining property that, when convolved
with the autocovariances, one obtains the Kronecker delta function. Put another way, if F is the spectral density
corresponding to an invertible postulated model, then the inverse autocovariance sequence is the inverse Fourier
transform of F−1. In Taniguchi and Kakizawa (2000), the Whittle likelihood is defined via

log detΣ + 1
2𝜋 ∫

𝜋

−𝜋
tr{F−1 I} d𝜆,

where I is the multivariate periodogram (the Fourier transform of the sample autocovariance sequence) and Σ is
the innovation variance matrix of the model. Noting that the periodgram can be expressed via

I(𝜆) = T−1

(
T∑

j=1

xjz
j

) (
T∑

k=1

x′kz−k

)

for z = e−i𝜆, it follows that

1
2𝜋 ∫

𝜋

−𝜋
tr{F−1 I} d𝜆 = 1

2𝜋 ∫
𝜋

−𝜋
tr{F−1 T−1

T∑
j,k=1

xjx
′
kzj−k} d𝜆

= T−1
T∑

j,k=1

1
2𝜋 ∫

𝜋

−𝜋
x′kF−1xj zj−k d𝜆

= T−1
T∑

j,k=1

x′k

(
1

2𝜋 ∫
𝜋

−𝜋
F−1 zj−k d𝜆

)
xj

= T−1X′
T ΩT XT ,

with ΩT the block Toeplitz matrix corresponding to the inverse spectral density F−1. Therefore the exact Whittle
likelihood is defined to be

log |Σ| + T−1 X′
T ΩT XT , (13)

where Xt = vec{x1, x2,… , xt}. The log determinant does not depend on T , and so can be calculated once. The
quadratic form is denoted QT = X′

T ΩT XT , but differs from the Gaussian likelihood’s quadratic form in that no
matrix inversion is required. The algorithm is given by expressing Qt+1 in terms of previously computed Qt scalars.
(Here, 𝜔′

t
is the bottom block row of Ωt, excepting the final entry 𝜔(0).)

Proposition 5. A recursive algorithm to compute (13) is given by the initialization

Q1 = x′1 𝜔(0) x1 𝜌1 = x′2 𝜔(1) x1,

J. Time Ser. Anal. (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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8 T. MCELROY

followed by the loop for 1 ≤ t ≤ T − 1 of

𝜌t = x′t+1 𝜔
′
t
Xt (14)

Qt+1 = Qt + 𝜌t + 𝜌′t + x′t+1 𝜔(0) xt+1. (15)

The total computation cost is of order T2.

It is also possible to concentrate out the Whittle likelihood when the innovation covariance matrix is separately
parameterized in the model – see the discussion in McElroy and Findley (2015). In this case, the time series model
is represented in causal Wold form via xt = Ψ(B)𝜖t for a vector white noise sequence {𝜖t} of covariance Σ, and
the causal multivariate filter Ψ(z). Then, concentration of the Whittle likelihood amounts to computation of the
empirical forecast error variance (FEV) matrix, defined as

Σ̂ = 1
2𝜋 ∫

𝜋

−𝜋
Ψ−1(e−i𝜆) I(𝜆) Ψ†(ei𝜆) d𝜆.

The concentrated Whittle likelihood is actually equal to m + log det Σ̂ (McElroy and Findley 2015). Expanding
Ψ−1(z) as

∑
j≥0 𝜐jz

j results in the empirical FEV being written as

Σ̂ =
∑
j,k≥0

𝜐j𝛾̂(j − k)𝜐′k = [𝜐0, 𝜐1,… , 𝜐T−1] Γ̂T [𝜐0, 𝜐1,… , 𝜐T−1]′,

where Γ̂T is the block-Toeplitz matrix consisting of the sample autocovariance matrices. Hence, we see that the
algorithms for the (unconcentrated) Whittle likelihood can be applied, but now with the coefficients 𝜐t playing the
role of xt and the inverse autocovariances of the model 𝜔(h) replaced by the sample autocovariances 𝛾̂(h).

3.4. Spectral Factorization

The multivariate spectral factorization problem is the following: given a positive definite sequence of autocovari-
ances 𝛾(0),… , 𝛾(q−1), 𝛾(q) (i.e. the matrix function

∑|h|≤q 𝛾(h)e−i𝜆h must be positive definite for all 𝜆 ∈ [−𝜋, 𝜋]),
determine a vector moving average (VMA) representation of order q that has this covariance structure. For a dis-
cussion of VMA and vector autoregressive (VAR) processes, see Brockwell and Davis (1991) or Lütkepohl (2007).
This problem is important in engineering applications; see Sayed and Kailath (2001) for an overview. Spectral
factorization also provides a way to compute inverse autocovariances, which are needed in the Whittle likelihood.

The basis for our spectral factorization relies on the following known results: If we write down the lower
nested MCD of Γt+1 via Proposition 1, it is shown below that the bottom block-row of Lt (i.e. 𝓁′

t+1) asymptotically
corresponds to the coefficients of the VMA. Specifically, if F is the spectral density matrix given by

F(𝜆) =
q∑

h=−q

Γ(h)e−ih𝜆

for 𝜆 ∈ [−𝜋, 𝜋], then the spectral factorization is

F(𝜆) = Θ(z) ΣΘ′(z) (16)

for z = e−i𝜆. Here, Θ is a degree q polynomial with nonzero leading coefficient Θ0, which is taken to be the identity
matrix as an identifiability restriction ((Lütkepohl, 2007)). Thus Θ(z) =

∑q
k=0 Θkzk is a matrix polynomial. There
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are many spectral factorization algorithms available in the literature (c.f., Sayed and Kailath 2001); we here present
a method (Bauer 1955) with proof for matrix power series, namely the case where q = ∞.

Proposition 6. Suppose that the lower MCD of Γt corresponds to a positive definite sequence {𝛾(h)}, where the
kjth block entry of Lt+1 is written as [Lt+1]k,j. Then for any h ≥ 0

lim
t→∞

[Lt+1]t+1,t+1−h = Θh.

In the case where q < ∞, corresponding to a VMA process, Proposition 6 says that the bottom block row of Lt in
the non-unit lower MCD is approximately given as a sequence of zero matrices followed by the VMA coefficients.
Hence, an iterative algorithm can be constructed to compute 𝓁′

t , looping until convergence. Using Propositions 1
and 2, we iteratively compute

𝓁t+1 = D−1
t L−1

t 𝛾
t

dt+1 = 𝛾(0) − 𝓁′
t+1 Dt 𝓁t+1

L−1
t+1 =

[
L−1

t 0

−𝓁′
t+1 L−1

t 1

]
.

Then the last q + 1 matrices of 𝓁′
t+1 yield the VMA coefficients. It is straightforward to see from this recursion

that, when t > q, due to the lower triangular structure of L−1
t and the fact that 𝛾(h) = 0 for h > q, the first t − q

columns of −𝓁′
t+1 L−1

t are necessarily zero – this is what we desire, because only the first q+ 1 coefficients of Θ(z)
should be nonzero. Efficient computation of 𝓁t+1 and dt+1 follow from the ideas discussed in Section 3.1.

We remark that the Bauer spectral factorization algorithm yields a stable factorization asymptotically. This last
result uses the notion of convergence of matrix polynomials: by the expression Π(t)(B) → Π(∞)(B) as t → ∞
we mean that each coefficient matrix of the polynomial Π(t)(B) tends to the corresponding coefficient matrix of
the power series Π(∞)(B), in the sense that the matrix norm of their difference tends to zero. Moreover, a matrix
polynomial Π(B) is stable if it has the property that detΠ(z) = 0 implies |z| > 1.

Proposition 7. Let Θ(t)(B) be the VMA(t) polynomial with coefficients satisfying

[Θt,… ,Θ1,Θ0] =
[
𝓁′

t+1, 1m

]
,

the final block row of Lt+1 in the lower MCD of Γt+1. Then Θ(t)(B) → Θ(∞)(B), where Θ(∞)(B) is a stable order-q
matrix polynomial satisfying (16) (for some Σ) with the leading coefficient equal to the identity matrix.

3.5. Lattice Random Fields

Here we discuss the case of a two-dimensional lattice random field, and how the recursive algorithms can be
applied to compute the likelihood for a lattice model. Let us suppose that 𝕏 is the N1×N2-dimensional data matrix,
which consists of N1 ⋅N2 values of random variables, each at a corresponding location within a rectangle. For more
details on inference for such lattice fields, see McElroy and Holan (2014). The underlying lattice field is denoted
xt1 ,t2

, with 1 ≤ t1 ≤ N1 and 1 ≤ t2 ≤ N2. Supposing that the field is covariance-stationary (and mean zero for
simplicity), we have

Cov
[
xt1 ,t2

, xt1+h1,t2+h2

]
= 𝛾h1,h2

for h1, h2 ∈ ℤ. It is known that 𝛾−h1,−h2
= 𝛾h1,h2

. It is necessary to put the data matrix 𝕏 into a vectorized form,
and lexicographic ordering corresponds to the rule X = vec(𝕏′). The covariance matrix of the column vector X

J. Time Ser. Anal. (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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consists of N1 × N1 blocks, where the jkth block matrix is denoted Σ(j−k) with 1 ≤ j, k ≤ N1. Each such block
matrix is N2 ×N2-dimensional, being Toeplitz with 𝓁, nth entry given by 𝛾j−k,𝓁−n. Hence, Cov(X) is block-Toeplitz,
denoted ΓN1

, having the structure of (1), where 𝛾 ′
t
=

[
Σ(t),… ,Σ(1)

]
, and gt+1 = Σ(0). Note that the dimension of

recursion in (1) is in the number of blocks N1, each of size N2 × N2. In order to verify that the structure of (1) is
valid, we proceed as follows:

[Σ(h)]′jk = Σ(h)
kj = 𝛾h,k−j = 𝛾−h,j−k = Σ(−h)

jk ,

so that Σ(−h) = Σ(h)′. This shows that the upper right portion of Γt+1 is indeed equal to the transpose of 𝛾 ′
t
. As a

result, we can utilize the method of Section 3.2 to calculate the Gaussian likelihood (given some model for the
autocovariances); in the algorithm there we can replace each 𝛾(h) by Σ(h). Whereas in the vector time series case
each block matrix 𝛾(h) is not Toeplitz, in the case of a lattice random field the block matrices Σ(h) are also Toeplitz
– in a sense the covariance matrix ΓN1

is doubly Toeplitz. Also note that the observation xt in the time series case
is replaced here by the transpose of the tth row of 𝕏.

Now in many applications N1 and N2 have similar sizes, so that each of the N1 steps of the likelihood algorithm
requires matrix computations of size N2; in the case of vector time series, we instead have matrices of fixed size
m. Asymptotic results for random fields often stipulate that N1 and N2 grow at the same rate, and, due to the parity
of these dimensions, computations for random fields can be expensive. While order m2T2 operations are required
in the vector case, for lattice fields we have order N2

1 N2
2 operations.

The other applications also follow, such as simulation and Whittle evaluation. In the case of the lattice Whittle,
one can establish

X′
N1
ΓN1

XN1
=

N1∑
j,k=1

x′j Σ̃
(j−k)xk,

where x′j is the jth row of 𝕏, and Σ̃(h) has 𝓁, nth entry given by the autocovariance 𝛾h,𝓁−n of the inverse spectral
density. From here it is straightforward to see how Whittle estimation of spatial data can be efficiently carried out.
As a final note, it seems possible to consider dimension greater than two by continuing the block-Toeplitz nesting
algorithms recursively in dimension.

3.6. Non-Lattice Data

The algorithms for likelihood evaluation (and others) are also valid for non-lattice data – or data resulting in
non-Toeplitz covariance matrices Γt, such as time series samples with missing values – so long as the Schur
complements (c.f., Remark 1) are still positive definite. This is because the results of Section 2 are purely algebraic.
We now sketch how such non-Toeplitz structures can commonly arise.

Besides the obvious scenario of nonstationary time series data, which results in a non-Toeplitz covariance
matrix, one might obtain a non-Toeplitz matrix from irregular sampling, i.e. sampling at non-lattice observation
points. Consider a covariance stationary time series or spatial m-variate process x(s) with s belonging to some sub-
set of Euclidean space ℝd, such that the process has autocovariance function R(h) = Cov(x(s+h), x(s)) for h ∈ ℝd.
Sampling locations s1, s2,… , sT are given, which may be times or spatial locations that are non-lattice, i.e. ‖sj−sk‖
is not uniform between neighboring sampling locations. The covariance matrix of the sample x(s1), x(s2),… , x(st)
for any t ≤ T is given by the matrix Γt, which has jkth block entry R(sj − sk), for 1 ≤ j, k ≤ t.

Hence the nonuniformity of the displacements sj−sk implies there is no Toeplitz structure toΓt. However, so long
as the autocovariances are computed in a correct and coherent manner (e.g. as derived from a covariance stationary
model), the Schur complements will still be invertible, and the likelihood can be evaluated via an MCD algorithm –
this follows from Mercer’s Theorem (Tanaka 1996). Below, we study covariance stationary multivariate processes,
and explicitly show that the resulting covariance matrices of samples must have invertible Schur complements.
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The spectral representation of the autocovariance function, assuming this exists, is given by

R(h) = ∫ℝd

F(𝜆) exp{i𝜆′h} d𝜆 (17)

with spectral density F, which is a matrix-valued function of frequencies 𝜆 ∈ ℝd. The inverse Fourier transform
yields the relationship

F(𝜆) = 1

(2𝜋)d ∫ℝd

R(s) exp{−i𝜆′s} ds

for a given F. Because R(−h) = R′(h) (this follows from the stationarity assumption), we must have F′(𝜆) = F(𝜆).
The essential condition for stationarity is that F(𝜆) be nonnegative definite for every 𝜆, but because the spectral
matrices are possibly complex-valued, the condition is slightly different from the real case. For any complex vector
𝜔, the scalar 𝜔′F(𝜆)𝜔 must equal its own transpose, which is

𝜔
′F′(𝜆)𝜔 = 𝜔′F(𝜆)𝜔,

and hence 𝜔′F(𝜆)𝜔 equals its own conjugate. Therefore it is real-valued. Then the positive definite condition on
F is that for every 𝜆, for any complex vector 𝜔,

𝜔′F(𝜆)𝜔 ≥ 0

and equals zero if and only if 𝜔 is the zero vector. We write F > 0 for short; c.f., Brockwell and Davis (1991).
Below, we show that the resulting Γt is block positive definite.

Proposition 8. The block matrix Γt with jkth block entry equal to R(sj − sk) for R given by (17) has MCD with
Schur complements dj (1 ≤ j ≤ t) that are positive definite.

As a consequence of Proposition 8, the algorithms of Section 2 can be applied. However, the likelihood algorithm
of Section 3.2 assumes a block-Toeplitz structure, and hence is not valid in this scenario; the cruder methods of
Propositions 1 and 2 can be used instead.

4. ILLUSTRATIONS

When fitting a time series model, it is common for hundreds of likelihood evaluations to occur, so it is important
to avoid crashes due to numerical instability; also it is important that each evaluation is rapidly computed.

4.1. Simulations

To illustrate the potential gains, we consider the application of Gaussian likelihood evaluation for a VARMA
process. We consider a trivariate VAR process of order 1 given by Xt = ΦXt−1 + 𝜖t for {𝜖t} a vector white noise of
covariance matrix Σ, where

Φ =
⎡⎢⎢⎣
.5 0 0
.1 .1 .3
0 .2 .3

⎤⎥⎥⎦ Σ =
⎡⎢⎢⎣

2.25 0 0
0 1 .5
0 .5 .74

⎤⎥⎥⎦ .
This corresponds to the VAR(1) process discussed in Example 2.1.14 of Lütkepohl (2007). We also consider a
bivariate VARMA(1,1) process given by Xt = ΦXt−1 +𝜖t +Θ𝜖t−1 for {𝜖t} a vector white noise of covariance matrix
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Table I. Runtimes in hundredths of seconds for the MCD and Default algorithms for calculation of the Gaussian likelihood,
as a function of sample size T . The covariance structures correspond to a three-dimensional VAR(1) process and to a a

two-dimensional VARMA(1,1) process.

VAR(1) VARMA(1,1)

T MCD Default MCD Default

50 1.20 3.76 1.03 3.18
100 2.56 17.39 2.18 13.72
200 5.77 117.25 4.67 65.88
300 9.71 373.97 7.44 215.76
400 13.93 834.53 10.45 483.97
500 20.61 1701.09 13.70 884.88

Σ, where

Φ =
[
.5 .1
.4 .5

]
Θ =

[
.6 .2
0 .3

]
Σ =

[
.09 0
0 .04

]
.

This is similar to the VARMA(2,1) process described in Exercise 11.3 of Lütkepohl (2007). We simulate time
series of length T from these specifications, and investigate the runtime to evaluate the Gaussian likelihood at the
correct parameter values; i.e. we compute the autocovariance sequence corresponding to the above specification
of Φ and Σ, and apply the algorithms of Section 3.2. We report for sample sizes T = 50, 100, 200, 300, 400, 500
the runtimes for evaluation of the Gaussian likelihood, comparing the MCD method of Section 3.2 and the Default
method (direct Cholesky factorization). Both methods were coded in R (version 3.0.2, 32-bit) and implemented
on the same machine (Intel Xeon CPU W3570 3.20 GHz, with 4 GB RAM, 64-bit OS and four cores) for a fair
comparison. Table I contains the runtimes in hundredths of a second (obtained as averages over a hundred runs).
While the runtimes for the MCD method increase roughly linearly in sample size, the Default method’s runtime
increases at worse than a quadratic rate.

4.2. Immigration Data

We consider the fitting of a structural model to New Zealand immigration data, displayed in Figure 1. There are six
daily time series, recorded between September 1, 1997, and July 31, 2012. The first, third, and fifth series pertain
to arrivals, while the second, fourth, and sixth series measure departures. The first and second series count the
category of a temporary visit, while the third and fourth series count visitors (short term), and the last two series
measure permanent and long-term visits.

Letting {xt} represent the logged data, suppose that there are latent components {𝜇t} (a long-term component),
{𝜉t} (a weekly seasonal component), and {𝜄t} (an idiosyncratic white noise), with xt = 𝜇t + 𝜉t + 𝜄t. The three
component processes are each multivariate difference stationary processes, as described in McElroy (2017), which
satisfy

(1 − B)𝜇t ∼ WN(0,Σ𝜇)
(1 + B + B2 + B3 + B4 + B5 + B6) 𝜉t ∼ WN(0,Σ𝜉),

where B is the backshift operator. Here, WN denotes a multivariate white noise process, with the given covariance
matrix; if Σ𝜇 (or Σ𝜉) is reduced rank, then the data process will have common trends (respectively, common weekly
seasonals) and is co-integrated in a generalized sense. In these data, annual seasonality (i.e. stochastic effects with
a period of 365.25 days) and trend are difficult to disentangle, and are together featured in the component 𝜇t.
More nuanced modeling of the weekly seasonality can be accomplished by further decomposing 𝜉t in terms of the
weekly harmonics at frequencies 2𝜋∕7, 4𝜋∕7, and 6𝜋∕7.

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. (2017)
DOI: 10.1111/jtsa.12267



COMPUTATION FOR BLOCK-NESTED COVARIANCE MATRICES 13
6

7
8

9

N
Z
A
rr

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

N
Z
D
ep

7.
5

8.
0

8.
5

9.
0

9.
5

2000 2005 2010

V
is
A
rr

Year

7.
5

8.
0

8.
5

9.
0

9.
5

V
is
D
ep

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

P
LT
A
rr

4.
0

4.
5

5.
0

5.
5

6.
0

2000 2005 2010

P
LT

D
ep

Year
Figure 1. Six-variate (log-transformed) New Zealand immigration data.

One application of interest is to remove the weekly seasonality, so that the long-term features are more clearly
discerned; the methods of Section A.1 of Appendix S1 could be applied to accomplish the extraction. Moreover,
long-range forecasts of the data may be of interest to a government agency such as Statistics New Zealand, in
order to understand and anticipate future immigration and travel patterns.

The model indicates that weekly differencing 1 − B7 should suffice to render the data stationary. With m = 6
and T = 5448, direct inversion of the sample’s covariance matrix is impossible due to memory limitations, and
recursive methods are necessary for forecasting and likelihood evaluation. The average runtime over a hundred
repetitions (same machine as used for simulations) was 1.23 minutes for a single evaluation of the likelihood.
Whereas multistep-ahead forecasting (which is based on computing 𝓁T ) is feasible in such a case, maximum
likelihood estimation can take days or weeks (because hundreds of evaluations are necessary) – this is more of an
issue with the high-dimensional parameter space (111 parameters) than with likelihood evaluation per se.
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