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Abstract

Neyman allocation of the sample under stratified random sampling is among the top
major advances and most widely used methods in probability sampling theory because it
minimizes sampling variance. Neyman allocation rarely yields integer solutions.

Building on Algorithms I and II in Wright (2012) and Algorithm III in Wright (2014)
which provide integer solutions and thus avoiding the need to round to integers, we present
two more exact optimal sample allocation algorithms. Algorithm IV minimizes the overall
sample size with a desired precision constraint, and Algorithm V seeks to minimize (or at
least decrease) the sampling variance for a fixed cost constraint or budget. We actually
present four variations of Algorithm V.

Remarkably, the presented simple algorithms always find the global optimum.

KEY WORDS: Cost constraints; Exact optimal allocation; Neyman allocation; Precision
constraints; Stratification; Sampling variance decomposition.

1. INTRODUCTION

When estimating a finite population total, we consider the problem of exact opti-
mal allocation (all positive integer values) of an overall fixed sample size n in stratified
random sampling with H strata to minimize sampling variance. Wright (2012) shows
for stratum h (h = 1, 2, ..., H): (1) that Algorithm I gives an exact optimal allocation
subject to nh ≥ 1 for all h; (2) that Algorithm II gives an exact optimal allocation
subject to nh ≥ 2 for all h; and (3) that controlled rounding with Neyman allocation
does not always lead to the minimum variance. Wright (2012) further shows that two
problems (sample allocation and reapportionment) are special cases of the following
more general problem and gives the general solution: if zi (for i = 1, 2, ..., I) are

positive integers such that
I∑

i=1

zi = z where z is fixed, find the values of zi that will

minimize
I∑

i=1

ri

zi

for any fixed positive real numbers r1, r2, ..., rI .

Wright (2014) generalizes Algorithms I and II with a new Algorithm III that gives
an exact optimal allocation subject to 0 < ah ≤ nh ≤ bh ≤ Nh for all h where ah and
bh are stated positive integers and overall fixed n. Among advantages, Algorithm III
avoids the possibility that nh > Nh for some stratum h, as is possible with Neyman
allocation. In this short paper, we give exact optimal sample allocation algorithms
(1) when n is not specified but desired precision Vo is specified (Algorithm IV) and
(2) when there are overall costs or budget constraints (Algorithm V).

When T̂Y is an estimator of the population total TY , an elementary decomposition
of the sampling variance V ar(T̂Y ) = V ar(Nȳ) under simple random sampling which
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shows how to explicitly reduce V ar(T̂Y ) = N2(
N − n

N
)
S2

n
step-by-step as n goes from

1 to 2 to 3 to · · · to N is given by (see Section 5)

V ar(T̂Y ) = N(N − 1)S2 − N2S2

1 · 2
− N2S2

2 · 3
− · · · − N2S2

(n− 1)(n)
. (∗)

This decomposition is also easily possible within each stratum under stratified random
sampling (see (∗∗) below), and it is the basis for and the essence of all Algorithms
I-V in this paper.

2. EXACT SAMPLE ALLOCATION

Assume a finite population of N units is partitioned into H subpopulations of
N1, N2, N3, ..., NH units, respectively. Thus N = N1 + N2 + N3 + · · · + NH . The
subpopulations are called strata. We assume that the values N1, N2, ..., NH are known.

Let Yhj be the value of interest for the jth unit in the hth stratum (j = 1, ..., Nh

and h = 1, ..., H). Also let

Ȳh =

Nh∑
j=1

Yhj

Nh

and S2
h =

Nh∑
j=1

(Yhj − Ȳh)
2

Nh − 1
.

In general and for the values Yhj, the population total TY is

TY =
H∑

h=1

Nh∑
j=1

Yhj =
H∑

h=1

Th =
H∑

h=1

NhȲh. (1)

To estimate TY under the classical design-based approach, we take (independent) sim-
ple random samples - one from each stratum - of sizes n1, n2, ..., nH respectively (entire
process called stratified random sampling) and obtain the sample means ȳ1, ȳ2, ..., ȳH .
Note that nh ≥ 1 for all h.

A natural estimator of TY is

T̂Y =
H∑

h=1

T̂h =
H∑

h=1

Nhȳh. (2)

It is known that T̂Y is an unbiased estimator of TY with sampling variance

V ar(T̂Y ) =
H∑

h=1

V ar(T̂h) =
H∑

h=1

N2
h

Nh − nh

Nh

S2
h

nh

. (3)

For a given overall sample size n, there is interest in the question regarding how
to allocate n among the H strata before sampling. In his landmark paper of 1934,
Neyman shows that for fixed n, the allocation (known as Neyman allocation) of n

that minimizes V ar(T̂Y ) subject to the constraint n =
H∑

h=1

nh is given by

nh =
NhSh

H∑
i=1

NiSi

n h = 1, 2, 3, ..., H. (4)

Unfortunately, the values of nh in Neyman allocation are rarely integers.
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In this paragraph, we give some background, first for the case H = 3. For H = 3
and noting that

1

nh

= 1− 1

1 · 2
− 1

2 · 3
− · · · − 1

(nh − 1)nh

for each h, it follows that V ar(T̂Y ) in (3) can be decomposed as

V ar(T̂Y ) =
3∑

h=1

Nh(Nh − 1)S2
h

−N2
1 S2

1

1 · 2
− N2

1 S2
1

2 · 3
− N2

1 S2
1

3 · 4
− · · · − N2

1 S2
1

(n1 − 1)(n1)

−N2
2 S2

2

1 · 2
− N2

2 S2
2

2 · 3
− N2

2 S2
2

3 · 4
− · · · − N2

2 S2
2

(n2 − 1)(n2)
(∗∗)

−N2
3 S2

3

1 · 2
− N2

3 S2
3

2 · 3
− N2

3 S2
3

3 · 4
− · · · − N2

3 S2
3

(n3 − 1)(n3)

where
3∑

h=1

Nh(Nh−1)S2
h is the sampling variance V ar(T̂Y ) when nh = 1 for all h. Each

subtraction in (∗∗) shows how much
3∑

h=1

Nh(Nh−1)S2
h decreases each time we increase

the sample size in each stratum by one additional unit until we have n = n1 +n2 +n3.
In Section 3, we observe that

N2
hS2

h

(mh − 1)(mh)

is the amount by which V ar(T̂Y ) “decreases” when the sample size for the hth stra-
tum is increased from mh− 1 to mh. The result in (∗∗) generalizes for any H and, as
follows, the result in (∗∗) and its generalization provides a way to obtain an alloca-
tion (n1, n2, ..., nH) of fixed overall sample size n to integer values n1, n2, ..., nH which
minimizes V ar(T̂Y ).

Next, we present Algorithms I and II. Specifically, for a given overall sample size n,
Wright (2012) shows that it is possible to obtain an exact allocation (n1, n2, n3, ..., nH)

of fixed n that minimizes V ar(T̂Y ) subject to n =
H∑

h=1

nh where nh is a positive integer

for all h, and it is given by Algorithm I.
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Exact Optimal Allocation Algorithm I [nh ≥ 1] (Wright, 2012)

Step 1: First, assign one unit to be selected for the sample from each stratum.
Step 2: Compute the array of priority values where each row corresponds to one of

the strata (For simplicity, assume N1S1 ≥ N2S2 ≥ · · · ≥ NHSH):

N1S1√
1 · 2

N1S1√
2 · 3

N1S1√
3 · 4

· · ·
...

NhSh√
1 · 2

NhSh√
2 · 3

NhSh√
3 · 4

· · ·
...

NHSH√
1 · 2

NHSH√
2 · 3

NHSH√
3 · 4

· · ·

Step 3: Pick the n−H largest priority values from the above array in Step 2 along
with the associated strata. Each stratum is allocated an additional sample
unit each time one of its priority values is among the n−H largest values.

Unbiased estimation of V ar(T̂Y ) requires the selection of at least two units from

each stratum in addition to the requirement that n =
H∑

h=1

nh, and Wright (2012) gives

the following modification which minimizes V ar(T̂Y ) in Algorithm II.

Exact Optimal Allocation Algorithm II [nh ≥ 2] (Wright, 2012)

Step 1: First, assign two units to be selected from each stratum.
Step 2: Compute the array of priority values where each row corresponds to one of

the strata (Assume N1S1 ≥ N2S2 ≥ · · · ≥ NHSH):

N1S1√
2 · 3

N1S1√
3 · 4

N1S1√
4 · 5

· · ·
...

NhSh√
2 · 3

NhSh√
3 · 4

NhSh√
4 · 5

· · ·
...

NHSH√
2 · 3

NHSH√
3 · 4

NHSH√
4 · 5

· · ·

The array in Step 2 is the same as the previous array in Step 2 of Algorithm
I except the first column of priority values has been removed. Only priority
values with the following values in the denominator

√
2 · 3,

√
3 · 4,

√
4 · 5,...

are in the array when we require nh ≥ 2.
Step 3: Pick the n− 2H largest priority values from the above array in Step 2 along

with the associated strata. Each stratum is allocated an additional sample
unit each time one of its priority values is among the n− 2H largest values.
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3. INTERPRETATION OF THE PRIORITY VALUES
NhSh√

(mh − 1)(mh)

We give an interpretation of the priority values in Algorithms I and II.
Assume a simple random sample of size mh from the hth stratum and let ȳmh

be
the sample mean based on the mh sample units. Similarly, let ȳmh−1 be the sample
mean from the hth stratum based on mh − 1 sample units. When the sample size for
the hth stratum is “increased” from mh − 1 to mh, the associated sampling variance
for the hth stratum “decreases” by

V ar(Nhȳmh−1)− V ar(Nhȳmh
) =

N2
hS2

h

(mh − 1)(mh)
=

 NhSh√
(mh − 1)(mh)

2

. (5)

The result in (5) is also the amount by which the overall sampling variance V ar(T̂Y )
“decreases” when the sample size for the hth stratum is increased from mh − 1 to
mh. When the n−H largest terms are selected sequentially as stated in Algorithm I,
each selection decreases the V ar(T̂Y ) by an associated squared priority value from a
stratum which is the largest amount possible at that point. Also by picking the value

N2
hS2

h

(mh − 1)(mh)
(or equivalently

NhSh√
(mh − 1)(mh)

), it is clear that up to and including

that point, we have a sample size of mh from the hth stratum.

4. EXACT OPTIMAL SAMPLE ALLOCATION FOR MIXED
CONSTRAINTS, DESIRED PRECISION, or COST CONSTRAINTS

4.1 Varying Strata Minimum and Maximum Sample Size Constraints

Given the intrepretation in Section 3, Wright (2014) notes it is possible to set
varying minimum sample sizes for the strata as well as varying maximum sample
sizes for the strata. That is, for example, we may want to have mixed constraints
2 ≤ n1 ≤ 7; 3 ≤ n2 ≤ 6; 1 ≤ n3 ≤ 10; etc. More generally, let ah and bh be integers
with the following constraints:

n =
H∑

h=1

nh; (6)

0 < ah ≤ nh ≤ bh ≤ Nh. (7)

We refer to the combination of constraints in (6) - (7) as a mixed constraint pattern.
From the discussion in Section 3, it follows immediately that the following Algo-

rithm III yields an exact optimal sample allocation (n1, n2, ..., nH) of fixed n under
the mixed constraint pattern in (6) - (7) to minimize V ar(T̂Y ).

Algorithm III is a generalization of Algorithms I and II.
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Exact Optimal Allocation Algorithm III [Mixed Constraints] (Wright, 2014)

Step 1: Determine an array as given assuming N1S1 ≥ N2S2 ≥ · · · ≥ NHSH .

N1S1√
1 · 2

N1S1√
2 · 3

N1S1√
3 · 4

· · ·
...

NhSh√
1 · 2

NhSh√
2 · 3

NhSh√
3 · 4

· · ·
...

NHSH√
1 · 2

NHSH√
2 · 3

NHSH√
3 · 4

· · ·

Step 2: Assume the mixed constraints in (6) - (7). On the hth row (stratum) of
the array, remove the values in all of the columns less than or equal to the
(ah − 1)th column and the values in all of the columns greater than the
(bh − 1)th column for h = 1, ...,H.

Step 3: From the hth row (stratum), at least ah units and no more than bh units are
to be included in the sample. So from the remaining values in the array from

Step 2, select the largest n−
H∑

h=1

ah values to complete the overall allocation

of n among the H strata. Each stratum is allocated an additional sample

unit each time one of its priority values is among the n−
H∑

h=1

ah largest values

from the array in Step 2.

4.2 When n Is Unspecified and Precison Vo Is Specified

When n is not given or specified, assume the investigator expresses the desire
to determine minimum n and allocation (n1, ..., nH) to meet a specified sampling
variance Vo = V ar(T̂Y ). We assume that

Vo <
H∑

h=1

Nh(Nh − 1)S2
h (8)

which is the sampling variance when nh = 1 for all h.

We present the following solution, and refer to it as Algorithm IV.
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Exact Optimal Allocation Algorithm IV [Unspecified n, Specified Precision Vo]

Step 1: First, assign 1 unit to be selected for the sample from each stratum.

Step 2: Compute the array of priority values as given in Algorithm I.

Step 3: Compute V ar(T̂Y ) = V ar(T̂Y |n11, ..., nH1) where n11 = 1, ..., nH1 = 1. Because we
assumed V ar(T̂Y |n11, ..., nH1) > Vo, go to Step 4.

[Note V ar(T̂Y |n11, ..., nH1) =
H∑

h=1

Nh(Nh − 1)S2
h.]

Step 4: Pick the largest priority value, refer to it as the “1st selected priority value”, as-
sociate it with its stratum, and increase that stratum sample size by 1. Our
new sample sizes are n1 = n12, n2 = n22, ..., nH = nH2 where exactly one of
n12, n22, ..., nH2 is 2 and the rest are each 1. Next, compute V ar(T̂Y |n12, ..., nH2).
If V ar(T̂Y |n12, ..., nH2) ≤ Vo, stop with n1 = n12, ..., nH = nH2, and n =
n12 + · · ·+ nH2. If V ar(T̂Y |n12, ..., nH2) > Vo, go to Step 5.
[Note V ar(T̂Y |n12, ..., nH2) = V ar(T̂Y |n11, ..., nH1) - (1st selected priority value)2.]

Step 5: Pick the next largest priority value, refer to it as the “2nd selected priority value”, as-
sociate it with its stratum, and increase that stratum sample size by 1. Our new sam-
ple sizes are n1 = n13, n2 = n23, ..., nH = nH3. Next, compute V ar(T̂Y |n13, ..., nH3).
If V ar(T̂Y |n13, ..., nH3) ≤ Vo, stop with n1 = n13, ..., nH = nH3, and n =
n13 + · · ·+ nH3. If V ar(T̂Y |n13, ..., nH3) > Vo, go to the next Step.
[Note V ar(T̂Y |n13, ..., nH3) = V ar(T̂Y |n12, ..., nH2) - (2nd selected priority value)2.]

NEXT
Steps: Altogether, continue through J steps sequentially until V ar(T̂Y |n1J , ..., nHJ) ≤ Vo

and the final sample size and allocation (n1J , n2J , ..., nHJ) are such that

n = n1J + n2J + · · ·+ nHJ . (9)

Remark 1: Note that n is the minimum overall sample size that achieves Vo.

4.3 When n Is Unspecified and Overall Cost (or Budget) Is Specified

All of the allocation algorithms considered so far in this paper, including Neyman
allocation, implicitly assume that the cost of one sample unit observation from stra-
tum h is the same as the cost of one sample unit observation from stratum h′ for
h 6= h′ and h, h′ = 1, ..., H. Assume that ch is the cost of one sample unit observation

from stratum h for h = 1, ..., H and that C ( >
H∑

h=1

ch) is the overall given available

cost or budget. Thus for allocation (n1, n2, ..., nH), we have the cost constraint

H∑
h=1

chnh ≤ C. (10)

Assume that N1S1 ≥ N2S2 ≥ · · · ≥ NHSH . We actually present four variations
of algorithms when there is a cost constraint or fixed budget. We first consider
Algorithm V-a.
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Exact Optimal Allocation Algorithm V-a [Unspecified n, Specified Cost C]

Step 1: First, assign 1 unit to be selected for the sample from each stratum.
Step 2: Compute the array of priority values as given in Algorithm I.
Step 3: Pick the largest priority value in the array that has not already been picked; associate

it with its stratum; and increase that stratum sample size by 1 if the new cost

including this 1 new sample unit is
H∑

h=1

chnh ≤ C. Otherwise (i.e.,
H∑

h=1

chnh > C),

stop without increasing the sample size by 1 for the associated stratum; cost of

sample when we stop is Ca =
H∑

h=1

chnh.

Step 4: Go to Step 3.

Remark 2: When we stop with Algorithm V-a, the resulting allocation (n1, n2, ..., nH)

gives minimum variance (3) for the overall realized sample size n =
H∑

h=1

nh; and be-

cause Ca =
H∑

h=1

chnh ≤ C, we stay within budget.

Remark 3: When we stop with Algorithm V-a, it is possible that C − Ca is suffi-
ciently large that we could add a few more sample units from some strata without
exceeding the budget C. This motivates Algorithm V-b.

Exact Optimal Allocation Algorithm V-b [Unspecified n, Specified Cost C]

Step 1: First, assign 1 unit to be selected for the sample from each stratum.
Step 2: Compute the array of priority values as given in Algorithm I.

Step 3: Compute C∗ =
H∑

h=1

chnh, the cost for the current stratum sample sizes.

Step 4: For each row of the array, h, compute C∗ + ch. If C∗ + ch > C, then remove all the
unpicked values from the hth row of the array.

Step 5: When all values have been removed from the array, stop.
Step 6: Pick the largest remaining priority value in the array; associate it with its stratum;

and increase that stratum sample size by 1. Remove the priority value which was
chosen from the array.

Step 7: Go to Step 3.

Remark 4: When we stop with Algorithm V-b, the resulting n1, n2, ..., nH further de-
crease the variance that would be obtained by Algorithm V-a; and the amount of the

budget spent for the sample Cb =
H∑

h=1

chnh is closer than Ca to C without exceeding it.

For the last two variations of algorithms involving cost constraints, we consider
a different function other than V ar(T̂Y ). Now assume that nh is at least 1 for

h = 1, 2, ..., H and that
N1S1√

c1

≥ · · · ≥ NHSH√
cH

for convenience. For mathematical

convenience, the desire is to determine an allocation n1, n2, ..., nH that minimizes a
new objective function, the weighted sum of stratum sampling variances, below with-

8



out exceeding the budget

H∑
h=1

V ar(Nhȳh)
1

ch

=
H∑

h=1

N2
h(

Nh − nh

Nh

)
S2

h

nh

1

ch

. (11)

Determining an allocation (n1, n2, ..., nH) to minimize (11) without exceeding the
budget is equivalent to finding the allocation to minimize

H∑
h=1

N2
hS2

h

ch

1

nh

. (12)

Following the derivation in Wright (2012) with
N2

hS2
h

ch

in place of N2
hS2

h leads to

the following solution which we call Algorithm V-c.

Exact Optimal Allocation Algorithm V-c [Unspecified n, Specified Cost C]

Step 1: First, assign 1 unit to be selected for the sample from each stratum.
Step 2: Compute the array of priority values where each row corresponds to one of the strata

(assume
N1S1√

c1
≥ N2S2√

c2
≥ · · · ≥ NHSH√

cH
):

(N1S1/
√

c1)√
1 · 2

(N1S1/
√

c1)√
2 · 3

(N1S1/
√

c1)√
3 · 4

· · ·
...

(NhSh/
√

ch)√
1 · 2

(NhSh/
√

ch)√
2 · 3

(NhSh/
√

ch)√
3 · 4

· · ·
...

(NHSH/
√

cH)√
1 · 2

(NHSH/
√

cH)√
2 · 3

(NHSH/
√

cH)√
3 · 4

· · ·

(13)

Step 3: Pick the largest priority value in the array that has not already been picked; associate
it with its stratum; and increase that stratum sample size by 1 if the new cost

including this 1 new sample unit is
H∑

h=1

chnh ≤ C. Otherwise (i.e.,
H∑

h=1

chnh > C),

stop without increasing the sample size by 1 for the associated stratum; cost of

sample when we stop is Cc =
H∑

h=1

chnh.

Step 4: Go to Step 3.

Remark 5: When we stop with Algorithm V-c, the resulting allocation (n1, n2, ..., nH)
gives minimum weighted sum of stratum sampling variances (11) for the overall realized

sample size n =
H∑

h=1

nh; and because Cc =
H∑

h=1

chnh ≤ C, we stay within budget.

Remark 6: As with Algorithm V-a, when we stop with Algorithm V-c, it is possible that
C − Cc is sufficiently large that we could add a few more sample units from some strata
without exceeding the budget C. This motivates Algorithm V-d.
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Exact Optimal Allocation Algorithm V-d [Unspecified n, Specified Cost C]

Step 1: First, assign 1 unit to be selected for the sample from each stratum.
Step 2: Compute the array of priority values as in Algorithm V-c.

Step 3: Compute C∗ =
H∑

h=1

chnh, the cost for the current stratum sample sizes.

Step 4: For each row of the array, h, compute C∗ + ch. If C∗ + ch > C, then remove all the
unpicked values from the hth row of the array.

Step 5: When all values have been removed from the array, stop.
Step 6: Pick the largest remaining priority value in the array; associate it with its stratum;

and increase that stratum sample size by 1. Remove the priority value which was
chosen from the array.

Step 7: Go to Step 3.

Remark 7: With the minimization of (11) in mind, when we stop with Algorithm V-

d, the final realized value of n in Algorithm V-d is n =
H∑

h=1

nh; the objective function in

(11) is decreased further than it would be with Algorithm V-c; and the amount of the

budget spent for the sample Cd =
H∑

h=1

chnh is closer than Cc to C without exceeding C.

We give two examples to illustrate Algorithms V-a, V-b, V-c, and V-d.

Example 1: With fixed budget C = $55, assume a finite population of N = 149 units
stratified into three strata with the following parameters:

h Nh Sh ch NhSh

1 47 10 $9 470
2 61 6 $4 366
3 41 4 $1 164

We start with the following Array 0.

ch NhSh
1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 · · ·

$9 470 332.34 191.98 135.68 105.10 85.81 72.52 62.81 · · ·

$4 366 258.80 149.42 105.66 81.84 66.82 56.48 48.91 · · ·

$1 164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 · · ·

Array 0: Array of Priority Values for Algorithms V-a and V-b.

Proceeding through Array 0 according to Algorithm V-a, the amount of the budget
being spent accumulates as shown in parentheses in Array 1 as we sequentially pick
the largest priority values (first 332.34; next 258.80; then 191.98;...; finally 105.66),
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resulting in final allocation (n1, n2, n3) = (4, 4, 2). Note that we use only Ca = $54
of the fixed budget C = $55. Along the way applying Algorithm V-a, we note the
V ar(T̂Y ) for the allocation in brackets [ ] for the allocation at that point. The double
brackets [[ ]] gives the weighted sum of stratum sampling variances (11) for the allo-
cation at that point. Note further that the final allocation gives a sampling variance
of V ar(T̂Y ) = 94, 610. Specifically, we describe the first set of entries in Array 1 as
follows:

• 332.34 = priority value obtained by 470 × ( 1√
1·2).

• (2, 1, 1) = (n1, n2, n3) gives the allocation for n = 4 after the first largest
priority value 332.34 (stratum 1) is picked.

• $23 = the cost of the sample allocation (2,1,1).

• V ar(T̂Y ) =
3∑

h=1

V ar(Nhȳh) = 263, 750 for the sample allocation (2,1,1).

•
3∑

h=1

V ar(Nhȳh)
1

ch

= 70, 930 for the sample allocation (2,1,1).

Note: All subsequent arrays are defined similarly noting that priority values for Al-
gorithms V-a and V-b differ from priority values for Algorithms V-c and V-d.

ch NhSh
1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 nh

$9 470 332.34 191.98 135.68 105.10 85.81 72.52 62.81 4
(2, 1, 1) (3, 2, 1) (4, 3, 1)
($23) ($36) ($49)

[263, 750] [159, 955] [119, 221]
[[70, 930]] [[50, 095]] [[42, 468]]

$4 366 258.80 149.42 105.66 81.84 66.82 56.48 48.91 4
(2, 2, 1) (3, 3, 1) (4, 4, 2)
($27) ($40) ($54)

[196, 772] [137, 629] [94, 610]
[[54, 186]] [[44, 513]] [[26, 229]]

$1 164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 2
(4, 3, 2)
($50)

[105, 773]
[[29, 020]]

n = 10

Array 1: Application of Algorithm V-a; Final (n1, n2, n3) = (4, 4, 2) costs Ca = $54.

Noting that we have an unspent C −Ca = $1 in Array 1 with the final allocation
(n1, n2, n3) = (4, 4, 2), below in Array 2, we apply Algorithm V-b which leads to the
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allocation (n1, n2, n3) = (4, 4, 3); this allocation makes use of the full fixed budget
Cb = C = $55; and the sampling variance is further decreased now to V ar(T̂Y ) =
90, 127.

ch NhSh
1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 nh

$9 470 332.34 191.98 135.68 − − − − 4
(2, 1, 1) (3, 2, 1) (4, 3, 1)
($23) ($36) ($49)

[263, 750] [159, 955] [119, 221]
[[70, 930]] [[50, 095]] [[42, 468]]

$4 366 258.80 149.42 105.66 − − − − 4
(2, 2, 1) (3, 3, 1) (4, 4, 2)
($27) ($40) ($54)

[196, 772] [137, 629] [94, 610]
[[54, 186]] [[44, 513]] [[26, 229]]

$1 164 115.97 66.95 − − − − − 3
(4, 3, 2) (4, 4, 3)
($50) ($55)

[105, 773] [90, 127]
[[29, 020]] [[21, 746]]

n = 11

Array 2: Application of Algorithm V-b; Final (n1, n2, n3) = (4, 4, 3) costs Cb = $55.

Next, we consider Algorithm V-c with the following parameters (we renumber the

strata so that
N1S1√

c1

≥ N2S2√
c2

≥ N3S3√
c3

for convenience):

h Nh Sh ch
NhSh√

ch

1 61 6 $4 183
2 41 4 $1 164
3 47 10 $9 470

3

We begin with Array 00:

ch
NhSh√

ch

1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 · · ·

$4 183 129.40 74.71 52.83 40.92 33.41 28.24 24.45 · · ·

$1 164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 · · ·

$9
470
3

110.78 63.96 45.23 35.03 28.60 24.17 20.94 · · ·

Array 00: Array of Priority Values for Algorithms V-c and V-d.
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From application of Algorithm V-c in Array 3, we have the final allocation (n1, n4, n3) =
(4, 4, 3). Here, we use only Cc = $47 of the fixed budget C = $55; and this results in
a sampling variance V ar(T̂Y ) = 106, 294.

ch
NhSh√

ch

1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 nh

$4 183 129.40 74.71 52.83 40.92 33.41 28.24 24.45 4
(2, 1, 1) (3, 2, 2) (4, 3, 3)
($18) ($32) ($46)

[307, 222] [160, 998] [108, 535]
[[66, 458]] [[35, 156]] [[23, 792]]

$1 164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 4
(2, 2, 1) (3, 3, 2) (4, 4, 3)
($19) ($33) ($47)

[293, 774] [156, 515] [106, 294]
[[53, 009]] [[30, 673]] [[21, 551]]

$9
470
3

110.78 63.96 45.23 35.03 28.60 24.17 20.94 3

(2, 2, 2) (3, 3, 3)
($28) ($42)

[183, 324] [119, 698]
[[40, 738]] [[26, 583]]

n = 11

Array 3: Application of Algorithm V-c; Final (n1, n2, n3) = (4, 4, 3) costs Cc = $47.

Noting an unspent C−Cc = $8 in Array 3 with final allocation (n1, n2, n3) = (4, 4, 3),
apply Algorithm V-d as given in Array 4 which leads to the allocation (n1, n2, n3) =
(5, 8, 3); this allocation makes use of the full fixed budget Cd = C = $55; from Array
3 to Array 4, the sampling variance is further decreased now to V ar(T̂Y ) = 96, 235.
(Note the renumbering of strata.)
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ch
NhSh√

ch

1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8

1√
8·9 nh

$4 183 129.40 74.71 52.83 40.92 − − − − 5
(2, 1, 1) (3, 2, 2) (4, 3, 3) (5, 4, 3)
($18) ($32) ($46) ($51)

[307, 222] [160, 998] [108, 535] [99, 596]
[[66, 458]] [[35, 156]] [[23, 792]] [[19, 876]]

$1 164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 − 8
(2, 2, 1) (3, 3, 2) (4, 4, 3) (5, 5, 3) (5, 6, 3) (5, 7, 3) (5, 8, 3)
($19) ($33) ($47) ($52) ($53) ($54) ($55)

[293, 774] [156, 515] [106, 294] [98, 251] [97, 355] [96, 715] [96, 235]
[[53, 009]] [[30, 673]] [[21, 551]] [[18, 531]] [[17, 635]] [[16, 994]] [[16, 514]]

$9
470
3

110.78 63.96 − − − − − − 3

(2, 2, 2) (3, 3, 3)
($28) ($42)

[183, 324] [119, 698]
[[40, 738]] [[26, 583]]

n = 16

Array 4: Application of Algorithm V-d; Final (n1, n2, n3) = (5, 8, 3) costs Cd = $55.

Example 2: With fixed budget C = $61, assume a finite population of N = 149 units
stratified into three strata with the following parameters:

h Nh Sh ch NhSh

1 47 10 $4 470
2 61 6 $2 366
3 41 4 $9 164

Applying Algorithms V-a and V-b as in Example 1, we obtain the corresponding
Array 1∗ and Array 2∗.

According to Algorithm V-a, the amount of the budget being spent accumulates
as shown in parentheses in Array 1∗ as we sequentially pick the largest priority values,
resulting in final allocation (n1, n2, n3) = (7, 5, 2). Note that we use only Ca = $56
of the fixed budget C = $61. Along the way, we note the V ar(T̂Y ) for the allocation
in brackets [ ] for the allocation at that point; the weighted sum of stratum sampling
variances (11) is given by double brackets [[ ]]. Note further that the final allocation
gives a sampling variance of V ar(T̂Y ) = 64, 244.
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ch NhSh
1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 nh

$4 470 332.34 191.98 135.68 105.10 85.81 72.52 62.81 7
(2, 1, 1) (3, 2, 1) (4, 3, 1) (5, 4, 2) (6, 4, 2) (7, 5, 2)
($19) ($25) ($31) ($46) ($50) ($56)

[263, 750] [159, 955] [119, 221] [83, 565] [76, 202] [64, 244]
[[95, 233]] [[52, 540]] [[36, 775]] [[26, 938]] [[25, 097]] [[20, 433]]

$2 366 258.80 149.42 105.66 81.84 66.82 56.48 48.91 5
(2, 2, 1) (3, 3, 1) (4, 4, 2) (6, 5, 2)
($21) ($27) ($42) ($52)

[196, 772] [137, 629] [94, 610] [69, 504]
[[61, 744]] [[41, 377]] [[29, 699]] [[21, 748]]

$9 164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 2
(4, 3, 2)
($40)

[105, 773]
[[32, 281]]

n = 14

Array 1∗: Application of Algorithm V-a; Final (n1, n2, n3) = (7, 5, 2) costs Cb = $56.

Noting that we have an unspent C−Ca = $5 in Array 1∗ with final allocation (n1, n2, n3) =
(7, 5, 2), below in Array 2∗, we apply Algorithm V-b which leads to the allocation (n1, n2, n3) =
(7, 7, 2); this allocation makes use of Cb = $60 of the full fixed budget C = $61; the sampling
variance is further decreased now to V ar(T̂Y ) = 56, 590.

ch NhSh
1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 nh

$4 470 332.34 191.98 135.68 105.10 85.81 72.52 − 7
(2, 1, 1) (3, 2, 1) (4, 3, 1) (5, 4, 2) (6, 4, 2) (7, 5, 2)
($19) ($25) ($31) ($46) ($50) ($56)

[263, 750] [159, 955] [119, 221] [83, 565] [76, 202] [64, 244]
[[95, 233]] [[52, 540]] [[36, 775]] [[26, 938]] [[25, 097]] [[20, 433]]

$2 366 258.80 149.42 105.66 81.84 66.82 56.48 − 7
(2, 2, 1) (3, 3, 1) (4, 4, 2) (6, 5, 2) (7, 6, 2) (7, 7, 2)
($21) ($27) ($42) ($52) ($58) ($60)

[196, 772] [137, 629] [94, 610] [69, 504] [59, 779] [56, 590]
[[61, 744]] [[41, 377]] [[29, 699]] [[21, 748]] [[18, 201]] [[16, 606]]

$9 164 115.97 − − − − − − 2
(4, 3, 2)
($40)

[105, 773]
[[32, 281]]

n = 16

Array 2∗: Application of Algorithm V-b; Final (n1, n2, n3) = (7, 7, 2) costs Cb = $60.
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Next, as in Example 1, we consider Algorithm V-c with the following parameters

(we renumber the strata so that
N1S1√

c1

≥ N2S2√
c2

≥ N3S3√
c3

for convenience):

h Nh Sh ch
NhSh√

ch

1 61 6 $2 366√
2

2 47 10 $4 235
3 41 4 $9 164

3

We have the following Array 3∗ and Array 4∗ applying Algorithms V-c and V-d:

NhSh√
ch

1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 nh

$2
366√

2
183.00 105.66 74.71 57.87 47.25 39.93 34.58 7

(2, 1, 1) (3, 2, 1) (4, 3, 1) (5, 4, 1) (6, 5, 1) (7, 6, 1)
($17) ($23) ($29) ($35) ($41) ($47)

[307, 222] [174, 446] [126, 466] [101, 360] [85, 850] [75, 297]
[[89, 357]] [[50, 581]] [[35, 795]] [[27, 844]] [[22, 851]] [[19, 415]]

$4 235 166.17 95.94 67.84 52.55 42.90 36.26 31.40 7
(2, 2, 1) (3, 3, 1) (4, 4, 1) (5, 5, 1) (6, 6, 1) (7, 7, 2)
($21) ($27) ($33) ($39) ($45) ($60)

[196, 772] [137, 629] [108, 058] [90, 315] [78, 486] [56, 590]
[[61, 744]] [[41, 377]] [[31, 193]] [[25, 083]] [[21, 010]] [[16, 606]]

$9
164
3

38.66 22.32 15.78 12.22 9.98 8.44 7.31 2

(7, 6, 2)
($56)

[61, 849]
[[17, 921]]

n = 16

Array 3∗: Application of Algorithm V-c; Final (n1, n2, n3) = (7, 7, 2) costs Cc = $60.
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ch
NhSh√

ch

1√
1·2

1√
2·3

1√
3·4

1√
4·5

1√
5·6

1√
6·7

1√
7·8 nh

$2
366√

2
183.00 105.66 74.71 57.87 47.25 39.93 − 7

(2, 1, 1) (3, 2, 1) (4, 3, 1) (5, 4, 1) (6, 5, 1) (7, 6, 1)
($17) ($23) ($29) ($35) ($41) ($47)

[307, 222] [174, 446] [126, 466] [101, 360] [85, 850] [75, 297]
[[89, 357]] [[50, 581]] [[35, 795]] [[27, 844]] [[22, 851]] [[19, 415]]

$4 235 166.17 95.94 67.84 52.55 42.90 36.26 − 7
(2, 2, 1) (3, 3, 1) (4, 4, 1) (5, 5, 1) (6, 6, 1) (7, 7, 2)
($21) ($27) ($33) ($39) ($45) ($60)

[196, 772] [137, 629] [108, 058] [90, 315] [78, 486] [56, 590]
[[61, 744]] [[41, 377]] [[31, 193]] [[25, 083]] [[21, 010]] [[16, 606]]

$9
164
3

38.66 − − − − − − 2

(7, 6, 2)
($56)

[61, 849]
[[17, 921]]

n = 16

Array 4∗: Application of Algorithm V-d; Final (n1, n2, n3) = (7, 7, 2) costs Cd = $60.

Note from Array 3∗ that V ar(T̂Y ) = 56, 590 when we stop with final allocation
(n1, n2, n3) = (7, 7, 2); also from Array 4∗, that V ar(T̂Y ) = 56, 590 when we stop
with the same final allocation.

Remark 8: As in (5), when the sample size for the hth stratum is “increased” from

mh − 1 to mh in Algorithms V-c and V-d, the associated V ar(Nhȳh)
1

ch

for the hth

stratum “decreases” by

V ar(Nhȳnh−1)

ch

− V ar(Nhȳnh
)

ch

=
(N2

hS2
h/ch)

(mh − 1)(mh)
=

 (NhSh/
√

ch)√
(mh − 1)(mh)

2

. (14)

The result in (14) is also the amount by which the overall expression in (11) “de-
creases” when the sample size for the hth stratum is increased from mh − 1 to mh.

Remark 9: The quantity in (14) is the reduction in V ar(T̂Y ) per unit cost by picking
a unit for the sample from stratum h bringing that stratum’s sample size to mh. At
each step in Algorithm V-c, we pick a unit from the stratum which reduces V ar(T̂Y )
by the largest amount per unit cost at that point in the sequence, which is very rea-
sonable and desirable.

Remarks 8 and 9 explain why Algorithm V-c results in an allocation of the realized n
that minimizes (11) the weighted sum of stratum sampling variances subject to (10).
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Algorithm V-d reduces (11) further than Algorithm V-c does while still subject
to (10).

Remark 10: By design, the allocation (n1, ..., nH) of n =
H∑

h=1

nh that is observed and

associated with Cc =
H∑

h=1

chnh minimizes (11) the weighted sum of stratum sampling

variances subject to Cc ≤ C. The following theorem which is inspired by Kadane

(2005) shows that the allocation (n1, ..., nH) of n =
H∑

h=1

nh that is observed and associ-

ated with Cc =
H∑

h=1

chnc minimizes V ar(T̂Y ) the unweighted sum of stratum sampling

variances over all other allocations that cost less than or equal to Cc.

Before stating and proving the Theorem, note that by picking the largest priority

values
NhSh/

√
ch√

(mh − 1)mh

in Algorithm V-c we are equivalently picking the largest squared

priority values
N2

hS2
h/ch

(mh − 1)mh

. Because these largest priority values (also largest squared

priority values) are all positive, there is a positive real number k such that

N2
hS2

h/ch

(mh − 1)mh

≥ k

for all priority values that are picked to obtained Cc =
H∑

h=1

chnh.

Theorem: For fixed budget C, let E1 be the subset of largest priority values in the
array of Algorithm V-c such that for some k ∈ R+

(i)
N2

hS2
h/ch

(mh − 1)mh

≥ k for each priority value in E1;

(ii)
N2

hS2
h/ch

(mh − 1)mh

< k for each priority value in Ec
1, the complement of E1; and

(iii)
∑
E1

ch +
H∑

h=1

ch = Cc where Cc is as defined in Algorithm V-c.

Let E2 be another subset of priority values in the array of Algorithm V-c such that
CE2 ≤ Cc, where CE2 is the cost of a sample corresponding to E2. Keep in mind that
CE2 includes the total cost of one unit from each stratum as well as for the additional
units included as a result of picking the largest priority values from the array. Then

∑
E1

N2
hS2

h

(mh − 1)mh

≥
∑
E2

N2
hS2

h

(mh − 1)mh

. (15)

(Comment: From the decomposition of V ar(T̂h) in Section 5 or (∗∗),
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V ar(T̂Y ) =
H∑

h=1

V ar(T̂h) =
H∑

h=1

Nh(Nh − 1)S2
h −

∑
E1

N2
hS2

h

(mh − 1)mh

where E1 is the set of priority values (and associated allocation (n1, ..., nH)) leading

to Cc =
H∑

h=1

chnh. Thus by showing that

∑
E1

N2
hS2

h

(mh − 1)mh

is maximized in (15), we have that Algorithm V-c which stops at Cc with allocation
(n1, ..., nH) minimizes V ar(T̂Y ), the unweighted sum of stratum sampling variances,
for any allocation whose associated cost does not exceed Cc.)

Proof: It is enough to show

∑
E1

N2
hS2

h

(mh − 1)mh

−
∑
E2

N2
hS2

h

(mh − 1)mh

≥ 0.

Note that E1 = (E1 ∩ E2) ∪ (E1 ∩ Ec
2) and E2 = (E2 ∩ E1) ∪ (E2 ∩ Ec

1). Now

∑
E1

N2
hS2

h

(mh − 1)mh

−
∑
E2

N2
hS2

h

(mh − 1)mh

=
∑

E1∩E2

N2
hS2

h

(mh − 1)mh

+
∑

E1∩Ec
2

N2
hS2

h

(mh − 1)mh

−
∑

E2∩E1

N2
hS2

h

(mh − 1)mh

−
∑

E2∩Ec
1

N2
hS2

h

(mh − 1)mh

=
∑

E1∩Ec
2

N2
hS2

h

(mh − 1)mh

−
∑

E2∩Ec
1

N2
hS2

h

(mh − 1)mh

(16)
By assumption (i),

N2
hS2

h/ch

(mh − 1)mh

≥ k (17)

for all priority values in E1 and hence for all priority values in E1 ∩ Ec
2. Thus

N2
hS2

h

(mh − 1)mh

≥ kch (18)

for all priority values in E1 ∩ Ec
2, and we have

∑
E1∩Ec

2

N2
hS2

h

(mh − 1)mh

≥ k
∑

E1∩Ec
2

ch. (19)

By assumption (ii), for all priority values in Ec
1 and hence for all priority values in

E2 ∩ Ec
1
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N2
hS2

h/ch

(mh − 1)mh

< k

Thus

N2
hS2

h

(mh − 1)mh

< kch

for all priority values in E2 ∩ Ec
1, and we have

∑
E2∩Ec

1

N2
hS2

h

(mh − 1)mh

< k
∑

E2∩Ec
1

ch (20)

So from (16), (19), and (20), we have

∑
E1

N2
hS2

h

(mh − 1)mh

−
∑
E2

N2
hS2

h

(mh − 1)mh

=
∑

E1∩Ec
2

N2
hS2

h

(mh − 1)mh

−
∑

E2∩Ec
1

N2
hS2

h

(mh − 1)mh

≥ k(
∑

E1∩Ec
2

ch −
∑

E2∩Ec
1

ch)

= k(
∑

E1∩Ec
2

ch +
∑

E1∩E2

ch −
∑

E2∩E1

ch −
∑

E2∩Ec
1

ch)

= k(
∑
E1

ch −
∑
E2

ch)

= k([
∑
E1

ch +
H∑

h=1

ch]− [
∑
E2

ch +
H∑

h=1

ch])

= k(Cc − CE2) ≥ 0

Thus the theorem has been shown.

5. CONCLUSION

Perhaps the most important advance in probability sampling theory is Neyman’s
1934 paper in which he provides arguably the most widely used and known concept
of stratification and optimal allocation of the sample. The exact result in Wright
(2012) improves upon the method by Neyman and guarantees integers for all stratum
optimal sample sizes, as desired, while yielding minimum sampling variance.

In this paper, we consider a solution with a precision constraint (Algorithm IV),
and we consider various options with a cost constraint (Algorithms V-a, V-b, V-c,
V-d). The results of this paper are simple, clear, exact, optimal, and practical.

The key to all five algorithms is revealed by considering a very simple decomposi-
tion of V ar(T̂h) for stratum h. For a simple random sample of size nh within stratum
h which has Nh units, note the following decomposition of V ar(T̂h)
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V ar(T̂h) = N2
h(

Nh − nh

Nh

)
S2

h

nh

= Nh(Nh − 1)S2
h −

N2
hS2

h

1 · 2
− N2

hS2
h

2 · 3
− · · · − N2

hS2
h

(nh − 1)(nh)
.

Specifically, for all possible values of nh, we see the following cumulative decreases:
for nh = 1, V ar(T̂h) = Nh(Nh − 1)S2

h;

for nh = 2, V ar(T̂h) = Nh(Nh − 1)S2
h −

N2
hS2

h

1 · 2
;

for nh = 3, V ar(T̂h) = Nh(Nh − 1)S2
h −

N2
hS2

h

1 · 2
− N2

hS2
h

2 · 3
;

for nh = 4, V ar(T̂h) = Nh(Nh − 1)S2
h −

N2
hS2

h

1 · 2
− N2

hS2
h

2 · 3
− N2

hS2
h

3 · 4
;

...
for nh = Nh, V ar(T̂h) = 0.
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