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Abstract: This paper presents a flexible framework for signal extraction of time
series measured as stock or flow at diverse sampling frequencies. Our approach
allows for a coherent treatment of series across diverse sampling rules, a deeper
understanding of the main properties of signal estimators and the role of
measurement, and a straightforward method for signal estimation and interpo-
lation for discrete observations. We set out the essential theoretical foundations,
including a proof of the continuous-time Wiener-Kolmogorov formula general-
ized to nonstationary signal or noise. Based on these results, we derive a new
class of low-pass filters that provide the basis for trend estimation of stock and
flow time series. Further, we introduce a simple and accurate method for low-
frequency signal estimation and interpolation in discrete samples, and examine
its properties for simulated series. Illustrations are given on economic data.

Keywords: continuous time models, Hodrick-Prescott, low-pass filters, trends,
turning points

1 Introduction

Interest among analysts and policy makers often centers around measuring
various kinds of signals that represent the chief dynamics of the data. As a
leading example, economists and statisticians often seek to estimate the sto-
chastic trend that dominates the long-run evolution of economic time series.
Trend and cycle estimation, as well as seasonal adjustment, are applications of
signal extraction methodology that have been actively pursued by myriad prac-
titioners. For additional background, see Bell and Hillmer (1984), Harvey (1985),
Watson (1986), Clark (1987), Hodrick and Prescott (1997), Harvey and Trimbur
(2003), and Alexandrov et al. (2012), among others. Most macroeconomic time
series represent stock or flow measurement of some underlying process, which
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may often be viewed as occurring in continuous-time (CT). For instance, trans-
actions and production and distribution activities occur more or less continu-
ously in the national economy.

A key challenge in the design of signal estimators is explicitly determining
their dependence upon sampling frequency (e. g., whether monthly, quarterly,
or annual, etc.) and sampling type (stock or flow). Harvey and Stock (1993)
[henceforth HS] show the discrete models for structural time series models set up
in CT. Ravn and Uhlig (2002) treat the case of the Hodrick-Prescott (HP) filter for
stock and flow sampling of the observations. These and other papers address the
topic for particular models or filters, and for specific filter types – that is,
parametric or nonparametric. Also see McElroy and Trimbur (2011) and the
references therein.

This paper addresses the challenge of estimator design in a new and general
framework. For econometric analysis to be useful and informative across differ-
ent time series, signal estimators should be designed so that the corresponding
features of different series – measured with differing sampling frequency and/or
sampling type – are still comparable in a meaningful way. Here, there are four
essential contributions: (i) we provide new signal extraction theory and metho-
dology covering the general case of nonstationary data; (ii) we introduce a
discretization method that is adapted to sampling frequency and sampling
type; (iii) we discuss the discretization of non-parametric filters; (iv) we provide
a fast approach to the computation of interpolants.

Our results give the foundation for the strategy, of deriving a single filter
expressed over continuous leads and lags, and then proceeding to the discrete
filters consistent with the continuous-lag filter and with the sampling conven-
tions. This approach was used in McElroy and Trimbur (2011) [henceforth MT]; it
differs fundamentally from the standard approach, as in HS, of first discretizing
the CT model according to sampling frequency/type, and then constructing the
corresponding discrete-time signal estimators.

Figure 1 illustrates two pathways from the underlying continuous-time pro-
cess to the discrete-lag filter used in practice on the available data (discrete and of
finite length). A continuous-lag filter is derived from a CT process via the opera-
tion Ω, which in the case of a stationary process is described in Whittle (1983).

Continuous-Time Process
Σ

Discrete-Time Process

Continuous-Lag Filter

Ω

Δ
Discrete-Lag Filter

Ψ Figure 1: Diagram illustrating two
pathways from a continuous-time pro-
cess to a discrete-lag filter.
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A discrete-lag filter is derived from a discrete-time process via Ψ, which is
essentially given in the theory of Bell (1984). The discretization of a process is
represented by �, described in HS and also in Brockwell (1995); the discretization
of a filter is represented by Δ, as described in MT. The pathway Δ � Ω is adopted
in this paper, whereas HS follows the Ψ � � strategy. In the case of nonparametric
filtering, Ω is replaced by a pre-determined continuous-lag filter. Note that both �

and Ω rely upon a knowledge of the original CT process’ dynamics (say, described
through its spectral density).

Discretization of a process ð�Þ inexorably involves some loss of accuracy
unless that original process is band-limited. For instance, if a process involves
no high frequency content past some threshold η, then down-sampling the
process – a method of discretization – at an interval δ does not dispense with
any frequency content so long as π=δ ≤ η. The same result holds for discretizing
filters ðΔÞ : when the original filter corresponding to Ω only passes through
frequency components on ½0, η�, then the derivation of filters for discrete
sampling at spacing δ, will give an estimate of underlying signal as accurate
as the original filter when π=δ ≤ η. With economic data, typically the analyst or
practitioner has little or no control over δ, this sampling interval being dictated
by the financial or logistical burdens of survey design, weighed against the
demands for timely release of information. Then we either make the unwar-
ranted assumption that η ≥π=δ – questionable for processes like a production
aggregate that can evolve at high frequencies – or accept that the discretization
can introduce a degree of aliasing due to the unbounded bandwidth for the
underlying variable’s evolution. This paper adopts the latter perspective and
explores methods of discretization that minimize error in this general
framework.

Assuming the model for the observations is given, if the discretization
follows the exact method in MT, then the two paths for estimating signals in
discrete-time data yield identical results for any given model or filter. In general,
the relative attractiveness of the methods depends on three points: (i) mathe-
matical elegance, (ii) ease of application and computation, and (iii) versatility of
the method – that is, what uses and perspectives on dynamics does it conve-
niently provide? Starting with uncorrelatedness in CT, compact expressions for
continuous-lag filters arise. However, the model discretization in �, the first
step of HS, must be deduced for each CT process, sampling type, and signal
construct (e. g. point or time-averaged); this leads to signal-noise correlations
and other complications in the discrete model that vary with sampling fre-
quency. Further, the significant complexity in the form of the optimal filter in
HS’s method obscures the main aspects of the signal estimation, and a coherent
contrast of filters for series sampled in different ways is impossible. In contrast,
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the CL filter at the core of MT’s strategy reflect the key signal-noise dynamics,
separate from the sampling-induced dynamics. They allow for direct and trans-
parent comparisons and have elegant gain and weight functions.

Regarding point (ii), below we present approximate discretizations of filters
that significantly facilitate the implementation relative to MT. In separating out
the impact of sampling construction, our approach (here and in MT) is concep-
tually more straightforward and conducive to analysis and comparison of signal
estimators than the HS approach. Moreover, when signal interpolation is needed
our approach preserves the basic properties of the estimator, which in a model-
ling framework incorporates signal-noise dynamics. In contrast, � smothers the
dynamics of the process between observation times (via the spectral-folding
phenomenon described in Koopmans 1974), so that Ψ cannot produce interpo-
lants. In applying Δ, our approach allows for arbitrary time location in addition
to a flexible sampling mechanism.

In order to make the approach of Δ � Ω practical, one must be able to attain CT
signal estimators ðΩÞ, and then be able to conveniently discretize these estimators
ðΔÞ. Hence, following definitions and preliminary material in Section 2, our paper
sets out the rigorous derivation of CT signal extraction formulas for the general
case with stochastic trends or other kinds of nonstationarity in Section 3, with the
first proof of this new generalization to nonstationary CT presented in the
Appendix. Note that McElroy (2013), in contrast, gives a rigorous treatment of CT
signal extrapolation and forecasting, as opposed to CT signal extraction.

Subsequent to Section 4, which describes some key trend estimators,
Section 5 presents a new method of discretization that is simple and fast to
compute, with the greatest accuracy achieved for small sampling intervals.
Regarding the discretization of filters ðΔÞ, the exact method of MT leads to
mathematically sophisticated expressions that depend on full knowledge of
the data process’ spectral density; analytical solutions are given for basic
trend plus noise models, yet the necessary calculations make the approach
impractical for general problems. The approximate discretization method ðΔÞ
of this paper involves greatly simplified mathematical expressions and only
requires knowledge of the CT filter (without depending on the process’ spec-
trum). This method is far easier to implement than MT and substantially broad-
ens the scope of applicability of the approach. With the new discretization
method, we can handle nonparametric filtering and can interpolate signal
estimates in a flexible fashion, which the HS approach cannot do (except in
ad hoc extensions, such as through splines).

The main objective of the paper is to enable signal estimation across diverse
sampling schemes, with respect to a single series of interest, such as CPI
(Consumer Price Index) inflation, or with respect to several series, such that
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the resulting signals are coherent, in the sense that similar properties of the
various time series are extracted for valid comparisons. In addition, the ancillary
results may be of broader interest, namely the derivation of CT low-pass filters
(Section 4) that generalize the HP (Hodrick and Prescott 1997) filters to CT. This
allows us to rigorously examine the assumptions in Ravn and Uhlig (2002), and
to quickly produce signal estimates at all time points, including interpolated
estimates, that is, between sampling times.

Section 6 compares the new discretization method – called “primary alias
filter discretization” – with the optimal techniques of MT, demonstrating
through numerical studies the favorable properties of the new approach. The
coherency of these signal discretization methods are illustrated on some housing
and inflation series in Section 7. Section 8 concludes. The proofs of the main
theorems are given in the Appendix.

2 Background on Continuous-Time
Signal Extraction

This section reviews the theoretical framework and notation for the analysis of
CT signal processing and filtering. Also see Hannan (1970), Koopmans (1974),
Priestley (1981) and Bergstrom (1988) for additional material. In this context of
economic time series, measured as stock or flow at a certain timing interval, the
treatment of signal estimators in CT provides a pure analysis of the estimation or
filtering problem that abstracts from sampling construction. Second, it allows for
direct derivation of all the discretized filters from a single source filter, thus
ensuring their internal coherency.

Let y = fyðtÞ, t 2 Rg denote a real-valued stochastic process that is measur-
able with finite second moment at each time t, i. e., E½y2ðtÞ� <∞ for all t 2 R . The
process is weakly stationary by definition if it has constant mean – set to zero for
simplicity – and autocovariance function (acf) Ry given by

RyðhÞ=E½yðtÞyðt + hÞ� h 2 R . [1]

Note that the autocovariances are defined for the continuous range of lags h.
Thus if fyðtÞg is a mean-zero Gaussian process, Ry completely describes the
dynamics of the stochastic process. A useful class of stationary CT processes that
is analogous to discrete-time moving averages is given by

yðtÞ= ψ � �ð ÞðtÞ=
ð∞
−∞

ψðxÞ�ðt − xÞ dx [2]
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where ψ is square integrable on R , and f�ðtÞg is CT white noise (WN)1 with
variance parameter σ2

�. In this case, RyðhÞ= ðψ �ψ− ÞðhÞσ2
�, where ψ

− ðxÞ =ψð− xÞ.
It is convenient to work with models expressed in terms of the WN �, partly
because this makes it easy to see the connection with discrete models based on
white noise disturbances.

In analogy with discrete-time ARMA processes, which can be written as
difference equations, built on white noise disturbances, continuous time pro-
cesses can be written as differential equations, built on CT WN. In this way,
another example of a CT stationary process is given by the Continuous-time
Autoregressive Moving Average (CARMA) process – see Brockwell (2001), for
example – which can be written as

αðDÞyðtÞ= bðDÞ�ðtÞ [3]

where a(z) is a polynomial of order p, and b(z) is a polynomial of order q < p,
and D is the derivative operator. Brockwell (2004) derives the solution fyðtÞg to
(3) under the stationarity condition – the roots of the equation aðzÞ =0 must all
have strictly negative real part. (This is a weak solution, in the sense that it
satisfies an integral representation of (3).) Brockwell and Marquardt (2005) show
that a stationary CARMA process can be re-expressed in the form (2) for ψ given
by the inverse Fourier Transform of bðiλÞ=aðiλÞ.

We will be interested in filtering stationary processes (such as CARMA
processes), and so we will define the CT lag operator L via the equation

LxyðtÞ= yðt − xÞ [4]

for any x 2 R and for all times t 2 R . We denote the identity element L0 by 1, just
as in discrete time. Then a Continuous-Lag Filter is an operator ΨðLÞ with
associated weighting kernel ψ (an integrable function) such that

ΨðLÞ=
ð∞
−∞

ψðxÞLxdx. [5]

The effect of the filter on a process y(t) is

ΨðLÞyðtÞ=
ð∞
−∞

ψðxÞyðt − xÞdx = ðψ � yÞðtÞ [6]

by definition. The requirement of integrability for the function ψðxÞ is a mild
condition that is sufficient for many problems. However, when the input process

1 If W is a Levy process, the integral
Ð
ψðt − xÞdWðxÞ is well-defined in L2 for each t; then �ðxÞdx

is used as a short-hand for the Levy increment dW(x), so that CT WN can be formally defined –
see Priestley (1981) – and the convolution expression ðy*�ÞðtÞ follows.
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is nonintegrable over t, an integrable ψ may become inadmissible as a kernel,
i. e., it may fail to give a well-defined process as output. In such a case, we may
need to assume that ψ is differentiable to a specified order, with integrable or
square integrable derivatives.

This development parallels the discussion in Priestley (1981), where the filter
is written as

L½ψ�ðDÞ =
ð∞
−∞

ψðxÞe−Dxdx, [7]

with L½ψ� denoting the Laplace transform of ψ. Comparing (7) with (5) indicates
the heuristic identification

D= − log L, [8]

which is further discussed below. We prefer to describe filters via (5), in terms of
L rather than D, because of the intuitive linkage with convolution (6) and
discrete time filtering, although (7) has a longer history.

In analogy with the discrete-time case, the frequency response function (frf)
of a filter ΨðLÞ is obtained by replacing L by e− iλ :

Ψðe− iλÞ=
ð∞
−∞

ψðxÞe− iλxdx, λ 2 R . [9]

This is discussed in Koopmans (1974), who also considers the special case of the
derivative filter. Denoting the CT Fourier Transform by F½��, eq. [9] can be
written as Ψðe− iλÞ=F½ψ�ðλÞ.

Example 1: Consider a Gaussian kernel ψðxÞ= 1ffiffiffiffi
2π

p e−
x2
2 . In this example, the

inclusion of the normalizing constant means that the function integrates to one;
since applying the filter tends to preserve the level of the process, it could be
used as a simple trend estimator. The frequency response has the same form as

the weighting kernel and is given by F½ψ�ðλÞ = e−
λ2
2 .

The spectral density of a weakly stationary continuous time process {y(t)} is the
Fourier Transform of its acf Ry:

fyðλÞ=F½Ry�ðλÞ, λ 2 R . [10]

This case of a CT autoregression is discussed in Priestley (1981); also see eq. [7]
of Brockwell (2004) for the CARMA case. The gain function of a filter ΨðLÞ is the
magnitude of the frf, namely

GðλÞ= jF ½ψ�ðλÞj, λ 2 R . [11]
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As in discrete time series signal processing, passing an input (stationary) pro-
cess through the filter ΨðLÞ results in an output process with spectrum multi-
plied by the squared gain; so the gain function gives information about how
contributions to the variance at various frequencies are attenuated or accentu-
ated by the filter. Note that in contrast to the discrete case where the domain is
restricted to the interval ½−π,π�, the functions in (10) and (11) are defined over
the entire real line. Given a candidate frf g taking the inverse Fourier Transform
in CT yields the associated weighting kernel:

F − 1½g�ðxÞ= 1
2π

ð∞
−∞

gðλÞeiλxdλ, x 2 R . [12]

This expression is well-defined for any integrable g. Integrability is a mild
condition satisfied by nearly all filters of practical interest.

Example 2: Weighting kernels that decay exponentially on either side of the
observation point have often been applied in smoothing trends; this pattern
arises frequently in discrete model-based frameworks, e. g., Harvey and Trimbur
(2003). Similarly, in the continuous time setting, a simple example of a trend
estimator is the double exponential weighting pattern ψðxÞ= 1

2e
− jxj, x 2 R . In this

case, one can show using calculus that ΨðLÞ= 1=ð1− ðlog LÞ2Þ, as a formal
expression. The Fourier transform has the same form as a Cauchy probability
density function, namely F½ψ�ðλÞ= 1=ð1 + λ2Þ. This means that the gain of the
low-pass filter ΨðLÞ decays slowly as λ ! ∞.

In (4), the extension of the lag operator L to the CT framework is made explicit. In
building models, we can treat L as an algebraic quantity as in the discrete-time
framework. The extension of the differencing operator 1−L used to define nonsta-
tionary models is discussed in Hannan (1970, 55) and Koopmans (1974).

The mean-square differentiation operator D is formally defined in Priestley
(1981), and that work shows that L= e−D via Taylor series arguments. We provide
an alternative derivation of the equivalent relation D= − log L. We might con-
sider the limit of measuring the displacement of a CT process, per unit of time,
over an arbitrarily small interval δ:

d
dt

yðtÞ= lim
δ!0

yðt + δÞ− yðtÞ
δ

= lim
δ!0

L− δ − 1
δ

yðtÞ= lim
δ!0

e− δ log L − 1
δ

yðtÞ
= lim

δ!0
− log Le− δ log LyðtÞ= − log L yðtÞ.

The limits are interpreted to converge in mean square. Thus, we see that taking the
derivative d/dt has the same effect as applying the continuous lag filter − log L.
This holds for all mean-square differentiable processes y, implying (8).
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This operator D will be our main building block for nonstationary CT
processes. It will also be useful in thinking about rates of growth and rates of
rates of growth – the velocity and acceleration of a process, respectively. We
refer to − log L as the derivative filter; taking powers yields higher order deri-
vative filters. For instance, (log L)2 gives a measure of acceleration with respect
to time. We note that the frequency response of Dd is ðiλÞd, which is a high-pass
filter; see Koopmans (1974).

Thus a natural class of models is the Integrated Filtered Noise processes,
which are given by

DdyðtÞ=ΘðLÞ�ðtÞ [13]

for some integrable θ with ΘðLÞ= Ð θðxÞLx dx, and order of differential d ≥0. Also
f�ðtÞg is WN. This class will be denoted y⁓IFNðdÞ; it encompasses a wide variety
of linear CT models. As an example, Brockwell and Marquardt (2005) define the
class of Continuous-time Autoregressive Integrated Moving Average (CARIMA)
models as the solution to

αðDÞDdyðtÞ= bðDÞ�ðtÞ. [14]

Thus, applying the d-fold derivative filter transforms y into a stationary CARMA
(p,q) process. This defines the CARIMA(p,d,q) process. The original process {y(t)}
is nonstationary and is said to be integrated of order d in the CT sense. Now this
can be put into an IFN(d) form: starting from (14), we can write (formally)

DdyðtÞ= bðDÞ
αðDÞ �ðtÞ, [15]

so that ΘðLÞ= bðDÞ=aðDÞ, or θ=F − 1½bðiλÞ=aðiλÞ�. So we see that CARIMA pro-
cesses can be expressed as IFN processes where the kernel θ′s Laplace transform
is a rational function.

3 Nonstationary Signal Extraction
in Continuous Time

This section develops the signal extraction problem in continuous time. A new
result with proof is given for estimating a nonstationary signal from stationary
noise, extending the discrete-time results of Bell (1984). Whittle (1983) shows a
similar result for CT nonstationary processes, but omits the proof and in parti-
cular, does not describe the importance of initial conditions. Kailath, Sayed, and
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Hassibi (2000, 221–227) prove the formula for the special case of a stationary
signal. We extend the treatment of Whittle (1983) by providing proofs, at the
same time illustrating the importance of initial value assumptions to the result.
Further, the cases where the differentiated signal or noise process or both are
WN are treated rigorously. Consider the following decomposition for a CT
process {y(t)}:

yðtÞ= sðtÞ+ nðtÞ, t 2 R [16]

where {n(t)} is stationary. The aim is to estimate the underlying signal {s(t)} in
the presence of the noise, and it will be assumed that s⁓IðdÞ, or is integrated of
order d.

In general, d is any non-negative integer; the special case d=0 reduces to
stationary {s(t)}. In many applications of interest, we have d > 0, so that the dth
derivative of s(t), denoted by u(t), is stationary. It is assumed that {u(t)} and {n(t)}
are mean zero and uncorrelated with one another. In the standard case, both
acfs Ru and Rn are integrable. An extension can also be considered where Ru or
Rn or both are represented by a multiple of the Dirac delta function, which gives
rise to tempered distributions (see Folland 1995); the associated spectral densi-
ties are constant, indicating a corresponding WN process. The process y satisfies
the stochastic differential equation

wðtÞ=DdyðtÞ= uðtÞ+DdnðtÞ. [17]

From (1), (8), and (10) it follows – when the autocovariance function is well-
defined – that the spectral density of {w(t)} is

fwðλÞ= fuðλÞ + λ2dfnðλÞ. [18]

More generally – even when it is a non-integrable function – we will make use of
(18) as the definition of fw, though it might not be interpretable as a spectral
density. (Throughout the rest of the paper, we will nevertheless refer to such
functions as actual spectral densities.) From Hannan (1970, 81), the nonstation-
ary process y(t) can be written in terms of some initial values plus a d-fold
integral of the stationary w(t). For example, when d= 1,

yðtÞ= yð0Þ+
ðt
0
wðzÞ dz

for some initial value random variable y(0). Note that this remains valid both for
t > 0 and for t < 0. When d= 2,

yðtÞ= yð0Þ+ t _yð0Þ+
ðt
0

ðz
0
wðxÞ dx dz

10 T. Trimbur and T. McElroy
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for initial position y(0) and velocity _yð0Þ= ½dy=dt�ð0Þ. In general, we can write

yðtÞ=
Xd− 1
j=0

tj

j!
yðjÞð0Þ+ Idw

� �ðtÞ [19]

with the I operator defined by ½Idw�ðtÞ= Ð t0 wðzÞðt − zÞd− 1dz=ðd− 1Þ!, and
yðjÞð0Þ= ½djy�dtj�ð0Þ. Note that (19) holds for the signal fsðtÞg as well, if we
substitute s for y and u for w.

For an I(d) process, let y*ð0Þ= fyð0Þ, _yð0Þ, � � � , yðd− 1Þð0Þg denote the collec-
tion of d higher order derivatives at time t =0. It is assumed that y*(0) is
uncorrelated with both u(t) and n(t) for all t. This assumption is analogous to
Assumption A in Bell (1984), except that now higher order derivatives are
involved rather than actual lagged observed variables.

With these background concepts, the theoretical signal extraction problem
for a bi-infinite series fyðtÞg that follows (16) is defined as follows. The optimal
linear estimator of the signal s(t), by definition, gives the minimum mean square
error among all linear estimators. Thus, the goal is to minimize E½ðŝðtÞ− sðtÞÞ2�
such that ŝðtÞ=ΨðLÞyðtÞ= ðψ � yÞðtÞ for some weighting kernel ψ. The problem is
to determine the optimal choice of ΨðLÞ for general nonstationary models of the
form (16). The following theorem shows the main result.

Theorem 1: For a weakly stationary process satisfying (16), suppose that y*(0) is
uncorrelated with both fuðtÞg and fnðtÞg. Also assume that fuðtÞg and fnðtÞg are
mean zero weakly stationary processes that are uncorrelated with one another,
with acfs that are either integrable or given by constant multiples of the Dirac delta
function, interpreted as a tempered distribution. Let

gðλÞ= fuðλÞ
fwðλÞ .

If g is integrable with d− 1 continuous derivatives (if d=0, we only require that g
be continuous), then the linear minimum mean square error estimate of s(t) is
given by

ŝðtÞ=ΨðLÞyðtÞ
ΨðLÞ =

ð∞
−∞

ψðxÞLxdx

ψðxÞ=F − 1½g�ðxÞ.
[20]

The function ψ is the continuous weighting kernel of the optimal filter. The spectral
density of the error process eðtÞ= ŝðtÞ− sðtÞ is
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feðλÞ= fuðλÞfnðλÞ
fwðλÞ ,

and the MSE is 1
2π

Ð∞
−∞

feðλÞdλ.
If fyðtÞg is Gaussian, then ŝðtÞ is optimal among all estimators. The filter

ΨðLÞ will be referred to as a continuous-lag Wiener-Kolmogorov (WK) filter. This
distinguishes ΨðLÞ from discrete-time model-based filters, which are only
defined over a discrete set of lags. One of the important properties of the WK
filters is that they pass polynomials, in analogy with discrete-lag filters con-
structed to have this property in discrete-time. In particular,

ΨðLÞpðtÞ= pðtÞ
for a polynomial p(t) of sufficiently low degree. To make this explicit, the filter
passes p(t) when ð∞

−∞

xjψðxÞ dx = δj, 0,

for any j up to the degree of p, with δ denoting the Kronecker delta. It is shown
in the proof of Theorem 1 that, provided that the associated moments exist, a WK
filter passes polynomials of degree up to 2d− 1. In the next section we provide
several detailed examples of WK filters.

4 Examples of Continuous-Lag Trend Filters

Compared to discrete-time analogues (with filters either set up directly for dis-
cretely sampled observations or deduced from underlying processes and sampling
rules), the continuous-lag filters tend to have more compact forms for gain
functions or time domain expressions, which can make the analysis of their
properties simpler and more transparent. In this section we provide examples of
continuous-lag WK filters that are based on the class of CARIMA models and that
give CT versions of some well-known existing filters, as well as associated filters
that target a function, or characteristic of signal. Using the CARIMA class to form
WK weighting kernels offers flexibility for a range of applications and is also
convenient for computational reasons, as the WK frf is given by a rational
functions in λ2, facilitating Fourier inversion via the calculus of residues.

Here we focus on trend signals, and the trend plus noise decomposition is
written as

y tð Þ= μ tð Þ+ � tð Þ, [21]
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where fμðtÞg denotes the stochastic level, and f�ðtÞg is WN with variance
parameter σ2

�, denoted by � tð Þ⁓WN 0, σ2
�

� �
See Harvey (1989) for discussion.

Illustration 1: Local Level Model The local level model assumes

DμðtÞ= ηðtÞ, ηðtÞ⁓WN 0, σ2
η

� 	
. [22]

The signal-to-noise ratio in the CT framework is defined as q= σ2
η

.
σ2
� . So the

observed process y requires one derivative for stationarity, and we write
wðtÞ=DyðtÞ. The spectral densities of the differentiated trend and observed
process are

fηðλÞ= qσ2
� fwðλÞ= fηðλÞ+ λ2σ2

� = ðq+ λ2Þσ2
� . [23]

Though the constant function fηðλÞ is nonintegrable over the real line, the
frequency response of the signal extraction filter is given by the ratio
ð1 + λ2�qÞ− 1, which is integrable. The weighting kernel has the double exponen-
tial shape:

ψðxÞ=
ffiffiffi
q

p
2

exp −
ffiffiffi
q

p jxjf g

The rate of decay in the tails now depends on the signal-to-noise ratio of the
underlying CT process.

Illustration 2: Smooth Trend Model Even when considering an economic
series with regularly spaced observations, the use of different sampling frequen-
cies requires the careful design of filters to ensure consistency. For instance,
Ravn and Uhlig (2002) consider the well-known HP filter (Hodrick and Prescott
1997), while Harvey and Trimbur (2007) discuss trend estimation in a more
general setting. The local linear trend model (Harvey 1989, p. 485) has the
following specification:

DμðtÞ= βðtÞ + ηðtÞ, ηðtÞ⁓WN ð0, σ2
ηÞ

DβðtÞ= ζ ðtÞ, ζ ðtÞ⁓WN ð0, σ2
ζ Þ

where fηðtÞg and fζ ðtÞg are uncorrelated with each other. Setting σ2
η =0 gives

the smooth trend model, for which noisy fluctuations in the level are minimized
and the movements occur due to changes in slope. The data generating process
is yðtÞ = μðtÞ+ �ðtÞ where � is WN uncorrelated with ζ . Here the signal-to-noise
ratio is q= σ2

ζ

.
σ2
� .

Signal Extraction for Nonstationary Time Series 13
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Recall that the discrete-time smooth trend model underpins the well-known
HP filter for estimating trends in discrete time series; see Hodrick and Prescott
(1997), as well as Harvey and Trimbur (2003). Here we develop an analogous HP
filter for the CT smooth trend model. We may write the model as

uðtÞ=D2μðtÞ= ζ ðtÞ
wðtÞ=D2yðtÞ= ζ ðtÞ+D2�ðtÞ.

The spectral densities of the appropriately differentiated trend and series are

fuðλÞ= qσ2
� fwðλÞ= fuðλÞ+ λ4fσ2

� = ðq+ λ4Þσ2
�.

Hence the ratio ð1 + λ4�qÞ− 1 gives the frequency response function of the filter;
the error spectrum is σ2

�ð1 + λ4
�
qÞ− 1. Taking the inverse Fourier transform of this

function (see the Appendix for details of the derivation) yields the weighting
kernel

ψðxÞ= q1=4 expf− jxjq1=4� ffiffiffi
2

p g
2
ffiffiffi
2

p cosðjxjq1=4
. ffiffiffi

2
p

Þ+ sinðjxjq1=4
. ffiffiffi

2
p

Þ
� 	

[24]

This gives the CT extension of the HP filter. From the discussion following
Theorem 1, the kernel in (24) passes cubics.

Figure 2 shows the weighting function for three different values of q. As the
signal-to-noise ratio increases, the trend becomes more variable relative to

Figure 2: Weighting kernel for continuous-lag HP filter for q= 1=10, 1=40, and 1=200.
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noise, so the resulting kernel places more emphasis on nearby observations.
Similarly, as q decreases, the filter adapts by smoothing over a wider range. The
negative side-lobes, apparent in the figure for q= 1=10, enable the filter to pass
quadratics and cubics.

Illustration 3: Continuous-Lag Low-Pass Here we introduce low-pass filters in
CT that are analogous to the filters derived by Harvey and Trimbur (2003) for the
corresponding discrete-time models. A simple nonseasonal model for a CT
process in macroeconomics is given by

yðtÞ= μmðtÞ+ εðtÞ
where fμmðtÞg is a trend component that accounts for long-term movements. The
irregular fεðtÞg is meant to absorb any random, or nonsystematic variation, and
is assumed to be WNð0, σ2

εÞ. The definition of the mth order trend is

DmμmðtÞ = ζ ðtÞ, ζ ðtÞ⁓WNð0, σ2
ζ Þ

for integer m > 0. For m= 1, this gives standard Brownian motion. For
m= 2, fμmðtÞg is integrated Brownian motion, the CT analogue of the smooth
trend, as in the previous illustration.

In formulating the trend estimation as a signal extraction problem (Section 3),
we set the nonstationary signal to fμmðtÞg and the noise term to fεðtÞg. Then the
optimal filter ΨðLÞ can be constructed from Theorem 1, and its frf is given by

LPmðλÞ= q

q+ λ2m
, [25]

where LPm stands for low-pass filter of order m, and q= σ2
ζ

.
σ2
ε is the signal-to-

noise ratio for the trend. This definition (25) parallels the development of Harvey
and Trimbur (2003) for the discrete-time case. The formula for the kernel is more
complicated than (24), and is discussed in the Appendix.

Illustration 4: Smooth Trend Velocity and Acceleration In some applica-
tions, interest centers on some property of the signal, such as its growth rate,
rather than on the value of the signal itself. In particular, consider the linear
operator H =Dm. The conditional expectation of H s(t) is equal to H applied to
the conditional expectation of s(t), since H is linear. So for Gaussian processes,
assuming that λmgðλÞ is integrable – where g is the frequency response of the
original WK filter – the weighting kernel for estimating Dms(t) is given by the
mth derivative of ψ, that is, ψðmÞðxÞ. The first derivative of the signal indicates a
velocity, or growth rate. The second derivative indicates acceleration, or varia-
tion in growth rate.

Signal Extraction for Nonstationary Time Series 15
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More generally, we can consider signals H s(t) with H a linear operator. To
compute the mean squared error of ðHΨðLÞÞyðtÞ as an estimate of the target H
s(t), multiply the error spectrum from Theorem 1 by the squared magnitude of
F½H�ðλÞ. This results in the spectrum of the new error, whose integral equals the
mean squared error. If, for example, H =D then the error spectrum is multiplied
by by λ2, and the result is then integrated over R .

Velocity and acceleration estimates can be computed for the HP filtered signal.
The filters are constructed directly from the Smooth Trend model. In Newtonian
mechanics, a local maximum in a particle’s trajectory is indicated by zero velocity
together with a negative acceleration; similarly, velocity and acceleration indica-
tors may be used to discern a downturn or recession in a macroeconomic series.

We compute the frfs and kernels for the Smooth Trend Model of Illustration
2. Since λ2ð1 + λ4�qÞ− 1 is integrable, both derivatives of ψ are well-defined. Direct
calculation yields

_ψðxÞ= −
q1=2

2
e− q1=4jxj=

ffiffi
2

p
sinðq1=4x

. ffiffiffi
2

p
Þ

€ψðxÞ= −
q3=4

2
ffiffiffi
2

p e− q1=4jxj=
ffiffi
2

p
cosðq1=4jxj

. ffiffiffi
2

p
Þ− sinðq1=4jxj

. ffiffiffi
2

p
Þ

� 	
.

The velocity filter, or first derivative with respect to time, has the interpretation
of a growth rate for the trend. The weighting kernel in Figure 3 shows how the

Figure 3: Weighting Kernels for Velocity WK filter based on Smooth Trend model for
q= 1=10, 1=40, and 1=200.
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growth in the signal is assessed by comparing forward-looking displacements
with recent displacements. Likewise, the acceleration indicates the second deri-
vative, or curvature. The weighting kernel in Figure 4 has a characteristic sharp
decline around the origin, so that contemporaneous and nearby values are
subtracted in estimating changes in growth.

5 Primary Alias Filter Discretization

Here we introduce a simple method for accomplishing Δ in Figure 1, i. e., filter
discretization. In doing so, we provide a decomposition of the discrete signal
estimation error based on intuitive ideas about signal-to-noise relationships and
measurement.

Given a continuous-lag filter ΨðLÞ with frf g, we have a theoretical signal
estimate of ΨðLÞyðtÞ for any time t. Suppose we have a stock series yτ = yðδτÞ
available to us, for sampling frequency δ and τ 2 Z (we consider the case of
flows below). But the target time t need not fall on the discrete grid δZ; rather,
we may write t = δτ+ δc for some c 2 ½0, 1Þ (any t 2 R may be decomposed in
this way). The number c is called the interpolant. The interpolated discretization
problem is to compute a discrete filter ΨδðBÞ =�jψjB

j such that ΨδðBÞyτ is close

Figure 4: Weighting Kernels for Acceleration WK filter based on Smooth Trend model for
q= 1=10, 1=40, and 1=200.
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to ΨðLÞyðδðτ+ cÞÞ. Here B= Lδ, because the spacing between discrete observa-
tions is δ. The discretization error is ΨδðBÞyt −ΨðLÞyðtÞ. The discrete filter should
produce discretization MSE that tends to zero as δ ! 0, is tolerably low when
δ > 0, does not depend upon the data process, and is simple to compute.

We begin with a basic decomposition of the discretization error, supposing
that y is an I(d) CT stochastic process. We use the abbreviation ecðλÞ= eiλδc, and
interest will focus on the frf gec (the dependency of ec on δ is suppressed in the
notation). Let the frf of the discretized approximate filter Ψδ be denoted by
gδðλÞ =Ψδðe− iλδÞ for λ 2 ½−π=δ,π=δ�; this is the appropriate band of frequencies
for the sampled process, in terms of units for the original CT process’ frequencies
(see MT). Note that π=δ is the so-called Nyquist frequency.

By �gδ, we refer to the periodic extension of gδ from the domain ½−π=δ,π=δ�
to the entire real line. A key condition, which ensures that there is no bias in the
discretization of ΨðLÞ, is that

ðgecÞðjÞð0Þ= gðjÞδ ð0Þ. [26]

for j=0, 1, 2, . . . , d. This will guarantee that ΨδðBÞ treats discrete time poly-
nomial effects in exactly the same way as the continuous time treatment, so that
if y were a degree d polynomial, the discretization error would be identically
zero. The following result explicitly determines the discretization error.

Proposition 1: Let ΨðLÞ be a filter with frf g that satisfies (26) for j ≤ d, where y is
an I(d) process such that Ddy =w has orthogonal increments process dZ. Let aδðλÞ
be identically one for a stock sampling, but equal to ð1− e− iλδÞ=ðiλÞ for a flow
sampling. Then the discretization error is

ΨðLÞy δτ+ δcð Þ−ΨδðBÞyτ =
ð∞
−∞

eiλδτ gðλÞecðλÞ− �gδðλÞaδðλÞ½ �ðiλÞ− ddZðλÞ,

and when the mean square of the discretization error exists, it is equal to

1
2π

ð∞
−∞

jgðλÞecðλÞ − �gδðλÞaδðλÞj2fwðλÞλ− 2ddλ. [27]

The discretization MSE (27) can be decomposed into the sum of two positive
terms: the minimal possible discretization MSE, plus the extra error due to using
the filter ΨδðBÞ – which need not be optimal. Theorem 1 of MT provides an
explicit formula for the discrete filter with minimal discretization MSE. This
Optimal Discrete Filter (ODF) has frf uδ (its formula is discussed in the
Appendix) defined on ½−π=δ,π=δ�, with periodic extension �uδ. Then in the
stock sampling case, (27) decomposes into

18 T. Trimbur and T. McElroy
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1
2π

ð∞
−∞

jgðλÞecðλÞ− �uδðλÞj2fwðλÞλ− 2ddλ+
1
2π

ð∞
−∞

j�uδðλÞ− �gδðλÞj2fwðλÞλ− 2ddλ,

[28]

which is established in the proof of Proposition 2 below. The right-hand term
in (28) can be made larger or smaller by taking different choices of gδ, while
the left-hand term cannot be altered by our choices. Hence taking gδ equal to
uδ gives the lowest possible discretization MSE, i. e., the ODF choice. But other
choices may also provide low MSE. In particular, consider gδ = gec1½−π=δ, π=δ�,
i. e., restriction of gec to the primary band of aliases.2 This choice will be
called the Primary Alias Discrete Filter (PADF). Note that (26) is easily seen
to be satisfied. Also the discretization MSE (for the stock case) can then be
expressed as

1
2π

ð
jλj >π=δ

jgðλÞecðλÞ − �gδðλÞj2fwðλÞλ− 2ddλ, [29]

which has an integrand bounded above by an integrable function for all δ; then
by the Dominated Convergence Theorem this quantity tends to zero as δ ! 0,
i. e., discretization MSE vanishes with sampling frequency for the PADF. As a
special case, if fw is band-limited, e. g. restricted to an interval ½− η, η� for some
η > 0, then for δ ≤ 2π=η the discretization MSE (29) is identically zero.

Returning to the general case, the extra MSE arising from the PADF over the
ODF is negligible relative to the ODF MSE as δ ! 0, as shown in the following
result. First we require the following concept: we say that a function k has tails
of order γ if kðλÞ⁓Cjλj− γ as λ ! ±∞ for some constant C > 0.

Proposition 2: Suppose that the spectral density fw of the series {w(t)} has tails of
order α ≥0; if d=0 we require α > 0, otherwise α=0 is permitted. If the PADF is
used to discretize a given continuous lag filter with frf g, then the ratio of the ODF
discretization MSE to the PADF discretization MSE tends to unity as δ ! 0.

This provides some justification for the PADF technique; when δ is suitably
small (relative to the behavior of g and fw), then there is no real loss in using the
PADF instead of the ODF. The advantage of the PADF is ease of computation;
note that no knowledge of the data process’ dynamics is required, unlike the
case of the ODF. This means that once we determine the CT filter, no further

2 For any frequency λ 2 R , its aliases with respect to sampling frequency 1=δ is the set
fλ+ 2πh=δg∞h= −∞ (see Koopmans 1974), and the primary alias corresponds to taking h such
that λ+ 2πh=δ 2 ½−π=δ,π=δ�.
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reference to the underlying CT series is needed, and the coefficients can be
computed for each choice of δ by direct and simple discretization. The filter
coefficients of the PADF are given by

ψj =
δ
2π

ðπ=δ
− π=d

gðλÞecðλÞeiλδjdλ= 1
2π

ðπ
− π

gðλ=δÞeiλðj+ cÞdλ.

Note that ψj=δ⁓ψðδðj+ cÞÞ as δ ! 0, though this is of little benefit when δ > 0. In
the above, we only need to know the frf g – as fw itself does not enter into the
formula, and generally, the above coefficients are best computed numerically.
The reason that analytical formulas tend not to be available, is that g in many
scenarios is a rational function of λ2 (e. g., when derived as the optimal signal
estimators for the broad CARIMA class of processes), and there are no conve-
nient formulas for definite bounded integrals of mixed trigonometric and poly-
nomial functions. Now due to the symmetry of g, we can re-express the
coefficients as

ψj =
1
π

ðπ
0
gðλ=δÞ cos½λðj+ cÞ�dλ, [30]

which can be computed via a Riemann approximation.
For a process that is flow-sampled, the above discussion can be amended

slightly. Eq. [27] has a decomposition in terms of the ODF, just as we elucidated
in the stock case. The flow PADF arises by setting gδ = gec

�
aδ1½π=δ,π=δ�, and the

resulting filter coefficients are given by

ψj =
1
πδ

ðπ
0
gðλ=δÞλ sin½λðj+ c+ 1Þ�− sin½λðj+ cÞ�

2− 2 cos λ
dλ. [31]

This is readily approximated by a Riemann sum. Note that we have formulated
the discretization problem in terms of a stock target signal, in that we try to
approximate ΨðLÞyðδtÞ. MT also discusses the case of a flow target signal,
which changes some of the derivations. The flow target signal, in terms of an
annual rate, would resemble ΨðLÞCðLÞyðδtÞ with CðLÞ= δ− 1 Ð δ

0 Lx dx. This
changes the mathematics a bit, but is not of primary interest and so is not
pursued further here.

To complete this section, let us consider a popular example, namely the
continuous-lag low-pass filters of (25), written gðλ; qÞ= ð1 + λ2m�qÞ− 1 for q > 0. It
is easy to see that gðλ=δ; qÞ= gðλ; δ2mqÞ, which has implications for the filter
coefficients. Noting that the filter coefficients really depend on δ and q (as
well as c, but this will be suppressed), we can write ψjðδ, qÞ in (30). Then it
follows that

20 T. Trimbur and T. McElroy
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ψjðκδ; qÞ=ψjðδ; κ2mqÞ [32]

for any j and c, where κ is some positive multiplier for converting sampling
frequencies. This says that the PADF at a given sampling frequency κδ and
signal-to-noise ratio q is exactly the same as that for sampling frequency δ but
with adjusted signal-to-noise ratio of κ2mq. For example, if δ= 1=12 and κ = 3 then
the rule tells us that the quarterly coefficients (with signal-to-noise ratio q) can
be obtained from the monthly coefficients with signal-to-noise ratio of 32mq. This
result can be compared to that of Ravn and Uhlig (2002), which focused on the
m= 2 case and obtained a quartic rule for relating Hodrick-Prescott coefficients.
For m= 1, the rule is quadratic instead. In the case of a flow-sampled series, the
coefficients written as a function of sampling frequency and signal-to-noise ratio
satisfy

ψjðκδ; qÞ = κψjðδ; κ2mqÞ. [33]

This relation resembles the stock case, but note the extra multiplier of κ that is
required. In summary, the PADF differs according to whether the data is stock or
flow sampled: formulas (32) and (33), respectively for the stock and flow cases,
show how filter coefficients depend upon κ, the ratio of differing sampling
frequencies. The ODF of MT also had different filters for stock and flow series,
although the relationships were more complicated because the true process was
involved through its spectral density.

6 Numerical Results for Primary Alias
Discretization

In order to provide a numerical exploration of Proposition 2, we consider the
PADF approximation to the low-pass (LP) filter ð1 + λ2m�qÞ− 1 with m= 1, 2 and
various values of q. This is applied to various underlying processes that are
assumed to be stock-sampled, including a CAR(1), a CARMA(2,1), and a CARIMA
(1,1,0) with various parameter values. Although we would not recommend using
the LP filter on stationary data, we consider the CARMA examples in order to
demonstrate the quality of the PADF approximation under a scenario that is sub-
optimal (primarily because the pseudo-spectral density of non-stationary pro-
cesses has tails that decay more quickly, the PADF method tends to give more
accurate results relative to the stationary case). The CARMA processes consid-
ered for a simulated process {X(t)} are as follows:
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Process 1 : ðD− .5ÞXðtÞ = �ðtÞ
Process 2 : ðD− .1ÞXðtÞ= �ðtÞ
Process 3 : ðD2 − cosðπ=60ÞD+ 1=4ÞXðtÞ= �ðtÞ
Process 4 : ðD2 − 2 cosðπ=12ÞD+ 1ÞXðtÞ= ð1− 2DÞ�ðtÞ
Process 5 : DðD− .2ÞXðtÞ= �ðtÞ

Here f�ðtÞg is WN with variance parameter set to one. For each model, we
consider the frequencies δ= 1, 1=4, 1=12, 1=52 and a range of q values. Results
are summarized in Tables 1 and 2, for the cases of m= 1, 2 respectively. For

Table 1: Discretization MSEs.

δ q

Model     / /

 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Ratio of ODF discretization MSE to the PADF discretization MSE for the low pass filter with
frequency response function ð1 + λ2�qÞ− 1, as a function of q and δ. The five processes are
discussed in Section 6.
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spectral densities that decay more rapidly at higher frequencies, the approxima-
tion error in the PADF will be less than with slowly decaying spectra. Therefore
we can expect the ratio of minimal discretization MSE to PADF discretization
MSE to be higher for Process 2 than Process 1, because the latter is closer to the
behavior of a Brownian Motion, and has spectrum decaying as λ− 2 for large λ.
Likewise, Process 4 should have more PADF discretization error than Process 3,
because the presence of the moving average term ensures that the spectrum
decays less rapidly than the pure CAR(2). Because Process 5 is integrated, the
PADF discretization MSE should be close to the minimal MSE. These patterns are
evident in the Tables.

Table 2: Discretization MSEs.

δ q

Model     / /

 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
¼ . . . . .
/ . . . . .
/ . . . . .

Model     / /
 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

Ratio of ODF discretization MSE to the PADF discretization MSE for the low pass filter with
frequency response function ð1 + λ4�qÞ− 1, as a function of q and δ. The five processes are
discussed in Section 6.
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It is also clear that decreasing δ increases the ratio, as expected. The effect
of changing q is less clear, although a smaller q implies a more quickly decaying
frequency response function. This is for the most part reflected in Tables 1 and 2,
in that the ratio of discretization MSEs increase towards unity as q decreases,
although the relationship is not monotonic.

These results demonstrate how the approximation error changes with q and
δ. Even when the PADF discretizes in a nearly optimal fashion, the signal would
still be measured imperfectly. In the limit, if we were able to construct the CT
estimate, the discrepancy that would remain represents an inherent part of the
signal extraction, after controlling for sampling conditions. As another contribu-
tion to the overall estimation error, the ODF discrepancy (from optimal CT
signal) arises from the innate loss of information due to data discretization;
the tables demonstrate that we will not add appreciably to the ODF error in
using the simpler PADF approach.

We exhibit the ODF discretization MSE next, in comparison to the signal
extraction MSE. This intrinsic MSE can be consistently compared across different
data processes subject to different kinds and frequencies of measurement. So
consider the application of the LLM trend filter with parameter q with m= 1, as
defined above, applied to flow-sampled series. This is the optimal filter when the
true DGP consists of a Brownian Motion based on shock dispersion qσ2 plus an
independent White Noise of dispersion σ2. Then the data process requires one
differentiation to stationarity, and fWðtÞg corresponds to a CARMA(0,1) with MA
polynomial 1 +D=

ffiffiffi
q

p
and variance qσ2. The flow-sampled trend process turns

out to be an ARIMA(0,1,1) with autocovariance function equal to 2qδ3σ2=3 at lag
zero and qδ3σ2=6 at lag one (see Harvey and Trimbur 2007); the discrete MA
coefficient is 2−

ffiffiffi
3

p
(obtained by spectral factorization) with an innovation

variance of qδ3σ2=ð12− 6 ffiffiffi
3

p Þ. The flow-sampled irregular process is a discrete-
time white noise with variance δσ2.

The signal extraction MSE for the continuous-lag filter is the integral of
fufn=fw, divided by 2π, according to Theorem 1; in this case it equals

ffiffiffi
q

p �
2. As

for the discretization MSE, it increases roughly according to a
ffiffiffi
q

p
rule. In Table 3

we show discretization MSE for the ODF, computed using the formulas in the
Appendix (see the proof of Proposition 2) for various δ and q, and with σ2 = 1.
This can be compared to the signal extraction error

ffiffiffi
q

p �
2, which is typically

larger. Note that, whereas the other tables display relative discretization MSEs,
Table 3 shows absolute MSEs; as expected, for a given q, the MSE falls as δ
decreases. The results indicate that discretization error is small relative to signal
extraction error; the ratio of discretization MSE to signal extraction MSE in the
highest case ðδ= 1Þ is 2.06%, 3.54%, 4.08%, 4.15%, and 4.15% respectively, for
q= 100, 10, 1, .1, .01. Both types of MSE decrease as q decreases, but signal
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extraction MSE decreases more rapidly, so that discretization MSE has the most
impact when δ= 1 and q= .01.

7 Applications

Consider the inflation series based on the consumer price index (CPI), which
were analyzed in MT as both monthly and annual flow variables based on the
underlying, continuous rate of change, dP/dt. Using the stock- or point-target
formulas for signal extraction from a flow series, the analysis of MT discretized
the Local Level Model for the purpose of extracting the instantaneous trend in
dP/dt over the sample period; these filter expressions used some technical
derivations provided in that paper. The resulting monthly and annual signals
had the desired relationships; indeed, the annual trend interpolated to monthly
time interpolants matched quite closely the monthly trend. However, a draw-
back of this method is the requirement for elaborate derivations. A key motiva-
tion of the PADF method is to facilitate discretization of a given CT filter without
requiring knowledge of the underlying data process’ dynamics (i. e., its spectral
density). So it is natural to ask: does the application of the PADF method to the
CPI produce similar results as obtained from the ODF results of MT?

So suppose that a low-pass filter with frf ð1 + λ2=qÞ− 1 is used for trend
estimation, which corresponds to a random walk extracted from ambient idio-
syncratic noise in CT. Taking q= 11.4 and order of integration equal to one
(identified in MT), we can then proceed to construct the PADF monthly and
annual filters (in the annual case, we consider interpolants c= k=12 for

Table 3: Discretization MSEs.

δ q

   / /

 . . . . .
/ . . . . .
/ . . . . .
/ . . . . .

CL MSE  . . . .

The ODF discretization MSE based on asymptotic calculations, dis-
played by q and δ. Also shown in the last row is the continuous-lag
signal extraction MSE, denoted by CL MSE, as a function of q.
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k =0, 1, 2, � � � , 11 for comparison to monthly trends). Since the series are flow
variables with a stock-signal target, we adopt (31) with δ= 1=12 for the monthly
case and δ= 1 for the annual case. The upper left panel of Figure 5 shows the two
filter coefficients (monthly case), and the discrepancies are very small. The
resulting monthly trends have no differences visible to the naked eye, and so
are not displayed. (To produce trend values at the beginning and end of the
sample, we use the standard device of extending the series by forecasting and
backcasting, so we can then apply the symmetric filters to the extended series;
for the Local Level Model, the forecast path just amounts to repetition of the
initial or terminal value of the smoothed level.)

One can also compare the annual filters for the ODF and the PADF, displayed in
the upper right panel of Figure 5. Now there are some notable discrepancies,
although the overall shape is largely similar. It is not surprising that there is
more contrast, as compared to the monthly case, in view of Proposition 2, because
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Figure 5: Analysis of the CPI monthly and annual flow series. Upper left panel: monthly filters
for the ODF and PADF. Upper right panel: annual filters for the ODF and PADF. Lower left panel:
annual trends arising from the ODF and PADF. Lower right panel: monthly trend from PADF, with
annual trend interpolated to monthly frequency from PADF.
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the discrepancies vanish only as δ ! 0. The resulting annual trends from both
methods are plotted in the lower left panel of Figure 5, and there is little overall
divergence. Finally, the lower right panel of Figure 5 plots the monthly trend
together with the annual trend with monthly interpolants, computed from the
PADF method (the same plot, but considering the ODF instead of PADF, is
provided in Figure 3 of MT). The close agreement of the trends demonstrates that
this method of filter discretization respects sampling frequency, in the sense that
the estimated trends for CPI inflation at the two different frequencies are largely
coherent, matching one another rather closely on average.

We now give an application to related housing time series available at
different sampling frequencies. Two representative series for the housing sector
are the monthly time series of US Housing Starts, that is, the total number of
New Privately Owned Housing Units Started Starts (Available from the US
Census Bureau); and the quarterly time series of US Residential Investment
(Available from the Bureau of Economic Analysis), with both series seasonally
adjusted and expressed as annual rates. Both series are flows but represent
different quantity types, with Starts being a unit count and Residential
Investment being a real dollar value (expressed in billions with base year
2005). We are most interested in the period from the early 1990s to present,
during which the housing market has undergone a dramatic expansion followed
by a virtual collapse, with the most recent years indicating signs of recovery;
these major economic developments are reflected in both series. So the sample
for Starts is January 1990 through June 2012, while for Residential Investment it
extends from the first quarter of 1990 through second quarter of 2012. Suppose
we aim to apply low-pass filters in a coherent manner and extract comparable
signals across series, perhaps to help convey a consistent picture of trends in
construction activity over this time period.

To investigate trends in both indicators together and efficiently use the avail-
able data requires coherency across the monthly and quarterly time intervals.
Therefore, we use the Low Pass filter with m= 1 (Illustration 1 of Section 4), for
q= 1, 10, and 100, and apply our approximate discretizationmethod. This last value
is suggested by the actual estimate of the Butterworth q; in a preliminary analysis of
Starts (the higher-frequency series), the Local Level Model can be fitted to the data
with a CT signal-to-noise ratio of q̂= 139.98. This estimate may seem somewhat
large, due partly to the level functioning as a “trend-cycle” – absorbing virtually all
the systematic movements, with the remainder just noise that is relegated to the
irregular – in this simplemodel, and partly to the intensity of trendmovements over
this episode; furthermore, given that q is approximately transformed by the square
of δ in moving to a discrete-time filter, a value of 100 actually implies a reasonable
balance between level and irregular fluctuations. In any case, moving from the
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neighborhood of the fitted value to a smaller ratio, as in the q= 10 case allows for a
perhaps more attractive trend with greater noise elimination and clearer detection
ofmajor transitions or turning points. The q= 1 value gives an even smoother signal,
though the high degree of stability also means that the trend adapts more slowly to
ongoing developments, and indeed, the fit of the associated model deteriorates
appreciably for this case. The choice q= 10 represents a reasonable balance
between fit (the trend-noise model, though optimized in the neighborhood of 100,
still performs decently in this intermediate case) and signal properties of smooth-
ness and ease of tracking main developments.

Using δ= 1=12, 1=4, we generate the monthly trend for both Starts and
Residential Investment, which includes values interpolated to monthly frequen-
cies for Residential Investment; as with the CPI example, trends are produced at
the boundaries of the sample via forecast and backcast extension. Figure 6
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Figure 6: Analysis of monthly Housing Starts (Starts, in blue) and quarterly Residential
Investment (ResInv, in red) in diverse scales (left axis for Residential Investment, right axis for
Housing Starts), together with PADF trends. Signal-to-noise ratios are 139.98 (top left panel),
100 (top right panel), 10 (bottom left panel) and 1 (bottom right panel), resulting in more
smoothing from as the signal-to-noise ratio decreases. Original series are in dashed lines, with
trends super-imposed as solid lines. Vertical dotted lines indicate turning points for the begin
and end of the recession, as determined by the estimated trends.
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displays both series’ trends for comparison (note that the series are plotted with
different scales, with that of Starts on the right in blue and that of Residential
Investment on the left in red), with various panels corresponding to differing
choices of q. While both trends show similar movements generally, measured
from the same base, their own specific patterns also emerge in the figure. The
results for the higher and lower ratios are displayed in the right hand panels of
Figure 6, whereas the left hand panels contain the fitted trend and the trend for
the intermediate value q= 10. While the amount of smoothing varies consider-
ably across the three ratios, the filters automatically adapt via δ to each series,
so that the resulting trends maintain their coherency. The reason is that the
PADF method automatically targets the same portion of the underlying spectral
density in the low-pass formulation of trend extraction – for any choice of the
sampling frequency.

8 Conclusion

While most macroeconomic time series represent stock or flow measurement of
some underlying process conceived of as occurring in CT, the measurement
conditions for the discrete observations affects the extraction of signals that
ultimately describe the underlying dynamics. To extract signals of interest from
such series, the usual approach in the econometrics literature is to first discre-
tize the underlying CT process−� in Figure 1 – followed by application of
discrete-time filtering, the mapping Ψ (Harvey and Stock 1993). This paper
presents a different approach that instead discretizes the continuous-lag
filters−Δ in Figure 1− allowing for a natural treatment of interpolants.
Moreover, our method offers a flexible and coherent strategy for analyzing series
sampled in different ways.

We derive explicit formulas that solve the CT signal extraction problem,
extending previous results to the case of a nonstationary signal, which is a key
assumption for most economic data. The continuous-lag estimators map the
signal-to-noise relationship of the underlying process into a relatively compact
expression. We present several filters designed for use in real-world applica-
tions, including new low-pass continuous-lag filters, as well as derivative and
turning point filters for monitoring transitions in signals of interest; optimal
filters that target other functions of the signal may be derived in the same way.
Our examples demonstrate how the core continuous-lag filters tend to have
simpler forms than their discrete-time counterparts, making it convenient to
investigate their properties.
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Another major contribution of the paper is the Primary Alias method of filter
discretization. The formulas for the discretization of a given continuous-lag filter
are easy to implement and do not require explicit knowledge of the data process’
dynamics, in contrast to the mean square optimal discretization. Here, in con-
trast, the PADF technique only requires knowledge of the original filter’s kernel,
and implementation is straightforward. Numerical results show the accuracy of
this discretization, and its application to CPI inflation and housing data illus-
trates the method’s coherency and efficacy.

Appendix: Proofs

Proof of Theorem 1: Throughout, we shall assume that d > 0, since the d=0
case is essentially handled in Kailath et al., (2000). In order to prove the
theorem, it suffices to show that the error process eðtÞ= ŝðtÞ− sðtÞ is orthogonal
to the underlying process {y(h)}. By (19), it suffices to show that {e(t)} is
orthogonal to {w(t)} and the initial values y∗(0). So we begin by analyzing the
error process produced by the proposed weighting kernel ψ=F − 1½g�. We first
note the following interesting property of ψ. The moments of ψð

zkψðzÞ dz = ik dk

dλk
fuðλÞ
fwðλÞ jλ=0

for k < d exist by the smoothness assumptions on g, and are easily shown to
equal zero if 0 < k < 2d (i. e., for d ≤ k < 2d, the moments are zero so long as they
exist – their existence is not guaranteed by the assumptions of the theorem).
Moreover, the integral of ψ is equal to 1 if d > 0. These properties ensure (when
d > 0) that the filter ΨðLÞ passes polynomials of degree less than d. This is
because ΨðLÞtj = tj for j < d. We first note that representation (19) also extends
to the signal: sðtÞ= Pd− 1

j= 0
tj
j!s

ðjÞð0Þ+ ½Idu�ðtÞ. Then the error process is

eðtÞ= ðψ � yÞðtÞ− sðtÞ= ðψ � sÞðtÞ− sðtÞ+ ðψ � nÞðtÞ.
Since ΨðLÞ passes polynomials, ðψ � sÞðtÞ− sðtÞ= Ð ðψðxÞ−Δ0ðxÞÞ½Idu�ðt − xÞ dx,
where Δ0 is the Dirac delta function. Note that any filter that does not pass
polynomials cannot be MSE optimal, since the variance of the error process will
grow unboundedly with time. So we have

�ðtÞ=
ð
ðψðxÞ −Δ0ðxÞÞ Idu

� �ðt − xÞ dx + ð ψðxÞnðt − xÞ dx,
which is orthogonal to y∗(0) by Assumption A. Due to the representation (19), it is
sufficient to show that the error process is uncorrelated with [Idw](t). For any real h
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E �ðtÞ Idw
� �ðt + hÞ� �

=
ð

ψðxÞ−Δ0ðxÞð ÞE Idu
� �ðt − xÞ Idu

� �ðt + hÞ� �
dx

+
ð
ψðxÞE nðt − xÞ nðt − hÞ −

Xd− 1
j=0

ðt + hÞj
j!

nðjÞð0Þ
 !" #

dx

which uses the fact that ½Idw�ðtÞ= ½Idu�ðtÞ+ nðtÞ− Pd− 1
j=0

tj
j!n

ðjÞð0Þ. Now we have

E ½Idu�ðt − xÞ½Idu�ðt + hÞ� �
=
ðt − x
0

ðt + h
0

ðt − x − rÞd− 1ðt + h− zÞd− 1
ðd− 1Þ!2 Ru r − zð Þ dz dr.

[35]

If fu is integrable, we can write RuðhÞ= 1
2π

Ð
fuðλÞeiλhdλ. If Ru ∝Δ0 instead, then

fu ∝ 1; we can still use the above Fourier representation of Ru in (35), because the
various integrals will take care of the non-integrability of fu automatically. SinceÐ x
0 eiλydy = ð1− eiλxÞ=ðiλÞ, we obtain that (35) is equal to

1
2π

ð
fuðλÞλ− 2d e− iλðt − hÞ −

Xd− 1
j=0

ð− iλÞj
j!

ðt − hÞj
 !

eiλðt − xÞ −
Xd− 1
j=0

ðiλÞj
j!

ðt − xÞj
 !

dλ.

When integrated against ψðxÞ−Δ0ðxÞ, we use the moments property of ψ to
obtain

1
2π

ð
fuðλÞλ− 2d e− iλðt − hÞ −

Xd− 1
j=0

ð− iλÞj
j!

ðt − hÞj
 !

eiλtΨ e− iλ� �
− eiλt

� �
dλ

=
1
2

ð
fuðλÞ − fnðλÞfwðλÞ eiλh −

Xd− 1
j= 0

ð − iλÞj
j!

ðt − hÞjeiλt
 !

dλ.

This uses Ψðe− iλÞ− 1 = − λ2dfnðλÞ=fwðλÞ, which is not integrable if fn ∝ 1; yet fufn/
fw will be integrable under the conditions of the theorem. As for the noise term
in (34), we first note that n(j)(t) exists for each j < d since w(t) exists by assump-
tion; this existence is interpreted in the sense of Generalized Random Processes
(Hannan 1970). In particular

ð
ψðxÞE½nðt − xÞnðt − hÞ� dx =

ð
ψðxÞRnðx − hÞ dx =

1
2π

ð
fnðλÞeiλhΨðe− iλÞ dλ.

This Fourier representation is valid even when fn ∝ 1, since Ψðe− iλÞ is integrable
by assumption. Similarly,

E nðt − xÞnðjÞð0Þ
h i

=
∂j

∂zj
E½nðt − xÞnðzÞ�jz = 0 =

∂j

∂zj
Rnðt − x − zÞjz =0 =

∂j

∂xj
Rnðt − xÞ
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where the derivatives are interpreted in the sense of distributions – i. e., when
this quantity is integrated against a suitably smooth test function, the deriva-
tives are passed over via integration by parts:ð

ψðxÞE½nðt − xÞnðjÞð0Þ� dx = ð− 1Þj
ð
ψðjÞðxÞRnðt − xÞ dx.

Since λjΨðe− iλÞ for j < d is integrable by assumption, we have
ψðjÞðxÞ= 1

2π

Ð ðiλÞjΨðe− iλÞeiλx dλ, and the second term in (34) becomes

1
2π

fnðλÞΨðe− iλÞ eiλh −
Xd− 1
j= 0

ð − iλÞjðt − hÞj
j!

eiλt
 !

dλ.

This cancels with the first term of (34), which shows that ΨðLÞ is MSE optimal.
Using similar techniques, the error spectral density is obtained as well. □

Derivation of the Weighting Kernel in Illustration 2: We compute the Fourier
Transform via the Cauchy Integral Formula (Ahlfors 1979), letting q= 1 for
simplicity:

1
2π

ð∞
−∞

1

1 + λ4
e− iλxdλ

We can replace x by jxj because the integrand is even. The standard approach is
to compute the integral of the complex function

f ðzÞ= eizjxj

1 + z4

along the real axis by computing the sum of the residues in the upper half plane,
and multiplying by 2πi (since f is bounded and integrable in the upper half
plane). It has two simple poles there: eiπ=4 and ei3π=4. The residues work out to be

ðz − eiπ=4Þf ðzÞjeiπ=4 =
e− jxj ð1− iÞ=

ffiffi
2

p

4ið1 + iÞ� ffiffiffi
2

p

ðz − ei3π=4Þf ðzÞjei3π=4 =
e− jxj ð1 + iÞ=

ffiffi
2

p

4ið1− iÞ� ffiffiffi
2

p

respectively. Summing these and multiplying by i gives the desired result, after
some simplification. To extend beyond the q= 1 case, simply let x 7!q1=4x and
multiply by q1=4 by change of variable. □
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Derivation of the Low-Pass Weighting Kernel. We consider extending the frf
to the complex plane, written as f ðzÞ= eizjxjð1 + z2mÞ− 1. The same strategy is used
as in the m= 2 case above, observing that the m poles of 1 + z2m are of the form
eijπ=m with j an odd integer between 1 and 4m− 1 Half of these poles occur in the
upper half plane, and half in the lower half complex plane. Moreover,

1 + z2m =
Ym
k = 1

z2 − 2 cos½πð2k − 1Þ=2m� z + 1� �

=
Ym
k = 1

z − eið2k − 1Þπ=2m
� 	

z − eið4m− 2k + 1Þπ=2m
� 	

,

so that the residue of f at a pole in the upper plane, say eið2k − 1Þπ=2m, is

eizjxjQ
,≠ k

z2 − 2 cos½πð2,− 1Þ=2m�z + 1ð Þ z − eið4m− 2k + 1Þπ=2mð Þ jz = eið4m− 2k + 1Þπ=2m .

Simplifying, and summing over the relevant residues yields

ψðxÞ=Xm
k = 1

expfð− sin½ð2k − 1Þπ=2m�+ i cos½ð2k − 1Þπ=2m�ÞjxjgQ
,≠ k

eið2k − 1Þπ=m − 2 cos½πð2,− 1Þ=2m� eið2k − 1Þπ=2m + 1ð Þ2 cos½πð2k − 1Þ=m� .

Proof of Proposition 1: First we show that the difference between the two filters
has no bias. Letting aðxÞ= xp for integer p and aτ = aðδτÞ,

ΨðLÞaðδτ+ δcÞ= Pp
j= 0

p
j


 �
ðδτÞp− j Ð∞

−∞
ðδc− xÞjψðxÞ dx

ΨδðBÞaτ =
Pp
j=0

p
j


 �
ðδτÞp− j P∞

k = −∞

ψkð− δkÞj

follows from binomial expansion. Matching coefficients, we see that a necessary
and sufficient condition for similar polynomial treatment isð∞

−∞

ðx − δcÞjψðxÞ dx = δj
X∞

k = −∞

ψkk
j [36]

for j=0, 1, 2, � � � , p. In the case of handling I(d) processes, we would impose
this condition with p =d. But (36) can be compactly expressed in frequency
domain as (26) using Fourier Transforms. Using the representation in eq. [5] of
MT, any discrete filter that satisfies this condition ensures that the discretization
error ΨðLÞyðδτ+ δcÞ−ΨδðBÞyτ only involves stochastic portions. Next, using
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induction and results of Hannan (1970), we can represent an I(d) CT process
(with square integrable differentiated process w) as

yðtÞ=
Xd− 1
j=0

tj

j!
yðjÞð0Þ +

ð∞
−∞

ðiλÞ− d eiλt −
Xd− 1
j=0

ðiλtÞj
j!

 !
dZðλÞ.

Typically the initialization values yðjÞð0Þ are random variables assumed to be
independent of the differentiated process w, to which the orthogonal increments
process dZ pertains. Stock-sampling the above representation is fairly clear, but
note that flow-sampling will result in the factor ð1− e− iλδÞ�ðiλÞ multiplying the
complex exponential. In either the stock or flow case we can apply the discrete-
lag and continuous-lag filters and cancel out the deterministic terms, leaving the
stated expressions for the discretization error. The expression (27) for the dis-
cretization MSE then follows at once. This integral (27) is not guaranteed to be
finite, unless there is a suitable degree of decay in fw or the other integrands
(clearly λ− 2d assists integrability). Also note that (26) ensures that a suitable
number of zeroes occur in the integrand at frequency zero, to offset the explo-
sive behavior of λ− 2d at λ =0. □

Proof of Proposition 2: We first establish the decomposition of the discretiza-

tion MSE. Using the notation ½f �δðλÞ= δ− 1P∞
h= −∞ f ðλ+ 2πh=δÞ for the fold of

the function f (cf., MT), the stock ODF is given by the formula

uδ = ½gecfwm2d�δ
�½fwm2d�δ, where mjðλÞ= λ− j. Then (28) follows from

½uδfwm2d�δ = ½gecfwm2d�δ, which holds due to a property of folds, implying that
the cross-terms are zero. Also the total PADF discretization MSE can be rewritten

as 1
πδ

Ð π
0 Kðλ=δÞdλ, where

KðxÞ=
X
h≠ 0

jgðx + 2πh=δÞecðx + 2πh=δÞ− gðxÞecðxÞj2fwðx + 2πh=δÞðx + 2πh=δÞ− 2d,

which is convenient for numerical computation. The integral expression for (27)
is easily approximated via a Riemann sum. The ODF discretization MSE can be
computed using the formula (also discussed in MT)

δ
2π

ðπ=δ
− π=δ

g2fwm2d
� �

δ − j gecfwm2d½ �δj2
.

fwm2d½ �δ
� 	

ðλÞ dλ.

This too can be rewritten as 1
πδ

Ð π
0 Hðλ=δÞdλ, where

HðxÞ= δ g2fwm2d
� �

δðxÞ− j gecfwm2d½ �δðxÞj2
.

fwm2d½ �δðxÞ
� 	

.
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This can also be computed via a Riemann approximation; of course, computa-
tion of these quantities require a knowledge of the true spectrum fw, and thus is
a theoretical exercise. Hence the PADF discretization MSE equals

1
πδ

ðπ
0
Kðλ=δÞdλ= 1

πδ

ðπ
0
Hðλ=δÞdλ+ 1

πδ

ðπ
0
½K −H�ðλ=δÞdλ,

which decomposes the error in terms of the ODF discretization MSE and the
extra MSE due to using a sub-optimal discretization.

Now for the main assertion of the proposition, it suffices to show that the
ratio of

Ð π=δ
0 ½K −H�ðλÞdλ to

Ð π=δ
0 HðλÞdλ tends to zero as δ ! 0. Let us write that

gðλÞ=Oðjλj− βÞ for some β ≥0, which is always possible because g is a bounded
function. Also note that m2d has tails of order 2d. The integrand of the denomi-
nator equals

X
h ≠ l

gfwm2dð Þ λ+ 2πh=δð Þ � fwm2dð Þ λ+ 2π,=δð Þ � ½gðλ+ 2πh=δÞ− gðλ+ 2π,=δÞ�,

divided by
P

hðfwm2dÞðλ+ 2πh=δÞ, which tends to fwðλÞλ− 2d as δ ! 0. Now the
terms that decay to zero slowest in the above double summation occur when
either h or , is zero; if both h and , are nonzero (and they don’t equal each
other), the corresponding summands will decay more rapidly in δ due to our tail
assumptions on fw and g. Therefore we can focus on

fwm2dð ÞðλÞ �
X
h≠0

gfwm2dð Þðλ+ 2πh=δÞ � ½gðλ+ 2πh=δÞ− gðλÞ�

+ gfwm2dð ÞðλÞ �
X
,≠0

fwm2dð Þðλ+ 2π,=δÞ � ½gðλÞ− gðλ+ 2π,=δÞ�.

In the first term, each summand is Oðδ2β + α+ 2dÞ, whereas in the second term each
summand is Oðδβ+ α+ 2dÞ; overall, the highest order term is of order δβ+ α+ 2d. Now
consider the function ½K −H�ðλÞ; this is the square ofX

h ≠0

½gðλ+ 2πh=δÞ− gðλÞ� � fwm2dð Þðλ+ 2πh=δÞ,

again divided by
P

hðfwm2dÞðλ+ 2πh=δÞ. When the square is expanded, every
summand in the double sum is Oðδ2β+ 2α+ 4dÞ. Now we know the order of growth
of both integrands, which is all that matters by the Dominated Convergence
Theorem. So long as β+ α+ 2d ≥0, the PADFMSE is asymptotic to theminimal MSE.

This completes the stock case. For the flow case, the ODF has frf

uδ = i gecfwm2d+ 1½ �δ 1− e− iλδ� �− 1
= fwm2d+ 2½ �δ,
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so that

1
2π

ð∞
−∞

jgðλÞecðλÞ=aδðλÞ− �uδðλÞj21− e− iλδj2fwðλÞλ− 2d− 2dλ

+
1
2π

ð∞
−∞

j�uδðλÞ− �gδðλÞj2j1− e− iλδj2fwðλÞλ− 2d− 2dλ.

The first term is the ODF discretization MSE, whereas the second term is the
extra MSE due to using a suboptimal discretization. As in the stock case, the
total error is the integral of a function K, whereas the lower bound on the error is
given by the integral of a function H. In contrast to the stock case, H is given by

HðxÞ= δ g2fwm2d
� �

δðxÞ− j½gecfwm2d+ 1�δðxÞj2=½fwm2d+ 2�δðxÞ
� 	

.

in the flow case. Also, the total error in the flow case is the integral of

KðxÞ=
X
h≠ 0

jgðx + 2πh=δÞecðx + 2πh=δÞðx + 2πh=δÞ

− gðxÞecðxÞxj2fwðx + 2πh=δÞðx + 2πh=δÞ− 2d− 2.
As in the case of a stock-sampled series, the MSE depends explicitly on c. With
these derivations, the analysis of the ratio of PADF to ODF discretization MSE
follows along the same lines as for the stock case. □
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