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Abstract	

The	Census	Bureau	is	charged	with	collecting	and	disseminating	data	while	protecting	the	privacy	
of	respondents.	The	Census	Bureau	must	protect	against	several	types	of	unauthorized	disclosure	
of	data,	a	task	that	has	become	more	difficult	in	recent	years.	One	promising	line	of	research	is	the	
creation	of	synthetic	data,	derived	from	a	model	to	mimic	the	original	data	while	protecting	against	
unauthorized	disclosure.	We	created	synthetic	data	for	the	housing	variables	in	the	American	
Community	Survey	(ACS),	using	standard	regression	methods	and	Classification	and	Regression	
Trees	(CART).	Our	metrics	showed	that	the	accuracy	of	the	synthetic	data	was	fairly	high	for	some	
variables	but	lower	for	other	variables.	We	have	not	proved	that	our	methods	satisfy	any	formal	
privacy	criterion,	although	future	research	does	aim	to	have	this	property.	

	

Introduction	

The	Census	Bureau’s	mission	is	to	collect	and	disseminate	data	while	protecting	the	confidentiality	
of	respondents.	However,	recent	advances	in	technology	and	data	availability	have	increased	the	
risk	of	releasing	data,	as	such	data	can	be	more	easily	matched	to	external	sources	than	ever	before.	
Therefore	new	methods	are	necessary	to	protect	the	data.	In	this	paper,	we	will	discuss	one	
promising	method,	the	creation	of	a	synthetic	dataset	that	aims	to	share	the	essential	properties	of	
the	original	data.	

Title	13	

Title	13,	U.S.	Code,	Section	9	mandates	that	the	Census	Bureau	collect	and	release	data	on	United	
States	residents	and	businesses.	However,	Title	13	also	requires	the	Census	Bureau	to	protect	the	
confidentiality	of	individual	responses,	particularly	directing	that	the	Census	Bureau	may	not	
“make	any	publication	whereby	the	data	furnished	by	any	particular	establishment	or	individual	
under	this	title	can	be	identified”	(Title	13,	U.S.	Code,	Section	9).	These	two	necessities	are	at	odds	
with	each	other,	and	releasing	data	of	maximal	utility	while	protecting	confidentiality	is	a	topic	of	
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ongoing	study	for	the	Center	for	Disclosure	Avoidance	Research	and	other	areas	in	the	Census	
Bureau.	

The	Census	Bureau	must	protect	against	three	main	types	of	unauthorized	disclosure:	

1) Identity	disclosure	(reidentification):	manipulation	of	released	data	reveals	the	identity	of	
an	individual	or	business.	

2) Attribute	disclosure:	manipulation	of	the	data	reveals	some	feature	of	a	respondent.	An	
attribute	disclosure	may	occur	in	addition	to	an	identity	disclosure	or	on	its	own.	

3) Inferential	disclosure:	the	data	user	can	determine	an	identity	or	attribute	with	a	high	
probability.	An	inferential	disclosure	occurs	when	the	user’s	posterior	belief	regarding	the	
particular	record	differs	substantially	from	the	user’s	prior	belief.	

The	first	two	types	of	disclosure	may	be	viewed	as	special	cases	of	inferential	disclosure	where	the	
posterior	probability	is	1.	Hence	the	problem	of	avoiding	unauthorized	disclosure	is	equivalent	to	
the	problem	of	avoiding	inferential	disclosure.	These	types	of	disclosure	are	not	merely	theoretical	
concerns,	as	there	have	been	several	high‐profile	instances	of	reidentification	of	records	in	datasets	
from	which	personally	identifiable	information	had	been	redacted	(Narayanan	and	Shmatikov,	
2006;	Sweeney,	2002;	Sweeney,	2013).	

American	Community	Survey	

This	paper	focuses	on	protecting	the	data	from	the	American	Community	Survey	(ACS),	the	Census	
Bureau’s	largest	annual	demographic	survey,	with	responses	from	over	2.3	million	households	and	
160,000	people	in	group	quarters	annually.	

The	ACS	asks	questions	about	a	wide	variety	of	housing	and	demographic	topics,	such	as	features	of	
the	physical	housing	unit,	Internet	access,	citizenship	and	health	insurance.	As	such,	the	Census	
Bureau	advises	respondents	to	set	aside	40	minutes	to	complete	the	ACS	questionnaire.	
Justification	of	such	a	respondent	burden	leans	on	the	wealth	of	ACS‐based	data	products	released	
annually,	the	$675	billion	of	federal	funds	per	year	distributed	directly	and	indirectly	based	on	
those	data,	and	the	use	of	the	data	to	implement	Section	203	of	the	Voting	Rights	Act.	The	data	
products	take	two	main	forms:	tables	and	microdata	(record‐level	responses).	

The	Census	Bureau	has	used	several	methods	to	protect	against	disclosure	in	the	past.	Currently,	
data	swapping	is	the	main	method	of	protecting	ACS	household	data.	For	people	in	group	
quarters—dwellings	such	as	dormitories,	prisons,	military	housing,	etc.—the	Census	Bureau	
currently	uses	partially	synthetic	data.	Both	approaches	are	described	in	Lauger	et	al.	(2014).	

Swapping	and	partial	synthesis	are	performed	to	create	the	final	weighted	file,	which	is	not	public	
but	is	used	to	create	publicly	available	tabulations.	The	Census	Bureau	applies	additional	
protections,	such	as	cell	suppression	and	top‐coding,	to	the	public	data	products.	One	goal	of	the	
present	research	is	to	produce	a	final	internal	file	from	which	new	products	can	be	made	without	
the	application	of	additional	protections.	Such	a	paradigm	ideally	depends	on	disclosure	protection	
techniques	where	the	concept	of	confidentiality	can	be	rigorously	defined	and	guaranteed.	Equally	
important	is	the	degree	to	which	the	public	data	products	made	from	the	protected	file	agree	with	
the	same	products	made	from	the	non‐protected	file.	This	synthetic	internal	file	may	not	be	used	for	
all	purposes;	it	is	possible	that	a	file	with	less	protection	will	remain	available	in	the	Federal	
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Statistical	Research	Data	Centers	(FSRDCs),	relying	in	the	FSRDCs’	rules	on	what	data	may	be	
released	to	ensure	that	the	privacy	of	individual	respondents	remains	protected.	

Disclosure	Philosophy	and	Synthetic	Data	

The	data	protection	environment	has	changed	dramatically	in	recent	years,	with	improved	
knowledge	and	technology	to	attack	datasets.	In	2003,	Dinur	and	Nissim	(2003)	proved	the	
database	reconstruction	theorem,	which	states	that	any	database	can	be	reconstructed	arbitrarily	
accurately	given	a	sufficient	but	finite	number	of	queries.	A	reconstruction	does	not	directly	give	
identities	of	respondents	if	those	identities	were	not	in	the	dataset	being	queried,	but	an	accurate	
database	reconstruction	almost	guarantees	an	attribute	disclosure	and	provides	much	fodder	for	an	
intruder	trying	to	create	an	identity	disclosure.	

When	traditional	disclosure	avoidance	methods	were	developed,	the	risk	of	disclosure	was	much	
lower	for	any	given	data	release	than	it	is	today	because	in	the	past,	there	were	relatively	few	
external	data	available	to	correlate	with	any	given	data	or	statistical	release	and	the	database	
reconstruction	theorem	was	unknown.	The	Census	Bureau	and	other	agencies	curated	most	of	the	
data	that	could	compromise	confidentiality,	and	the	few	commercial	and	private	exceptions	were	
mostly	known	and	appropriately	addressed.	Database	reconstruction	attacks	were	completely	
unknown,	and	historical	products	were	not	designed	to	counter	such	attacks.	

More	recently,	the	amount	of	publicly	available	or	proprietary	data	that	can	create	a	disclosure	risk	
has	greatly	increased.	“Big	data”	has	become	a	crucial	asset	for	businesses,	which	use	the	data	to	
tailor	their	products.	Simultaneously,	research	has	improved	the	algorithms	for	attack,	and	
increased	computing	power	allows	the	data	and	algorithms	to	be	put	into	practice,	increasing	the	
risk	of	a	disclosure	dramatically.	The	new	environment	requires	new	methods	to	protect	the	data.	
This	paper	focuses	on	protecting	the	American	Community	Survey	(ACS)	data.	

Maintaining	data	privacy	is	a	thorny	theoretical	problem,	because	all	data	publication	leads	to	some	
privacy	loss.	This	is	the	fundamental	consequence	of	the	database	reconstruction	theorem	(Dinur	
and	Nissim,	2003).	No	one	line	separates	protecting	privacy	and	not	protecting	privacy.	Privacy	loss	
is	often	incremental	among	several	data	releases,	any	one	of	which	may	have	minimal	risk	(Abowd,	
2017).	Every	piece	of	output	leads	to	some	actual	privacy	loss,	if	only	in	the	form	of	causing	slightly	
more	accurate	inference	about	individual	records	in	the	dataset.	As	more	data	are	released,	the	
total	privacy	loss	can	be	substantial.	

The	Census	Bureau	is	researching	new	methods	to	protect	data,	and	this	paper	discusses	the	use	of	
synthetic	data	(Rubin,	1993;	Raghunathan	et	al.,	2003)	to	protect	housing	units.	Under	this	method,	
the	collected	data	are	used	to	train	a	statistical	model,	which	is	then	used	to	generate	a	new	dataset	
that	captures	many	of	the	properties	of	the	original	data.	Synthetic	data	may	be	full	or	partial	
(Reiter	and	Raghunathan,	2007).	In	partially	synthetic	data,	the	data	generator	starts	with	the	
original	dataset,	blanks	out	some	of	the	records	or	variables	and	replaces	them	with	synthetic	
values.	In	fully	synthetic	data,	we	discard	the	entire	dataset	once	the	model	has	been	created	and	
generate	entirely	new	records	from	the	model.	If	created	well,	fully	synthetic	data	should	make	
reidentification	attacks	by	linking	to	external	files	nonsensical,	since	no	record	in	the	synthetic	
dataset	corresponds	directly	to	a	record	in	the	original	dataset.	Depending	on	the	method	of	data	
synthesis	used,	there	may	be	some	risk	of	reidentification	if	the	model	is	sufficiently	overfit	that	it	
regenerates	records	from	the	original	dataset.	However,	there	are	tradeoffs:	the	only	dataset	that	
preserves	all	properties	of	the	original	dataset	is	the	original	dataset	itself,	so	some	features	of	the	
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original	dataset	will	inevitably	be	lost.	ACS	data	from	group	quarters	are	currently	protected	by	
partial	synthesis.	

Formal	Privacy	

Recently,	the	Census	Bureau	has	been	moving	away	from	more	traditional	statistical	disclosure	
limitation	methods	to	newer	methods	that	satisfy	formal	privacy.	Under	formal	privacy,	the	privacy	
loss	for	a	release	or	collection	of	releases	is	quantified,	and	the	releasing	agency	uses	methods	that	
can	be	mathematically	proven	to	limit	the	cumulative	privacy	loss.	Formal	privacy	is	not	a	method,	
but	rather	an	umbrella	term	for	the	approach	of	creating	a	privacy	loss	measure	and	limiting	the	
privacy	loss.	A	formally	private	approach	effectively	creates	a	privacy	budget	and	says	that	the	
cumulative	privacy	loss	from	all	releases	cannot	exceed	that	budget.	If	much	of	the	privacy	budget	
is	spent	on	creating	a	synthetic	dataset,	then	any	output	derived	from	that	dataset	can	be	released	
without	spending	more	of	the	budget.	Our	expectation	is	that	when	the	project	is	complete,	all	
public	data	products	will	likely	be	based	on	the	synthetic	file,	but	a	less	modified	file	may	be	
available	to	approved	researchers	at	the	FSRDCs.	Releasing	data	from	the	FSRDCs	will	thus	result	in	
spending	more	of	the	budget.	

The	choice	of	a	privacy	budget	is	a	policy	decision,	reflecting	a	desired	tradeoff	between	privacy	
and	data	usefulness.	Statisticians	can	determine	what	level	of	data	usefulness	can	be	obtained	for	
any	amount	of	privacy	loss,	which	can	inform	the	decision.	

The	type	of	formal	privacy	that	has	been	the	subject	of	the	most	research	is	differential	privacy.	The	
differential	privacy	criterion	says	that	if	two	datasets	differ	by	only	the	inclusion	or	exclusion	of	a	
single	record,	the	probability	of	observing	a	given	set	of	output	must	differ	by	no	more	than	a	fixed	
factor	depending	on	which	dataset	is	used.	Mathematically,	a	data	release	algorithm	A	has	ε‐
differential	privacy	if,	for	any	datasets	D	and	D’	differing	only	by	the	inclusion	of	one	record,	and	for	
any	set	S	of	possible	outputs	of	A,	

ܲሺܣሺܦሻ ∈ ܵሻ ൑ ݁ఌܲሺܣሺܦᇱሻ ∈ ܵሻ.	

A	method	satisfying	differential	privacy	guarantees	that	no	feature	(including	an	identity)	of	an	
individual	record	in	the	dataset	can	be	learned	from	the	output	of	an	algorithm	with	much	higher	
probability	than	the	same	feature	could	be	learned	from	the	output	of	that	same	algorithm	with	the	
record	omitted,	where	the	choice	of	ε	determines	what	“much	higher”	means.	

Challenges	Specific	to	the	ACS	

Making	ACS	data	formally	private	presents	a	challenge	due	to	its	high	dimensionality,	sample	size	
limitations	and	complex	survey	weights.	The	noise	in	formally	private	methods	can	swamp	the	
confidential	count	when	sample	sizes	are	small,	as	they	are	in	some	of	the	lower‐level	geographies	
for	which	the	ACS	currently	releases	data.	This	is	because	individuals	have	proportionately	much	
higher	contribution	when	population	counts	are	small.	

Another	challenge	for	the	ACS,	as	for	the	Census	of	Population	and	Housing,	is	that	not	every	
combination	of	variable	values	could	plausibly	happen	in	the	real	world,	and	the	data	should	reflect	
that.	For	example,	a	parent	cannot	be	three	years	old.	Combinations	of	variables	that	are	not	
allowed	to	happen	are	called	structural	zeros.	Currently,	the	ACS	data	are	edited	before	release	to	
ensure	that	no	inconsistencies	of	this	sort	appear.	Such	inconsistencies	must	also	not	appear	in	any	
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ACS	synthetic	data	created	in	the	future,	but	forcing	the	model	not	to	create	them	is	an	additional	
challenge.	

ACS	data	for	housing	units	are	collected	at	the	level	of	the	household.	Some	variables	(rent	paid,	
Internet	access,	presence	of	plumbing	facilities,	etc.)	refer	specifically	to	features	of	the	household,	
while	others	(sex,	wage	income,	disability	status)	refer	to	the	individual	people	within	the	
household.	In	particular,	the	Relationship	variable	records	how	each	person	is	related	to	the	head	of	
household,	and	the	collection	of	values	of	this	variable	for	all	members	of	the	household	creates	a	
household	structure.	The	variable	creates	dependencies	among	the	members	of	the	household.	
Viewing	the	person‐level	data	as	a	matrix	of	values	each	row	of	which	may	be	generated	separately	
does	not	consider	the	full	complexity	of	the	problem	because	of	the	relations	between	rows	in	the	
matrix.	For	example,	parents	and	their	biological	children	are	likely	to	be	of	the	same	race	and	
ethnicity.	

The	ACS	uses	survey	weights,	and	to	our	knowledge,	there	is	not	yet	a	formally	private	method	that	
accounts	for	such	weights,	nor	has	there	been	significant	work	on	model‐based	non‐formally	
private	synthetic	data	with	weights.	

This	paper	examines	synthesis	of	household	data	as	a	first	step	toward	creating	a	fully	synthetic	
dataset.	Households	are	somewhat	simpler	to	synthesize	than	the	individuals	within	them,	because	
there	are	no	intra‐household	relationships	to	model.	Later	research	will	explore	synthesizing	
people	within	households,	respecting	those	relationships.	Households	will	then	be	assigned	to	
geographies	in	a	way	that	is	faithful	to	the	original	data.	

Data	and	Products	

The	Census	Bureau	currently	produces	several	products	based	on	the	ACS,	most	prominently	the	
ACS	official	tables	and	the	ACS	Public	Use	Microdata	Samples	(PUMS).	

The	ACS	publishes	tables	giving	a	wide	range	of	summary	statistics,	with	output	mostly	consisting	
of	counts	and	their	margins	of	error.	The	tables	are	based	on	one	year	of	data	or	five	years	of	data.	
Tables	from	the	one‐year	data	cover	geographies	with	population	as	small	as	65,000,	with	smaller	
populations	allowed	for	a	smaller	set	of	tables.	Tables	from	the	five‐year	data	cover	all	geographies	
down	to	the	level	of	block	groups,	which	generally	have	population	between	600	and	3,000.	The	
tables	give	less	topical	detail	than	the	PUMS	but	more	geographic	detail.	The	ACS	is	the	only	survey	
with	a	sample	size	and	design	that	can	support	estimates	down	to	this	geographic	level	of	precision,	
although	for	some	very	small	geographies,	the	margins	of	error	on	estimates	can	be	quite	large.	The	
availability	of	data	down	to	small	geographies	makes	protecting	the	data	more	difficult.	

The	PUMS	is	a	sample	of	ACS	data	that	anyone	can	download	and	use.	It	includes	the	individual	line‐
by‐line	records	for	a	sample	consisting	of	roughly	2/3	of	the	respondents	to	the	ACS.	PUMS	files	
give	geographic	detail	at	the	level	of	Public	Use	Microdata	Areas	(PUMAs),	which	have	population	at	
least	100,000.	

Our	approach	in	this	paper	is	to	protect	the	microdata	underlying	our	products	and	then	use	the	
protected	microdata	to	produce	all	external	data	products.	This	is	mostly	how	the	data	are	
currently	protected,	although	there	are	a	few	additional	modifications	made	to	the	PUMS.		
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Synthetic	Data	Without	Formal	Privacy	

We	are	researching	methods	for	generating	formally	private	synthetic	microdata.	As	an	initial	step	
on	that	path,	we	are	experimenting	with	methods	for	generating	high	quality,	model‐based	
synthetic	data.	These	do	not	necessarily	satisfy	formal	privacy	as	currently	implemented,	at	least	
not	that	we	are	able	to	quantify.	

Our	goal	is	to	create	fully	synthetic	data;	that	is,	data	where	every	variable	for	every	record	is	
drawn	from	a	model.	Ideally,	the	synthetic	number	of	housing	units	and	persons	should	not	be	
required	to	match	the	number	in	the	collected	sample.	We	begin	with	an	empty	data	set	and	fill	in	
variables	via	draws	from	our	synthesis	models.	We	synthesize	variables	in	order	of	their	
appearance	on	the	housing	unit	section	of	the	ACS	questionnaire.	

Synthesis	for	household	variables	is	performed	independently	for	each	row	in	the	dataset.	Synthetic	
values	for	the	first	variable,	building	type,	come	from	posterior	predictive	draws	from	a	
multinomial	distribution	with	a	Dirichlet	prior.	Synthetic	values	for	subsequent	variables	come	
from	standard	regressions	and	Classification	and	Regression	Tree	(CART)	models.	Our	goal	is	to	
build	up	the	joint	likelihood	for	the	set	of	ACS	housing‐unit	variables	as	a	sequence	of	conditional	
likelihoods	(Reiter,	2005):	

௒݂ሺݕ|Θሻ ൌ ௒݂భሺݕଵ|Θଵሻ ௒݂ଶ|௒ଵሺݕଶ|ݕଵ, Θଵ, Θଶሻ…	

Synthetic	values	are	nominally	posterior	predictive	draws	based	on	this	conditional	likelihood	with	
suitable	prior	distributions;	however,	CART	does	not	fit	directly	into	the	standard	Bayesian	
framework.	

The	ACS	form	includes	questions	that	are	sometimes	skipped	based	on	the	results	of	previous	
questions.	For	example,	the	question	“How	many	acres	is	this	house	or	mobile	home	on?”	is	only	
answered	for	houses	or	mobile	homes,	but	not	for	apartment	buildings,	boats,	recreational	vehicles	
or	vans.	In	such	cases,	we	determine	whether	each	question	would	be	skipped	based	on	the	
previously	synthesized	variables	and	do	not	synthesize	it	if	it	would	be	skipped.	

CART	

To	synthesize	categorical	variables,	we	use	a	Classification	and	Regression	Tree	(CART)	approach.	
Classification	and	Regression	Trees	were	invented	by	Brieman	et	al.	(1984)	as	a	non‐parametric	
approach	to	predicting	values	of	numerical	or	categorical	variables.	A	tree	is	a	recursive	
partitioning	of	the	set	of	records	based	on	the	values	of	the	predictor	variables,	with	the	partitions	
made	so	as	to	maximize	the	homogeneity	of	the	response	variables	within	the	partitioned	group.	
Each	partition	can	be	thought	of	as	a	question,	with	those	records	with	the	answer	“yes”	going	into	
a	bin	in	the	left	and	those	record	with	the	answer	“no”	going	into	a	bin	on	the	right.	The	
homogeneity	resulting	from	a	split	is	measured	by	the	sum	of	the	deviances	of	the	two	leaves	if	the	
response	variable	is	categorical,	or	by	the	sum	of	the	squared	differences	from	the	leaf	mean	if	the	
response	variable	is	continuous.	These	bins	are	then	further	split	until	some	stopping	criterion	is	
reached.	To	predict	the	response	value	for	a	given	record,	we	drop	it	down	the	tree	until	it	reaches	a	
terminal	node,	or	leaf,	a	node	that	is	not	split.	

For	example,	suppose	we	wish	to	predict	how	many	rooms	a	housing	unit	has	that	are	not	
bedrooms,	based	on	knowing	the	type	of	housing	unit,	year	built,	year	moved	in	and	number	of	
bedrooms.	(This	paragraph	is	based	on	the	2015	PUMS	data	from	Oregon,	so	as	not	to	use	restricted	
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data	when	the	purpose	is	to	illustrate.)	According	to	the	deviance	criterion,	the	best	split	puts	
single‐family	detached	houses	in	one	bin	and	all	other	housing	units	in	the	other.	Among	single‐
family	detached	houses,	the	optimal	split	puts	houses	with	three	or	fewer	bedrooms	into	one	bin	
and	houses	with	four	or	more	bedrooms	into	another	bin,	and	both	of	these	bins	are	leaves.	Among	
all	other	housing	units,	the	optimal	split	is	between	units	with	one	or	fewer	bedrooms	and	multi‐
bedroom	units.	Units	with	one	or	fewer	bedrooms	are	a	leaf,	while	multi‐bedroom	units	are	split	
one	more	time,	separating	units	with	fewer	than	six	bedrooms	from	units	with	six	or	more	
bedrooms,	and	both	of	these	are	leaves.	This	case	is	shown	in	Figure	1	and	illustrates	that	a	tree	
need	not	have	uniform	depth.	

Figure	1:	A	Classification	and	Regression	Tree	to	predict	the	number	of	rooms	in	a	housing	unit	
that	are	not	bedrooms.	

	

Following	Reiter	(2005),	we	build	a	tree	to	predict	the	variable	being	synthesized	from	the	
preceding	variables,	using	the	original	data	as	training	data.	We	performed	the	tree‐based	synthesis	
in	this	paper	using	the	tree	package	in	R	(R	Core	Team,	2013;	Ripley,	2014),	but	we	may	use	other	
languages	or	packages	for	future	development.	We	build	the	tree	rather	deep;	nodes	are	divided	as	
long	as	there	are	at	least	five	records	in	each	child	node.	To	allow	some	heterogeneity	within	leaves,	
we	require	that	no	node	be	split	if	its	deviance	is	less	than	10‐9	times	the	deviance	of	the	root	node	
containing	all	of	the	records,	but	this	is	such	a	small	deviance	that	we	expect	this	rule	will	rarely	be	
invoked.	Sometimes	the	algorithm	grows	a	tree	deeper	than	the	tree	package’s	depth	limit	of	31	
levels;	when	this	happens,	we	increase	the	minimum	allowable	deviance	until	the	package	works.	
Once	the	tree	is	grown,	each	existing	synthetic	record	is	dropped	down	the	tree,	and	the	program	
notes	which	leaf	it	falls	into.	One	of	the	original	records	in	that	leaf	is	then	selected	at	random,	and	
the	synthetic	record	assumes	the	variable	value	associated	with	that	original	record.	

Regression	

We	can	consider	many	variables	in	the	ACS	as	latently	continuous	or	pseudo‐continuous.	For	
instance,	one	ACS	question	asks	for	the	respondent’s	average	commute	time	to	work	in	the	previous	
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week.	The	actual	time	in	minutes	is	nominally	a	real	number,	but	we	ask	the	respondent	to	answer	
this	question	using	an	integer	with	up	to	three	digits.	While	CART	can	certainly	produce	synthetic	
data	for	such	variables,	the	privacy	aspects	of	such	data	can	be	questionable	(Freiman	et	al.,	2017).	
Instead,	we	use	regression	to	generate	synthetic	data	for	these	variables.	

For	variable	 ௜ܻ ,	we	fit	the	following	regression	model:	

௜ܷሺ ௜ܻሻ|ࢄ, ,ߚ ,ߚࢄሺܰ	~	ߪ 	,ଶሻߪ

where	 ௜ܷ	is	an	invertible	transformation	and	ࢄ	is	the	matrix	of	predictor	variables.	We	use	
conjugate	priors	for	the	model	parameters	ߚ	and	ߪ	as	given	in	Gelman	et	al.	(2014).	Synthesized		
values	are	drawn	from	the	posterior	predictive	distribution	and	back‐transformed.	Since	we	are	
using	conjugate	priors,	the	posterior	predictive	distribution	has	a	closed	form	and	is	a	multivariate‐
t	distribution.	

Algorithmically,	we	follow	the	conditional	method	of	drawing	posterior	predictive	values	given	in	
Gelman	et	al.	(2014),	first	drawing	posterior	values	of	the	parameters	and	then	drawing	predictive	
values	conditional	on	these.	This	kind	of	“proper”	synthesis	is	typically	associated	with	the	method	
of	multiple	imputation	(Rubin,	2004);	however,	we	are	currently	only	assessing	quality	based	on	
one	synthetic	draw.	

Ideally,	the	predictor	matrix	ࢄ	would	include	all	previously	synthesized	variables	with	all	available	
granularity.	This	is	not	always	possible,	as	issues	such	as	non‐invertible	or	ill‐conditioned	predictor	
matrices	can	easily	and	unpredictably	occur.	Instead,	ࢄ	includes	a	subset	of	previously	synthesized	
variables,	possibly	at	lower	detail	levels,	possibly	transformed.	We	do	not	currently	include	
interaction	terms.	In	the	case	where	we	cannot	find	any	coarsening	of	a	given	predictor	that	will	
allow	for	a	fit,	we	drop	that	variable	from	the	current	model.	This	results	in	an	assumption	of	
conditional	independence	of	the	dependent	variable	on	the	dropped	variable	given	the	remaining	
predictors.	

As	stated	above,	we	fit	each	dependent	variable	within	the	data	subset	defined	by	the	skip	logic	for	
the	variable;	we	call	this	subset	the	variable’s	universe.	Working	within	universes	guarantees	
complete	data	for	the	dependent	variable,	but	the	predictor	variables	might	not	all	share	the	same	
universe.	In	this	case,	we	have	options	for	including	conflicting	variables,	depending	on	the	
predictor	type.	If	the	predictor	is	categorical,	we	can	recode	its	being	out‐of‐universe	values	as	a	
new	category.	If	the	predictor	is	continuous,	we	can	assume	a	reasonable	value,	often	zero,	if	such	a	
value	makes	sense	within	the	model.	Another	consideration	is	the	set	of	ACS	variables	defined	as	a	
mixed	categorical/continuous	construct.	These	variables	require	special	handling	during	synthesis	
and	when	used	as	predictors	in	the	regression	models.	

The	regression	model	makes	three	major	assumptions:	linearity,	normality,	and	homoskedasticity.	
Transformations	can	help	ensure	the	first	two	of	these,	and	we	call	upon	them	often.	Given	that	
several	of	our	variables	have	a	natural	limit	at	0	and	show	right	skew,	the	logarithm	is	a	natural	
choice;	however,	the	synthetic	values	after	the	exponential	back‐transformation	can	be	exceedingly	
large	if	the	residuals	are	platykurtic	or	heteroskedastic.	To	reduce	this	effect	we	use	the	cube‐root	
instead,	which	has	the	added	benefit	of	allowing	negative	values	in	the	variable.	
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Results	and	Future	Work	

Metrics	

To	be	valuable,	any	synthetic	data	should	preserve	the	accuracy	of	the	original	data	and	should	
protect	against	disclosure.	So	far,	we	have	only	measured	the	former,	but	our	full	analysis	of	the	
synthetic	data	will	consider	both.	

Whenever	data	are	modified	to	protect	against	disclosure,	we	have	concerns	about	loss	of	accuracy.	
Our	primary	measure	of	loss	of	data	accuracy	is	how	much	table	counts	change	from	the	original	
output	to	the	modified	output.	Our	metric	assumes	that	we	start	with	the	original	table,	consider	
the	proportion	of	records	in	each	table	cell,	and	move	some	of	the	probability	mass	from	one	cell	to	
another	until	we	produce	the	modified	table,	also	considered	as	a	set	of	proportions.	We	measure	
the	proportion	of	the	total	probability	mass	that	has	to	be	moved	to	get	to	this	modified	table.	If	the	
numbers	in	the	original	table	are	o1,	o2,	…,	ok,	and	the	numbers	in	the	modified	table	are	m1,	m2,	…,	

mk,	then	this	metric	is	
ଵ

ଶ
∑ ฬ ௠೔

∑ ௠ೕ
ೖ
ೕసభ

െ
௢೔

∑ ௢ೕ
ೖ
ೕసభ

ฬ௞
௜ୀଵ ,	which	is	proportional	to	the	L1	distance	between	the	

two	tables	in	the	event	that	the	original	and	synthetic	sample	sizes	are	the	same.	This	metric	is	
similar	to	the	earth	mover’s	distance,	but	does	not	impose	a	distance	metric	on	the	bins	of	the	
histogram.	

Another	measure	of	accuracy	is	whether	one	can	discriminate	between	the	original	and	synthetic	
data	sets	based	upon	some	subset	of	synthetic	variables.	Propensity	score	measures	can	help	us	
answer	this	question.	To	calculate	record‐level	propensity	scores,	we	stack	the	original	and	
synthetic	data	sets	and	create	a	new	variable	to	denote	whether	a	row	was	original	or	synthetic.	We	
then	perform	a	logistic	regression	on	this	dataset	indicator,	using	the	subsets	of	the	synthetic	
variables	as	our	predictors.	The	fitted	probabilities	per	record	are	then	the	estimated	propensity	
scores.	There	are	many	ways	to	summarize	these	scores	to	assess	dataset	discrimination;	we	will	
use	the	following	simple	measure	(Woo	et	al.,	2009):	

ܷ௣ ൌ
1
ܰ
෍ ሾ̂݌௜ െ ܿሿଶ

ே

௜ୀଵ
	

where	ܰ	is	the	number	of	records	in	the	stacked	data,	̂݌௜	are	the	estimated	propensity	scores,	and	c	
is	the	proportion	of	rows	in	the	synthetic	data.	In	the	case	where	a	synthesis	model	resulted	in	
estimated	propensity	scores	of	0	for	all	original	data	and	1	for	all	synthetic	data,	then	ܷ௣ ൌ

భ
ర
.	

Results	

The	housing	unit	variables	allow	us	to	recreate	24	of	the	approximately	150	tables	of	the	publicly‐
released	ACS	housing	unit	tables	for	the	state	of	Oregon	using	the	2015	ACS	internal	data.	The	
sample	size	is	approximately	25,000	households.	We	calculate	the	table	distance	between	the	
original	and	the	synthetic	tables,	and	then	compare	this	distance	to	a	set	of	distances	calculated	
between	the	original	tables	and	tables	made	from	bootstrap	samples	of	the	original	data.	Table	1	
shows	the	estimated	quantile	of	the	synthetic	table	distance	within	the	bootstrap	distance	null	
distribution;	subtracting	this	quantile	from	1	gives	something	analogous	to	a	p‐value.	Indented	
variable	descriptions	in	Table	1	indicate	a	cross‐tabulation.	
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Table	1:	Accuracy	metrics	for	various	tables	based	on	ACS	original	and	synthetic	data.	

 

	

	

Direct	comparisons	of	the	distances	across	different	table	shells	are	not	meaningful,	as	tables	with	
more	granularity	will	tend	to	have	greater	total	distances.	To	evaluate	data	quality,	we	create	a	
bootstrap	distribution	of	how	much	the	synthetic	values	would	differ	from	the	original	values	
according	to	our	metric	if	the	synthetic	values	were	drawn	from	the	same	probability	distribution	
as	the	original	values.	If	the	original	data	and	the	synthetic	data	were	generated	using	identical	
mechanisms,	we	would	expect	the	bootstrap	quantile	of	the	synthetic	data	to	follow	a	uniform	
distribution	on	the	interval	[0,1].	We	thus	look	for	quantiles	at	or	near	the	extremes	of	this	interval.	
In	most	cases,	this	means	at	or	near	1,	meaning	the	synthetic	data	create	a	table	deviating	more	
from	the	original	data	than	would	be	likely	given	multinomial	random	chance.	In	essence	we	are	
asking	how	believably	the	synthetic	data	could	pose	as	a	bootstrap	of	the	original	data.		

We	see	a	tendency	for	the	sub‐tables	to	have	larger	quantiles,	which	would	indicate	issues	in	
multivariate	relationships.	We	also	note	that	several	univariate	tables	have	quantile	values	at	or	
very	near	1,	indicating	the	synthetic	table	distance	is	higher	than	the	bootstrap	distance	value,	for	
all	or	nearly	all	of	our	1,000	bootstrap	simulations.	These	include	variables	synthesized	via	CART	
(number	of	bedrooms)	and	regression	(housing‐unit	value).	In	some	cases,	the	univariate	tables	
have	a	value	of	the	metric	that	is	dramatically	higher	than	even	the	highest	of	the	1,000	bootstrap	
simulations.	

Synthetic Table Synthetic Table

Distance Quantile

Monthly costs 2.2E‐01 1.00

Units in Structure 9.3E‐03 0.99

Heating Fuel 4.4E‐03 0.54

Housing‐unit value 9.6E‐02 1.00

Housing‐unit value (detail) 1.0E‐01 1.00

Number of Rooms 1.1E‐02 0.98

Number of Bedrooms 1.1E‐02 1.00

Has a mortgage 2.3E‐04 0.05

Second loan 3.7E‐02 1.00

Monthly costs 2.3E‐01 1.00

Owned/Rented 1.2E‐03 0.31

Household Size 7.3E‐02 1.00

Number of Rooms 1.3E‐02 0.96

Number of Bedrooms 1.5E‐02 1.00

Number of Vehicles 5.6E‐03 0.22

Number of Vehicles (detail) 2.9E‐03 0.50

Heating Fuel 6.0E‐03 0.40

Rent (yes/no) 4.3E‐03 0.93

Rent amount 1.3E‐01 1.00

Table
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We	then	calculate	propensity	scores.	We	must	choose	predictors	for	the	logistic	regression.	Given	
the	distance‐metric	results	for	housing‐unit	value,	we	use	two	predictor	sets:	VAL	alone,	and	the	
predictor	set	used	to	simulate	VAL	from	the	modeling	stage.	For	VAL	alone,	we	obtain	the	score	
ܷ௣ೇಲಽ ൌ 5 ൈ 10ି଺	.	For	the	larger	predictor	set	without	VAL,	we	obtain	ܷ௣೚೟೓೐ೝ ൌ 6 ൈ 10ିସ.		Neither	
of	these	scores	points	to	easy	distinguishability	of	the	original	and	synthetic	data.	This	shows	an	
important	aspect	of	simulation:	congeniality	of	the	synthetic	data	to	a	given	data	analysis	depends	
strongly	on	the	simulation	model.	We	have	reason	to	believe	that	the	particular	tables	related	to	
VAL	might	differ	significantly	between	the	original	and	synthetic	data,	but	this	broad	propensity	
score‐based	measure	does	not	indicate	issues	with	VAL	alone.	A	more	detailed	analysis	of	the	
propensity	scores	or	a	different	logistic	regression	model	(for	instance,	using	indicators	for	table	
cells)	might	help	us	locate	shortcomings	in	our	models.	

Future	Work	

Building	up	a	detailed	picture	of	where	in	the	simulation	process	problems	arise	is	difficult	from	the	
current	results,	as	many	of	the	synthetic	variables	are	not	represented	among	the	dimensions	of	the	
tables	we	could	generate,	since	they	reference	person‐level	characteristics	which	we	have	not	
synthesized.	A	next	step	would	be	to	create	additional	tables	not	found	in	the	public	data	releases	to	
might	help	root	out	problematic	model	fits.	

We	can	also	avail	ourselves	of	various	model‐checking	procedures	for	CART	and	regression	to	tease	
out	potential	improvements.	In	particular,	cursory	overview	of	several	regression	fits	show	
potential	issues	with	regression	assumptions.	Such	issues	can	be	dealt	with	in	several	ways,	
including	transformations,	predictor	recoding,	or	by	first	imputing	broad	categories	via	CART.	
Issues	with	multivariate	outcomes,	such	as	those	noted	for	higher‐dimensional	tables	in	the	results,	
might	be	ameliorated	by	including	interactions.	

The	CART	function	we	use	limits	trees	to	31	levels	because	of	limitations	caused	by	the	scheme	
used	to	label	nodes.	Sidestepping	this	restriction	might	improve	multivariate	outcomes,	and	other	
programming	languages	or	R	packages	may	allow	us	to	grow	deeper	trees.	Additionally,	we	aim	to	
understand	why	certain	variables	required	an	increase	in	the	minimal	deviance	required	for	
making	a	split	in	the	tree,	as	results	show	that	outcomes	for	these	variables	might	be	negatively	
affected.	

Two	questions	of	broad	import	loom	over	the	housing‐unit	synthesis.	The	first	is	how	to	produce	
synthetic	weights	or	how	to	avoid	needing	them.	Weights	could	be	avoided	by	producing	an	entire	
synthetic	population	based	on	the	collected	ACS	data,	rather	than	just	a	sample,	although	this	
approach	presents	its	own	challenges.	The	second	is	how	to	assign	housing	units	to	geographies,	
which	is	necessary	to	maintain	the	ACS’s	value	as	the	only	ongoing	Census	Bureau	survey	whose	
design	allows	estimates	at	low	levels	of	geography,	a	feature	that	can	be	vital	for	research	and	
policy‐making.	Answering	these	questions	at	the	housing‐unit	level	might	inform	answers	to	the	
same	questions	at	the	person	level,	and	vice	versa.	We	must	also	consider	how	to	assign	persons	to	
housing	units	once	the	former	are	synthesized,	which	is	non‐trivial	given	the	gamut	of	within‐
household	relationships	found	in	the	ACS.	
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