
Report Issued: February 25, 2016 

Disclaimer: This report is released to inform interested parties of research and to encourage discussion.  

The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. 

RESEARCH REPORT SERIES 
(Statistics #2016-01) 

Estimation of the Difference of 

Small Area Parameters from 

Different Time Periods 

Ryan Janicki
 

Center for Statistical Research & Methodology 
Research and Methodology Directorate 

U.S. Census Bureau 
Washington, D.C. 20233 





Estimation of the difference of small area means from different time periods

Ryan Janicki∗

Abstract

The U. S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE)
program provides annual estimates of poverty within school districts, counties and
states for different age groups. The SAIPE program’s estimates are model-based, and
use single year American Community Survey (ACS) data and administrative records.
There is potential for improving estimates of the current year’s parameters by using
previous years’ data in the small area model. Two methods for utilizing multiple years
of data are compared: the first method uses a bivariate normal distribution for the
model errors from different time periods, and the second method assumes an AR1
structure on model parameters. Gains in efficiency using multiple years of survey
data for estimation of a small area parameter are investigated using each method. In
addition, estimates of the increase or decrease over time of a small area parameter are
constructed, as well as credible intervals for the change over time. An example using
state-level SAIPE data is presented.
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1. Introduction

Many surveys collect data at regular intervals, such as monthly or annually. These surveys
are designed to provide accurate estimates for quantities of interest on large domains, such
as at a national or state level. However, it is often of interest to simultaneously estimate
quantities at smaller domains, such as at smaller geographic regions, cross classified by
demographic characteristics such as age, race, and sex, for which the original survey was
not designed. While the overall sample size for the survey may be very large, there may be
insufficient sample size to provide reliable direct estimates for a parameter of interest for
certain smaller domains. The term small area is used for any domain of interest for which
the domain-specific sample size is insufficient to obtain reliable direct estimates. A popular
method for obtaining estimates with higher precision than survey-based direct estimates is
to introduce small area models which “borrow strength” by connecting different areas and
incorporating auxiliary covariate information, such as administrative records. Empirical
Bayes and hierarchical Bayes methods are widely used for inference in small area estima-
tion problems, as these methods can explicitly link different small areas through use of
random effects and effectively incorporate administrative records.

A popular small area model is the Fay-Herriot model (Fay and Herriot, 1979), given by

yi = θi + ei

θi = xTi β + νi
(1)

for i = 1, . . . ,m. The yi are the direct estimates of the small area means θi, and the
sampling errors ei are independent, mean zero random variables, with known sampling
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variances Vi. The model errors νi are i.i.d. mean zero random variables, independent of
the ei, with common variance σ2. This model is a cross-sectional model using data from a
single time point.

For known σ2, the best linear unbiased predictor (BLUP) of θi is

θ̃i = (1− wi)yi + wix
T
i β̃, (2)

where wi = Vi/(Vi + σ2), Σ = Σ
(
σ2
)

= diag
(
V1 + σ2, . . . , Vm + σ2

)
, and

β̃ = β̃(σ2) =
(
XTΣ−1X

)−1
XΣ−1y. (3)

The BLUP θ̃i is thus a weighted average of the regression estimate xTi β̃ and the direct
survey estimate yi. In practice, σ2 is not known, and must be estimated. The empirical best
linear unbiased predictor (EBLUP), θ̂i of θi, replaces σ2 with an estimate, σ̂2, in equations
(2) and (3). The variance component, σ2, can be estimated with a moment-based estimator
(Prasad and Rao, 1990) which does not require an assumption of normality of the error
components but is not guaranteed to be positive. The variance component can also be
estimated with the maximum likelihood (ML) or restricted maximum likelihood (REML)
estimator (Harville, 1977), which both require full specification of a parametric model and
must be found numerically.

An important application of the Fay-Herriot model is estimation of income and poverty
by the Small Area Income and Poverty Estimates (SAIPE) program. The SAIPE program
produces estimates within school districts, counties, and states, for the age groups 0 – 4,
5 – 17, 18 – 64, and 65 and older. The data used are the one year estimates, yi, from the
American Community Survey (ACS) of the proportion in poverty in small area i, and the
covariates, xi, include the tax return poverty rate, the tax nonfiler rate, the Supplemental
Nutrition Assistance Program (SNAP) participation rate, Supplemental Security Income
(SSI) recipiency rate, and the residuals from a regression of the Census 2000 poverty ratios
on the previous four covariates.

Many statistical agencies fit the Fay-Herriot model each year, using only the cross-
sectional survey data collected during the current time period. This sequence of modeling
efforts result in a time series of estimates. From these estimates, patterns, such as the
estimated increase or decrease of a small area mean, can be observed, and it is of interest
to determine whether these changes are significantly different from zero. There are two
challenges to making this type of inference using cross-sectional models. First, because
distinct models are fit at distinct time points, estimates for a small area parameter use only
data from that time period. There is no explicit linking mechanism in these cross-sectional
models which uses data over time or describes how parameters change over time. Second,
in small area models, the parameter representing the truth, such as the true poverty rate
in a state, is modeled using combination of fixed and random effects. Any interval used
for inferring significance needs to account for the randomness of both the estimate and the
parameter of interest.

Because estimates are produced at fixed time periods based on cross sectional survey
data, it is desirable to make inferences on the difference in parameters from different time
periods based on the published estimates. Basel et al. (2010) gives a method for estimating
the covariance of model errors in the Fay-Herriot model at distinct time points s and t, using
only the estimated parameters β̂s and β̂t and σ̂s and σ̂t; that is, the model parameters do
not have to be reestimated once new data is collected. This method is based on an implicit
assumption of bivariate normality of the model parameters νi,s and νi,t in model (1), that
is, that (

νi,s
νi,t

)
i.i.d.∼ N2

((
0
0

)
,

(
σ2s σs,t
σs,t σ2t

))
(4)
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for small areas i = 1, . . . ,m and time points s and t.
Under the assumption of bivariate normality of model errors in (4), the marginal distri-

butions at each time point reduce to the Fay-Herriot model (1). The BLUP, θ̃i,t, of θi,t at
each time point t, based only on the cross-sectional data, is therefore the same as in (2). The
mean square error (MSE) of the difference θ̃i,t − θ̃i,s under model (4), for known variance
components σ2t , σ2s and σs,t, is

MSE
(
θ̃i,s − θ̃i,t

)
= E

{
θ̃i,s − θ̃i,t − θi,s + θi,t

}2

= E
{
θ̃i,s − θi,s

}2
+ E

{
θ̃i,t − θi,t

}2
− 2E

{(
θ̃i,s − θi,s

)(
θ̃i,t − θi,t

)}
=

σ2sVi,s
σ21 + Vi,s

+
V 2
i,s

(σ2s + Vi,s)
2x

T
i,s

(
XT

s Σ−1s Xs

)−1
xi,s

+
σ2t Vi,t
σ2t + Vi,t

+
V 2
i,t

(σ2s + Vi,t)
2x

T
i,t

(
XT

t Σ−1t Xt

)−1
xi,t

− 2σs,tVi,sVi,t

(σ2s + Vi,s)
(
σ2t + Vi,t

) lTi (I −M i,s) (I −M i,t)
T li,

(5)

where M i,t = Xt

(
XT

t Σ−1t Xt

)−1
XT

t Σ−1t and li is a vector of 0s of length m, with a 1
in the ith place.

An estimate of the MSE of the difference of EBLUPs, θ̂i,t − θ̂i,s, can be obtained by
plugging in estimates of the variance components in (5). Moment-based estimates of σ2s
and σ2t are well-known (Rao, 2003); alternatively, the maximum likelihood or restricted
maximum likelihood estimator can be used. Basel et al. (2010) showed that

σ̃s,t =
1

r

m∑
i=1

(
yi,s − xTi,sβ̂s

)(
yi,t − xTi,tβ̂t

)
(σ2s +Di)

(
σ2t +Di

) , (6)

where
r = tr

(
Σ−1s (I −M s) (I −M t)

T Σ−1t

)
,

is an unbiased estimate of σs,t. Estimates σ̂2t and σ̂2s can be plugged into the expression for
σ̃s,t to obtain an estimator σ̂s,t for σs,t. This estimator does have the limitation that it can
lead to estimated correlations which lie outside the interval (−1, 1).

This method for linking data from different time points is very useful because inference
on the change in small area means over time can be made using only point estimates com-
puted separately from each cross-sectional data set, that is, point estimates do not need to
be updated with the inclusion of additional data. The disadvantage of this method is that it
does not easily generalize to data sets including more than two time periods. Also, because
point estimates use only data from a single time frame, there is possible efficiency loss in
not using the full data set to compute point estimates.

An alternative to using a bivariate normal distribution for model errors to incorporate
data from multiple periods is to introduce an explicit linking mechanism over time within
the small area model, in addition to the linking mechanism across small areas. The time-
linking within the model involves indexing the small area means θ by both space i and
time t, and modeling the relationship of the parameters θi,t1 and θi,t2 for different time
periods t1 and t2. Recently, there has been much written about combining cross-sectional
and time series data in small area modeling. Fully Bayesian models were used by Datta
et al. (1999), Datta et al. (2002), and Li et al. (2012), with a random walk process linking
parameters over time. Franco and Bell (2015) adapted binomial/logit normal models for
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use with discrete time series. Frequentist methods were used by Saei and Chambers (2003),
Torabi and Shokoohi (2012), and Pereira and Coelho (2012), who used an autoregressive
process for the time-linking mechanism. Extensions of these models to include a spatio-
temporal component were given by Singh et al. (2005), Marhuenda et al. (2013), and Porter
et al. (2014). Applications of these methods to estimating poverty can be found in Hawala
and Lahiri (2012), Taciak and Basel (2012), and Franco and Bell (2015).

These papers are closely related to the work of Rao and Yu (1994), who gave an exten-
sion of the Fay-Herriot model which allows modeling of survey data taken at multiple time
points. The extension introduces a first order autoregressive process into the linking model.
For i = 1, . . . ,m small areas and t = 1, . . . , T time points, the model is

yi,t = θi,t + ei,t

θi,t = xTi,tβt + vi + ui,t

ui,t = ρui,t−1 + εi,t, |ρ| < 1

(7)

ei = (ei,1, . . . , ei,T )T
ind.∼ Nm (0,V i)

vi
i.i.d.∼ N

(
0, σ2v

)
εi,t

i.i.d.∼ N
(
0, σ2

)
for known (m×m) sampling covariance matrix V i for the ith small area. The restriction
|ρ| < 1 guarantees stationarity of the autoregressive component of the model.

In matrix form, this model can be written as

y = Xβ +Zν + u+ ε,

where Z = Im ⊗ 1T , ⊗ is the direct product operator, and 1T is a vector of 1’s of length
T . It follows that

Cov (y) ≡ Σ = V + σ2Im ⊗ Γ + σ2νZZ
T , (8)

where V is the matrix of sampling variances of the direct estimates y and Γ is a T × T
matrix with elements ρ|i−j|/(1− ρ2).

The advantage of using a small area model which has a time series components is
that data sets including any number of time points can be used, and there is potential for
increased precision of estimates, provided the model adequately fits the data. However,
assessing model fit can be a difficult problem when using small area models. Another issue
is that parameter estimates can be difficult to compute, and may take values outside the
parameter space. A further, practical problem is that introduction of new data requires a
complete refitting of the model, which in turn provides new estimates of previous years’
small area parameters, in addition to the new, current year prediction of the small area
means.

Extensions of the Fay Herriot model, such as model (4) or (7), which include a linking
mechanism over time, are useful not only for point estimation, but also for constructing
intervals for the change in small area means over time. A point estimate of the difference
of small area parameters can be obtained from model (7) using standard EBLUP theory, and
the estimated MSE, along with a normal approximation, can be used to construct intervals
(Li,T,α, Ui,T,α) = (Li,T,α(Y ,X), Ui,T,α(Y ,X)), with the property that

P (Li,T,α ≤ θi,T − θi,T−1 ≤ Ui,T,α) ≥ 1− α.

“Significant change” of small area parameters from different time periods at level α can
then be defined to mean the interval (Li,T,α, Ui,T,α) does not contain 0. It should be noted

4



that here, “significant” does not correspond to a standard hypothesis test, since in small
area models such as (1), a linking model using area-specific covariates is employed to
relate the true small area means. A standard hypothesis test of θi,T−1 = θi,T is therefore
not meaningful, since P (θi,T−1 = θi,T ) = 0.

There are two main goals of this paper. The first is to explore the benefit of using multi-
ple years of survey data to predict a small area mean in the current time period using model
(7), compared to estimation using only cross sectional data and the Fay-Herriot model (1).
The second goal is to estimate the increase or decrease of small area parameters over time,
and to construct valid intervals for this difference, using model (4) or (7). In Section 2,
estimation of model parameters in small area models which combine cross-sectional and
time-series data are discussed, and new moment-based estimators for estimating the vari-
ance components are introduced. In Section 3, SAIPE data from 2007 – 2012 are analyzed,
and the EBLUPs using only cross-sectional data are compared to EBLUPs using the full
data set. Credible intervals centered on these EBLUPs are constructed based on estimated
MSE using models (4) and (7), and compared to naive intervals based only on direct esti-
mates. A numerical example is presented in Section 4 to investigate finite sample properties
of the estimators and of the different intervals. Concluding remarks are given in 5.

2. Parameter estimation

In model (7), the BLUP of θi,t depends on the variance parameters ρ, σ2 and σ2v , which
would be unknown in practice. Rao and Yu (1994) gave unbiased moment estimators of σ2

and σ2v when ρ is known, and different plug-in estimators of ρ were explored; the validity
of these moment estimators depends only on correct specification of the model mean and
covariance. The issue with these moment estimators is that they depend on estimation of ρ,
which is particularly difficult in model (7), and the estimated values are very sensitive to ρ.
In addition, moment estimates of ρ were shown in Rao and Yu (1994) to often fall outside
the admissible range of (−1, 1), and to underestimate the true value of ρ. In this section,
new moment estimators of the variance components are presented as alternatives to those
given in Rao and Yu (1994), which are biased, but do not depend on any other estimated
parameters.

Let ai,t = yi,t − xTi,tβ and let âi,t = yi,t − xTi,tβ̂ be the residuals based on the least

squares estimator β̂ =
(
XTX

)−1
XTY of β. For simplicity of presentation, assume the

sampling errors ei,t are uncorrelated both over time t and across small areas i. Note that

E ((ai,t+2 − ai,t) (ai,t+1 − ai,t)) = σ2 + Vi,t,

independent of the parameters ρ and σ2v . If T > 2, the residuals âi,t can be used to obtain
an estimator of σ2:

σ̃2 =
1

m(T − 2)

m∑
i=1

T−2∑
t=1

{(âi,t+2 − âi,t) (âi,t+1 − âi,t)− Vi,t} (9)

and σ̂2 = max
(
σ̃2, 0

)
. This estimator is biased due to the estimation of the regression

parameter β, but does not depend on an initial estimate of the parameter ρ.
An estimator for ρ can be obtained in a similar way. Note that

E {(ai,t+2 − ai,t+1)(ai,t − ai,t+1)} =
σ2

1− ρ2
(1− ρ)2 + Vi,t+1

and

E
{

(ai,t+1 − ai,t)2
}

=
2σ2

1− ρ2
(1− ρ) + Vi,t+1 + Vi,t.
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Combining these two expressions and replacing the ai,t with their estimators âi,t gives

ρ̂ =

∑m
i=1

∑T−2
t=1 {(âi,t+1 − 2âi,t+2 + âi,t)(âi,t − âi,t+1) + Vi,t+1 − Vi,t}∑m

i=1

∑T−2
t=1 {(âi,t+1 − âi,t)2 − Vi,t+1 − Vi,t}

(10)

as an estimator of ρ. This estimator is biased, and not guaranteed to be in the range (−1, 1),
but will be consistent under general conditions.

It is more difficult to isolate the parameter σ2v , but an approximation can be made using
the following identities:

E

(
T∑
t=1

ai,t

)2

= T 2σ2v +
σ2

1− ρ2
T (1− ρ2)− 2ρ(1− ρT )

(1− ρ)2
+

T∑
t=1

Vi,t

and

E

(
T∑
t=1

a2i,t

)
= Tσ2v +

Tσ2

1− ρ2
+

T∑
t=1

Vi,t.

Combining these two equations gives

1

mT (T − 1)

m∑
i=1

E


(

T∑
t=1

ai,t

)2

−
T∑
t=1

a2i,t


= σ2v +

2ρσ2(ρT − Tρ− 1)

T (T − 1)(1− ρ2)(1− ρ)2
= σ2v +O(T−1).

We then have

σ̂2v =
1

mT (T − 1)

m∑
t=1


(

T∑
t=1

âi,t

)2

−
T∑
t=1

â2i,t

 (11)

as an estimator of σ2v . The estimator σ̂2v has the attractive property that it is nonnegative,
and, as with the other moment estimators derived in this section, does not depend on esti-
mates of other variance components.

Alternatively, the unknown parameters can be estimated numerically by maximizing
the likelihood or the restricted likelihood function when the full distribution is specified.
The value of using a moment estimator over REML or ML estimators is that the moment
estimators do not depend on the assumption of normally distributed sampling or model
errors; they instead depend only on the correctness of the first and second moment specifi-
cation in the models. In addition, numerical routines for optimizing likelihood or restricted
likelihood functions can be sensitive to the starting value, and reliable moment estimators
are useful as initial values.

3. Data example

This section analyzes the state-level ACS poverty data for the age group 5 – 17 related
children for the years 2007 – 2012. In this example, 2012 is the target year for obtaining
predictions for the small area (state) poverty rates. The direct survey estimates from the
ACS are compared to model-based estimates obtained using the Fay-Herriot model (1) and
the Rao-Yu model (7). The Fay-Herriot model is fit using cross-sectional data from each
year from 2007 – 2012, and the Rao-Yu model is fit on the full six year data set, as well as
on 4 years of data (2009 – 2012) and 5 years of data (2008 – 2012).
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Direct estimates of state poverty rate, 2007 − 2012
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Figure 1: State poverty estimates over time

Figure 1 shows the time series of estimates of poverty rates for each of the 50 states
from 2007 – 2012. From left to right, the plots are of the direct survey estimates, the
predicted values using cross-sectional data from each year and the Fay-Herriot model, and
the predicted values using all six years of data and the Rao-Yu model. The plots of the
direct estimates indicate a clear overall trend of increase in poverty over the years 2007 –
2012; this is most noticeable on the subintervals 2008 – 2009 and 2010 – 2011. For the
years 2009 – 2010 and 2011 – 2012, the poverty estimates are noisier and do not display
the same strong trend as over other time periods. The second graph in Figure 1 shows the
EBLUPs of poverty rates for each state using only cross-sectional data. At each year, the
EBLUPs shrink the direct estimates to the regression estimate of poverty rate (equation
(2)), but there is no smoothing of the direct estimates over time. From the plot of these
model-based estimates, a clearer time trend of the estimated poverty rates can be observed.
The final plot is the plot of the EBLUPs of poverty rates using the Rao-Yu model, which
“borrows stregth” both across the small areas as well as over time. Compared to the first
and second set of plots, the third set of graphs exhibits the most smoothing.

There are two primary interests in this analysis. The first is to estimate the poverty
rates of children ages 5 – 17 in each state in 2012. The second is to estimate the change in
poverty rates from 2011 to 2012 and to construct intervals for this change. Visual inspection
of Figure 1 indicates that each of the three methods can produce estimates which vary
substantially. For example, the top line in each graph in Figure 1, which corresponds to
poverty estimates in Mississippi, have similar estimates of poverty in 2012. However, the
estimated change in poverty from 2011 to 2012 is quite different using each of the three
methods, with the AR1 model (7) predicting little change between 2011 and 2012, and the
cross-sectional methods predicting steeper increases.

3.1 Parameter estimation

To fit the Rao-Yu model (7), the unknown variance components σ2, σ2v , and ρ need to
be estimated. Table 1 compares moment estimates of the variance components using the
methods of Section 2 with the moment estimates derived in Rao and Yu (1994) and with
REML estimates, when the model is fit over four, five, or six years.

Table 1a compares the Rao and Yu (1994) moment estimate of ρ in column 1 with
the moment estimate in equation (10) and the REML estimate. The estimates in Table
1a show the difficulty in estimating the autoregressive parameter ρ, as each estimation
method produces very different results. The two moment estimators are negative, which
is counterintuitive, and does not agree with the plots in Figure 1; the REML estimates are
more reasonable. In addition, the estimates of ρ are sensitive to the number of time periods
used, with the REML estimates varying from 0.92 using 4 years of data, to 0.51 using 5
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Table 1: Parameter estimation of the variance components ρ, σ2, and σ2v
Years ρ̂ry ρ̂ ρ̂REML

2007 – 2012 -0.215 -0.135 0.656
2008 – 2012 -0.574 -0.238 0.511
2009 – 2012 -0.494 -0.199 0.920

(a) Estimation of ρ. The moment estimator ρ̂ry is from Rao and Yu (1994), and ρ̂ is the estimator
given in (10). The REML estimator ρ̂REML is found numerically.

Years σ̂2(0) σ̂2(0.25) σ̂2(0.5) σ̂2(0.75) σ̂2(ρ̂ry) σ̂2 σ̂2REML

2007 – 2012 0.312 0.291 0.283 0.288 0.344 0.141 0.172
2008 – 2012 0.365 0.356 0.352 0.356 0.416 0.191 0.192
2009 – 2012 0.316 0.348 0.388 0.438 0.270 0.308 0.118

(b) Estimation of σ2. The moment estimators σ̂2(·) are from Rao and Yu (1994), and depend on ρ,
and σ̂2 is the estimator given in (9). The REML estimator σ̂2 is found numerically.

Years σ̂2v(0) σ̂2v(0.25) σ̂2v(0.5) σ̂2v(0.75) σ̂2v (ρ̂ry) σ̂2v σ̂2v,REML

2007 – 2012 0.341 0.315 0.249 0.001 0.352 0.473 0.477
2008 – 2012 0.534 0.508 0.442 0.175 0.554 0.449 0.506
2009 – 2012 0.530 0.459 0.314 0.000 0.600 0.490 0.000

(c) Estimation of σ2
v . The moment estimators σ̂2

v(·) are from Rao and Yu (1994), and depend on ρ,
and σ̂2

v is the estimator given in (11). The REML estimator σ̂2
v is found numerically.

years of data. The unreasonableness and instability of moment estimates of ρ over time
show the usefulness of having estimators for the other parameters that do not depend on ρ.

Table 1b compares estimates of σ2 using each of the three methods. The moment
estimate σ̂2(·) depends on the unknown parameter ρ, and was shown in Rao and Yu (1994)
to be unbiased when the true value of ρ is used. The first four columns are the estimates of
σ2 as ρ ranges from 0 to 0.75 and the fifth column uses the moment estimate ρ̂ry of ρ. This
moment estimate is stable, both as a function of ρ as well as over different time periods.
The moment estimator σ̂2 in Table 1b is calculated using equation (9) and does not depend
on ρ. It is interesting to note the close agreement of σ̂2 with the REML estimate σ̂2REM
when five or six years of data are used

Table 1c compares estimates of σ2v using each of the three methods. The estimate σ̂2v(·),
which depends on ρ, varies considerably, both over different values of ρ and over different
time periods. It is interesting to note that as ρ approaches 0.75, σ̂2v(·) approaches 0. The
fitted model with ρ = 0.75 then has a deterministic AR1 component, and all variation is
over the small areas, and not over time. The estimate σ̂2v from equation (11) is stable over
different time periods, and is close to the REML estimate σ̂2v,REML when five or six years
of data are used. When four years of data are used, the REML estimate is exactly equal to
0. It seems reasonable to conclude in this example, that four years of data is too few time
points to obtain reliable estimates.

Table 2 shows the estimates in Figure 1 for the first five states in more detail. The first
columns in Table 2 show the direct ACS survey estimates, with the estimated sampling error
in parentheses. The next two columns show the cross sectional EBLUPs and estimated root
mean square error in parentheses. Note that the cross-sectional EBLUPs are based on the
Fay-Herriot model, and only use data at a single time point. The final two columns are the
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predicted values using all six years of data and the Rao-Yu model, with the estimated root
mean square error in parentheses; the EBLUPs of the poverty rates using all six years data
in each of the 50 states are constructed using REML estimates for the variance components.

For larger states, like California, Table 2 shows that all three methods produce very
similar results, in terms of both point estimates and estimated MSE, due to the relatively
small sampling variances. For the other states in Table 2, there is noticeable reduction in
the estimated MSE of the EBLUPs using cross-sectional data, and a further reduction when
the full data set is used.

3.2 Credible intervals

In this section, credible intervals for the difference of small area means from 2011 to 2012
are compared. One simple method for constructing a valid interval for θi,T − θi,T−1 is to
use only the direct estimates and the estimated sampling variances:

yi,T − yi,T−1 ± zα/2
√
Vi,T + Vi,T−1.

When the samples from different years are taken independently, and the direct estimates are
normally distributed, this coverage probability is exactly 1 − α. However, if the sampling
variances Vi are large, as is typically the case in small area estimation problems, this interval
will be too large to make useful inferences.

An improvement over using only the direct estimates is to use the cross-sectional
EBLUPs along with an estimate of the model covariance between years as in (4). Esti-
mates of the model covariance σs,t, using equation (6), between different years from 2007
to 2012 are shown in Table 3. The credible interval based on the cross-sectional EBLUPs
is

θ̂i,T − θ̂i,T−1 ± zα/2
√

ˆMSE
(
θ̂i,T − θ̂i,T−1

)
,

where ˆMSE
(
θ̂i,T − θ̂i,T−1

)
is given in equation (5).

An interval which is constructed using all 6 years of data is

θ̂i,diff ± zα/2
√

ˆMSE
(
θ̂i,diff

)
,

where θ̂i,diff is the EBLUP of θi,T − θi,T−1 under model (7), and ˆMSE
(
θ̂i,diff

)
is an

estimate of the mean square error of θ̂i,diff , given by

ˆMSE
(
θ̂i,diff

)
=

2σ̂2(1− ρ̂)

1− ρ̂2
−
(
σ̂2(1− ρ̂)

1− ρ̂2

)2

γ̂T Σ̂
−1
i γ̂

+ (xi,T − xi,T−1 +W )
(
XT Σ̂

−1
X
)−1

(xi,T − xi,T−1 +W )T ,

where γ̂T =
(
−ρT−2,−ρT−3, . . . ,−ρ,−1, 1

)
, Σi is the ith block of the block diagonal

covarince matrix Σ in (7), and

W =
σ̂2 (1− ρ̂)

1− ρ̂2
γT Σ̂

−1
i Xi.

Table 4 compares interval estimates using each of the three methods, using α = 0.05,
for the first five states. The first column shows intervals based only on the direct estimates,
the second column shows intervals which use cross-sectional EBLUPs and the estimated
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Table 2: Comparison of estimates of the proportion in poverty in select states over 2007 –
2012. The estimated root mean square error for each estimate is in parentheses.

State Year Direct Bivariate AR1

AL 2012 25.358 (0.534) 25.513 (0.461) 25.789 (0.400)
AL 2011 25.559 (0.736) 25.468 (0.582) 25.539 (0.420)
AL 2010 25.509 (0.672) 25.175 (0.570) 24.753 (0.409)
AL 2009 22.484 (0.605) 22.401 (0.509) 22.440 (0.395)
AL 2008 19.087 (0.691) 19.443 (0.565) 20.190 (0.428)
AL 2007 22.171 (0.726) 21.447 (0.571) 20.892 (0.455)

AK 2012 11.989 (0.912) 13.252 (0.643) 12.568 (0.541)
AK 2011 14.067 (1.523) 13.334 (0.808) 11.264 (0.560)
AK 2010 9.613 (1.037) 11.882 (0.743) 12.124 (0.521)
AK 2009 10.428 (1.130) 10.110 (0.758) 8.104 (0.580)
AK 2008 8.548 (0.968) 10.214 (0.683) 9.588 (0.509)
AK 2007 8.714 (0.877) 10.604 (0.634) 10.229 (0.519)

AZ 2012 24.778 (0.583) 24.720 (0.497) 24.741 (0.430)
AZ 2011 25.319 (0.798) 25.089 (0.628) 24.745 (0.467)
AZ 2010 22.070 (0.735) 22.486 (0.616) 23.189 (0.445)
AZ 2009 20.998 (0.582) 20.840 (0.516) 20.644 (0.434)
AZ 2008 18.799 (0.571) 18.712 (0.507) 18.661 (0.416)
AZ 2007 17.930 (0.584) 17.925 (0.512) 17.968 (0.442)

AR 2012 26.272 (0.792) 25.863 (0.608) 26.076 (0.502)
AR 2011 25.016 (0.838) 24.970 (0.639) 25.525 (0.482)
AR 2010 24.547 (0.830) 24.331 (0.664) 24.755 (0.471)
AR 2009 24.709 (0.859) 23.931 (0.643) 24.130 (0.477)
AR 2008 22.469 (0.834) 21.943 (0.645) 22.511 (0.487)
AR 2007 23.544 (0.752) 22.646 (0.594) 22.634 (0.492)

CA 2012 22.458 (0.239) 22.394 (0.233) 22.315 (0.224)
CA 2011 21.273 (0.247) 21.250 (0.241) 21.289 (0.227)
CA 2010 20.462 (0.268) 20.435 (0.262) 20.428 (0.242)
CA 2009 18.190 (0.228) 18.194 (0.223) 18.235 (0.210)
CA 2008 16.954 (0.247) 16.936 (0.240) 16.831 (0.221)
CA 2007 15.760 (0.232) 15.810 (0.226) 15.949 (0.216)
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Table 3: Moment estimator of σs,t in equation (6)

year 2007 2008 2009 2010 2011 2012

2007
2008 0.714
2009 0.586 0.630
2010 0.793 0.673 0.622
2011 0.372 0.336 0.645 0.618
2012 0.542 0.579 0.640 0.676 0.725

parameter σ̂s,t, and the third column gives intervals which use the time series model with
AR1 structure. Overall, the average length of the confidence intervals using only the direct
estimates and the estimated survey variances is 4.066. The average length of the 50 credible
intervals based on the bivariate model (4) is 2.480, compared to an average length of 1.838
using model (7). However, there is a wide range in the lengths among the different states
under each method. It can be seen in Table 4 that for large states such as California, the
intervals using each of the three methods are very similar. Also, for California, the increase
in poverty from 2011 to 2012 can be defined to be a significant increase under any of the
three methods, since the intervals do not contain 0. For small states, such as Alaska, there
can be dramatic differences in the lengths of the intervals. Note that the decrease in poverty
rates from 2011 to 2012 in Alaska would be defined as insignificant using only the direct
estimates or the Fay-Herriot model, but there would be an estimated significant increase,
using the Rao-Yu model.

The estimates for poverty rates for Alaska in Table 2, along with the associated credible
intervals in Table 4 highlight one of the practical issues that need to be considered when
combining cross-sectional and time-series data. The direct estimates of the proportion in
poverty in Alaska decrease from 14.1% to 12% from 2011 to 2012. Compare this to the
cross-sectional EBLUPs which decrease only slightly from 13.4% to 13.3% over the same
time period. However, the EBLUPs of poverty rates using model (7) actually increase
from 2011 to 2012 from 11.3% to 12.6%, and from Table 4, this would be defined to be
a significant increase. While these results seem counterintuitive at first, there is no logical
contradiction, as the direct estimates for Alaska have relatively high estimated sampling
variances, and therefore will “borrow strength” substantially from related areas, using both
cross-sectional and time-series information.

Table 4: Comparison of credible intervals for the difference of small area means from 2011
to 2012 for select states.

State Direct Bivariate AR1

AL (-1.984, 1.580) (-1.204, 1.292) (-0.622, 1.122)
AK (-5.557, 1.401) (-1.506, 1.343) (0.335, 2.274)
AZ (-2.478, 1.396) (-1.713, 0.976) (-0.977, 0.971)
AR (-1.004, 3.517) (-0.497, 2.282) (-0.436, 1.540)
CA (0.512, 1.858) (0.502, 1.785) (0.423, 1.629)
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Figure 2: Q-Q plots of 2012 standardized residuals using predicted propoprtions of related
children 5 – 17 in poverty and standardized residuals using predicted changes in poverty
rates from 2011 – 2012.

3.3 Model diagnostics

It is clear from the analysis in subsections 3.1 and 3.2 that there is improvement, in terms
of reduction in estimated MSEs of the predicted small area means and length of interval
estimates, in using the Rao-Yu model (7) and the full data set over only cross-sectional
data, provided that model (7) fits the SAIPE data set reasonably well. Assessing model
fit is known to be a difficult problem in small area estimation. For the Fay-Herriot model,
common diagnostic procedures include testing significance of regression coefficients for
selection of fixed effects, and analysis of residuals for checking normality. Note that, con-
ditional on the parameters, the response variables are independent under the Fay-Herriot
model. In contrast, when an autoregressive structure is introduced into the small area
model, the data are not independent, due to the correlation over time. However, certain
subsets of the data will be independent, conditional on the parameters. For example, data
across small areas within a given time period are independent (cross-sectional subsets).
Choosing independent subsets allows for residual analysis within each smaller set of data.

Figure 2 shows normal QQ plots for residuals using the 5 to 17 related children data set
over the time periods 2007 – 2012. The first plot is a normal QQ plot of the 50 state-level
standardized residuals in the 2012 time period. The second plot is a normal QQ plot of the
standardized residuals based on the EBLUP of the differences of small area parameters in
each of the 50 states between the year 2011 and the year 2012. Both plots of standardized
residuals are close to the diagonal line, giving no indication of departures from normality
of the model error terms.

Residual analysis using different subsets of the data allows for a graphical detection of
departures from normality of the distribution of the error terms in the small area model.
However, it does not give an indication as to whether the linking mechanism over time
within the small area model is appropriate. The main difference between the standard
Fay-Herriot model and the extension given by Rao and Yu (1994) is the inclusion of an
autoregressive process, parameterized by ρ. When ρ = 0, there is independence of the
response variables over different time periods, and the marginal distribution at year T is
similar to the Fay-Herriot model. A test of the null hypothesis H0 : ρ = 0 is therefore of
interest.

12



Table 5: Likelihood ratio test statistic and p-value

T Years Λ p-value

4 2009 – 2012 3.801 0.051
5 2008 – 2012 3.535 0.060
6 2007 – 2012 9.003 0.003

Denote the set of variance parameters by θT =
(
ρ, σ2ν , σ

2
)
. The restricted maximum

likelihood (REML) estimator is the estimator θ̂ which maximizes the function (Harville,
1977)

lREML (θ;y)

= −1

2
log |Σ| − 1

2
log
∣∣XTΣ−1X

∣∣− 1

2

(
y −Xβ̃

)T
Σ−1/2

(
y −Xβ̃

)
,

(12)

where β̃ =
(
XTΣ−1X

)−1
XTΣ−1y and Σ = Σ (θ) is as in equation (8). Denote by θ̂0

the maximizer of lREML in (12) when ρ = 0. A likelihood ratio test (LRT) statistic based
on the REML estimator is given by

Λ = −2
(
lREML

(
θ̂0;y

)
− lREML

(
θ̂;y

))
,

which is asymptotically χ2
1 under the null hypothesis.

Table 5 gives the LRT statistic and the associated p-values based on a χ2
1 approxima-

tion using models fit with 4, 5, or 6 years of data. The p-values for LRT based on 4 and
5 years of data are 0.051 and 0.06, respectively, indicating significance at the 0.1 level.
However, when the data from 2007 are included in the analysis, the p-value decreases to
0.003, indicating strong significance to the inclusion of the autoregressive process in the
linking model.

4. Simulation study

In this section, two numerical examples are presented to investigate the properties of the
moment estimators of variance components discussed in Section 2, and to understand finite
sample performance of the EBLUP and associated credible intervals when multiple years
of data are used. For the first example, to have similarity with the data analysis done in
Section 3, T = 6 time periods and m = 50 small areas are used. Data are simulated
from the Rao-Yu model (7), with parameter values set to β = (−2.5, 0.75, 0.2, 0.2, 0.5)T ,
σ2 = 1, σ2v = 1, and ρ = 0.5. Real administrative records data are used for the covariance
matrixX and the sampling variances Vi,t are the actual estimated sampling variances used
by SAIPE. The second example uses the same model formulation as the first, except that
ρ = 0, so that there is independence of the model errors ui,t in (7) over time. For each of
the two model specifications, 1000 simulated data sets were generated. All computational
work in this paper was done using R.

4.1 Estimates of model parameters

Table 6 shows the performance of different estimates of the variance components σ2, σ2v ,
and ρ using three methods: the moment estimators introduced in Subsection 2, the moment
estimators in Rao and Yu (1994), and the REML estimates. Table 6 summarizes the perfor-
mance of each estimation method in terms of bias, standard error, and mean square error
(MSE).
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Table 6: Performance of estimates of variance components

ρ̂ry ρ̂ ρ̂REML

ρ = 0
mean 0.034 0.023 0.002
s.e. 0.227 0.220 0.127
MSE 0.053 0.049 0.016

ρ = 0.5
mean 0.564 0.583 0.504
s.e. 0.325 0.287 0.131
MSE 0.110 0.089 0.017

(a) Estimation of ρ. The estimator ρ̂ry is the moment estimator of ρ in Rao and Yu (1994) and ρ̂ is the
moment estimator in (10). The estimator ρ̂REML is the REML estimator, and is found numerically.

σ̂2(0) σ̂2(0.25) σ̂2(0.5) σ̂2(0.75) σ̂2(ρ̂ry) σ̂2 σ̂2REML

ρ = 0
mean 1.000 1.125 1.328 1.614 1.012 0.849 0.992
s.e. 0.162 0.188 0.237 0.303 0.185 0.211 0.144
MSE 0.026 0.051 0.164 0.469 0.034 0.067 0.021

ρ = 0.5
mean 0.974 0.956 1.006 1.129 1.055 0.854 0.997
s.e. 0.168 0.171 0.196 0.240 0.204 0.200 0.142
MSE 0.029 0.031 0.039 0.074 0.045 0.061 0.020

(b) Estimation of σ2. The moment estimators σ̂2(·) are from Rao and Yu (1994) and depend on ρ,
and σ̂2 is the moment estimator in (9). The REML estimator ρ̂REML is found numerically using the
correctly specified model.

σ̂2v(0) σ̂2v(0.25) σ̂2v(0.5) σ̂2v(0.75) σ̂2v(ρ̂ry) σ̂2v σ̂2v,REML

ρ = 0
mean 0.992 0.862 0.522 0.010 0.974 0.878 0.985
s.e. 0.325 0.330 0.344 0.064 0.328 0.236 0.264
MSE 0.105 0.128 0.347 0.983 0.108 0.071 0.070

ρ = 0.5
mean 1.334 1.229 0.974 0.203 1.152 1.188 0.898
s.e. 0.414 0.413 0.422 0.326 0.444 0.305 0.424
MSE 0.283 0.223 0.179 0.741 0.220 0.128 0.190

(c) Estimation of σ2
v . The moment estimators σ̂2

v(·) are from Rao and Yu (1994) and depend on ρ.
The REML estimator σ̂2

v,REML is found numerically using the correctly specified model.

Table 6a gives a comparison of estimators of ρ. The estimator ρ̂ry is the moment
estimator of ρ from Rao and Yu (1994), ρ̂ is the moment estimator in equation (10), and
ρ̂REML is the REML estimate of ρ. When the true value of ρ is 0, all three estimators had
similar performance in terms of bias, and all three estimators had low MSE, with the REML
estimator being the lowest. When the true value of ρ is 0.5, the two moment estimators
overestimated ρ, with ρ̂ having the lower MSE.

One potential issue with using moment estimators for the autoregressive parameter ρ is
that they are not guaranteed to be in the interval (−1, 1). With a the true value of ρ = 0.5,
the estimator ρ̂ry was greater than 1 in 16.5% of the simulations, while ρ̂ was greater than 1
in 14.7% of the simulations. In these cases, the estimator was truncated to 1. When ρ = 0,
neither estimator was outside the range (−1, 1).

Table 6b gives a comparison of estimators of σ2. The Rao-Yu moment estimator σ̂2 (ρ)
was shown to be unbiased when the true value of ρ is used – this can be seen in Table 6b
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Table 7: Comparison of the average mean square error of the direct estimator, cross-
sectional EBLUP, and 6 year EBLUP over all 50 small areas (states).

Direct Bivariate AR1

ρ = 0 MSE 0.615 0.440 0.386

ρ = 0.5 MSE 0.648 0.473 0.398

when ρ = 0 or ρ = 0.5. The moment estimator σ̂2 from equation (9) underestimated the
true value of σ2 in both examples, for ρ = 0 or ρ = 0.5; this moment estimator does not
perform nearly as well as the Rao-Yu moment estimator when a plug-in for ρ close to the
true value is used. However, for values of ρ further from the true value, there was a large
increase in bias and MSE.

Table 6c gives a comparison of estimators of σ2v . The REML estimate σ̂2v was very
accurate when ρ = 0, with small bias and MSE. However, performance was worse when
ρ = 0.5, with the REML estimate having large increase in both bias and MSE. In these
examples the moment estimator σ̂2v(·) varied considerably over ρ, particularly for the case
of ρ = 0.5. σ̂2v (ρ̂ry) was nearly unbiased when ρ = 0, but overestimated the true value
of σ2v = 1 when ρ = 0.5, with a large increase in MSE. The estimate σ̂2v in equation
(11) was biased in both examples, overestimating the true value of σ2v = 1 when ρ = 0,
and underestimating σ2v when ρ = 0.5. However, the MSE of σ̂2v was the smallest of all
estimators, even compared to the REML estimate σ̂2v,REML.

4.2 Current year estimates

In this section, accuracy of predictions for the small area mean in the current time period are
investigated. Table 7 shows the average mean square error of the direct estimate, the cross-
sectional EBLUP, and the EBLUP using all 6 years of data and the (correctly specified)
Rao-Yu model (7). Clearly, from Table 7, there is a large reduction in the average MSE
using a small area model, over using only the direct estimates. There is also a noticeable
reduction in the average MSE using the Rao-Yu model, compared to only cross-sectional
data and the Fay-Herriot model, particularly for the case of ρ = 0.5.

Table 8: Comparison of the mean square error of the direct estimates, cross-sectional
EBLUPs, and 6 year EBLUPs, in selected individual small areas (states). Average mean
square error over 1000 simulations is given, along with the standard error (in parentheses).

State AK DE LA MS NC RI TX WY

ρ = 0

Direct 0.794 1.847 0.600 1.190 0.211 1.752 0.066 2.176
(1.082) (2.437) (0.854) (1.549) (0.301) (2.306) (0.091) (3.068)

Bivariate 0.605 0.986 0.506 0.821 0.191 1.035 0.066 1.244
(0.858) (1.338) (0.756) (1.128) (0.276) (1.396) (0.089) (1.805)

AR1 0.520 0.809 0.461 0.699 0.182 0.850 0.065 1.021
(0.725) (1.079) (0.667) (0.940) (0.263) (1.126) (0.086) (1.472)

ρ = 0.5

Direct 0.893 2.073 0.605 0.792 0.280 1.806 0.092 2.300
(1.193) (2.841) (0.863) (1.202) (0.399) (2.538) (0.133) (3.086)

Bivariate 0.681 1.206 0.514 0.630 0.247 1.114 0.090 1.280
(0.934) (1.759) (0.748) (0.890) (0.347) (1.631) (0.130) (1.807)

AR1 0.580 0.908 0.457 0.564 0.227 0.896 0.085 1.044
(0.791) (1.319) (0.700) (0.814) (0.319) (1.250) (0.124) (1.486)
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Table 9: Average, over all 50 small areas, of length and coverage of credible intervals for
year-to-year change.

α = 0.10 α = 0.05
Direct Bivariate AR1 Direct Bivariate AR1

ρ = 0
Coverage 0.901 0.896 0.897 0.950 0.948 0.948
Length 3.412 2.754 2.660 4.066 3.282 3.169

ρ = 0.5
Coverage 0.901 0.918 0.899 0.950 0.949 0.949
Length 3.391 2.722 2.437 4.041 3.244 2.904

Table 8 compares the MSE of the different predictors of the current year small area
mean for select small areas. The states presented in Table 8 are chosen to show a variety
in the size (or estimated sampling variance) of the small areas, ranging from very small
(Alaska and Deleware) to very large (Texas). As would be expected, the MSE of the pre-
dictions, regardless of which estimation method is used, or which value of ρ represents the
truth, are nearly identical for the large state, Texas. For the smaller states, like Alaska or
Deleware, there is a noticeable reduction in the MSE of the cross-sectional EBLUPs, and a
further large gain in precision using the entire data set and a small area model with an AR1
process linking parameters over time.

4.3 Interval estimation for year-to-year change

This section looks at interval estimates for the parameters θi,T − θi,T−1 for each of the
50 small areas. The same three methods for interval estimation discussed in Section 3.2
are considered here. The first is based only on the direct estimates yi,t and their sampling
variances Vi,t, where the sampling scheme is assumed independent between years. The
second method uses EBLUPs based only on cross sectional data, and an assumed bivariate
normal structure on the model errors over time, along with the moment estimator for the
model covariance, given in equation (3). The third method uses EBLUPs based on the
entire data set, and the Rao-Yu model (7). These methods are denoted Direct, Bivariate,
and AR1, respectively, and the results are presented in Tables 9 and 10.

Table 9 shows the average coverage and average interval length over all 50 small areas
in the simulation study, with values of α = 0.1 and α = 0.05. All three methods produce
intervals which have appropriate coverage, on average (with the exception that the bivariate

Table 10: Average length and coverage of credible intervals for year-to-year change for
select states (α = 0.05).

State AK DE LA MS NC RI TX WY

ρ = 0

Direct 0.944 0.951 0.935 0.954 0.955 0.938 0.952 0.961
6.958 7.913 3.779 5.380 2.797 6.873 1.675 7.892

Bivariate 0.954 0.957 0.933 0.955 0.954 0.934 0.957 0.947
4.623 4.923 3.324 4.361 2.561 4.756 1.620 5.116

AR1 0.952 0.947 0.934 0.953 0.957 0.944 0.959 0.941
4.331 4.663 3.241 4.200 2.507 4.517 1.606 4.839

ρ = 0.5

Direct 0.953 0.936 0.954 0.944 0.940 0.946 0.959 0.951
5.186 7.945 4.225 5.628 2.742 7.281 1.605 8.643

Bivariate 0.946 0.927 0.950 0.934 0.943 0.945 0.965 0.948
3.987 4.843 3.607 4.504 2.517 4.842 1.558 5.253

AR1 0.947 0.939 0.954 0.927 0.943 0.958 0.964 0.954
3.462 4.062 3.276 3.962 2.350 4.082 1.517 4.384
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method was somewhat conservative in the example with ρ = 0.5 and α = 0.1), but the
intervals based only on the direct estimates have an average interval length which is much
larger than the other two methods. When the true value of the autoregressive parameter ρ is
0, there is little gain constructing intervals using 6 years of data, as opposed to using only
the current year’s cross sectional data, as both methods achieve the nominal rate of coverage
and the average length of the intervals are nearly the same. However, when ρ = 0.5, there
is some gain in terms of average length of the credible intervals, with on average, a 10%
reduction in the length of the interval.

The reduction in interval length can be more dramatic in individual small areas. Table
10 gives the coverage rate and average length of the credible intervals for each of the three
methods for select small areas. Table 10 shows that both model-based methods produce
intervals with reduced length in states with small and moderate sample size (there is little
gain with larger states, such as Texas), in both examples for ρ = 0 or ρ = 0.5. The intervals
based on 6 years of data have greater gains in terms of average length over the model-based
intervals based only on a single year’s data for smaller states (or states with large sampling
variance) such as Delaware or Wyoming when ρ = 0.5. There is only a small reduction in
interval length when using all 6 years of data when ρ = 0, even for the smallest states.

5. Conclusion

There were two main goals of this paper. The first was to investigate potential gains in
efficiency using multiple years of survey data for estimation of a small area parameter. The
second goal was to estimate the increase or decrease over time of a small area parameter,
and to construct valid credible intervals for the change over time.

The direct survey estimates, along with associated estimated sampling variances, can
be used to make such inferences. However, when the sampling variances are large, as is
typically the case for some of the small areas, the lengths of the intervals are too large to be
useful. Extensions of the Fay-Herriot model can be used to estimate the difference of small
area parameters over time, and to construct credible intervals which are shorter in length
than those based only on the direct estimates and sampling variances.

The examples in this paper focused on data collected from six time points or less. It
seems important to have a reasonably long time horizon to capture a time trend in the small
areas. In particular, the data example showed difficulty in estimating the autoregressive
parameter ρ, with all methods producing unreasonable estimates when using only 4 years
of data.

An issue that was observed in the data analysis is that it can be the case that direct
estimates in a small area (or the single year EBLUPs) over time do not match the pattern,
in terms of increase or decrease, of the multi-year EBLUPs. This is an important practical
issue that needs to be considered, since introducing new data changes the EBLUPs of all
small areas over all previous years when using the Rao-Yu model. Statistical agencies may
be reluctant to revise estimates from previous years, and if a small area model incorporates
a time series component, it is not clear what meaning the previous year’s estimates will
have if they are not updated when new survey data is introduced.

Using the estimated MSE as was done in this paper to construct credible intervals will
guarantee that the intervals are first order correct, that is, have coverage equal to the nomi-
nal level, with error of order 1/m, where m is the number of small areas (Chatterjee et al.,
2008). With the Fay-Herriot model, it was shown that corrections to the intervals can be
made to guarantee accuracy to within order ofm−3/2, or ‘second order’ correct (Diao et al.,
2014; Yoshimori and Lahiri, 2014). Future work involves investigating corrections to the
credible intervals for change in parameters over time which reduce the length of the inter-

17



val estimate, while maintaing coverage probabilities. Other areas of future work include
generalizations to spatio-temporal models, generalized linear models, and multivariate ex-
tensions.
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