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a b s t r a c t

Gegenbauer processes allow for flexible and convenient modeling of time series data with
multiple spectral peaks, where the qualitative description of these peaks is via the concept
of cyclical long-range dependence. The Gegenbauer class is extensive, including ARFIMA,
seasonal ARFIMA, and GARMA processes as special cases. Model estimation is challenging
for Gegenbauer processes when multiple zeros and poles occur in the spectral density, be-
cause the autocovariance function is laborious to compute. Themethod of splitting – essen-
tially computing autocovariances by convolving longmemory and shortmemory dynamics
– is only tractablewhen a single longmemory pole exists. An additive decomposition of the
spectrum into a sum of spectra is proposed, where each summand has a single singular-
ity, so that a computationally efficient splitting method can be applied to each term and
then aggregated. This approach differs from handling all the poles in the spectral density at
once, via an analysis of truncation error. The proposed technique allows for fast estimation
of time series with multiple long-range dependences, which is illustrated numerically and
through several case-studies.

Published by Elsevier B.V.

1. Introduction

This paper is concerned with the modeling of time series data with multiple persistent periodicities, where the persis-
tency indicates a slow rate of decay in sample autocorrelations.Many time series of interest inmacroeconomics, finance, and
meteorology have persistency at nonzero frequencies, which are properly described as infinite (but integrable) peaks in the
spectral density; see Ferrara and Guégan (2000), Bisaglia et al. (2003), Soares and Souza (2006), Talamantes et al. (2007), and
Gil-Alana (2008). When two or more such peaks are present in the spectrum of the underlying process, the commonly used
sets of models – ARFIMA (Hosking, 1981), seasonal ARFIMA (Porter-Hudak, 1990), Gegenbauer (Gray et al., 1989), etc. – are
challenging to compute. That is, the autocovariance function of suchmodels is laborious to calculate, although in the case of
a single long memory spectral peak there exists certain strategies that facilitate computation. Recently, McElroy and Holan
(2012) developed a general representation for processes with multiple spectral peaks, and showed how one can accurately
determine the Wold coefficients of such processes from the cepstral representation (Bloomfield, 1973). Further, McElroy
and Holan (2012) produced error terms (expressed as hypergeometric functions) that accounted for truncation error in the

∗ Corresponding author. Tel.: +1 301 763 3227.
E-mail addresses: tucker.s.mcelroy@census.gov (T.S. McElroy), holans@missouri.edu (S.H. Holan).

1 Disclaimer: This paper is released to inform interested parties of ongoing research and to encourage discussion ofwork in progress. The views expressed
are those of the authors and not necessarily those of the U.S. Census Bureau.

http://dx.doi.org/10.1016/j.csda.2016.02.004
0167-9473/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.csda.2016.02.004
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2016.02.004&domain=pdf
mailto:tucker.s.mcelroy@census.gov
mailto:holans@missouri.edu
http://dx.doi.org/10.1016/j.csda.2016.02.004


T.S. McElroy, S.H. Holan / Computational Statistics and Data Analysis 101 (2016) 44–56 45

calculation of autocovariances. The current paper presents a different algorithm that is both fast and accurate, and goes back
to the older ‘‘splitting’’ method of Bertelli and Caporin (2002).

Briefly, in a nonparametric or semiparametric conception of the spectral density f , in which possibly several persistent
phenomena exist, it is natural to write f as a product of functions that represent the poles in the spectrum, together with
a term that corresponds to short memory dynamics, being both bounded and bounded away from zero. In our discussion,
we may also be interested in anti-persistent behavior, or negative memory (McElroy and Politis, 2014), which corresponds
to spectral troughs; i.e., a zero in f . The autocovariance sequence corresponding to f is equal to the convolution of the
autocovariances of each term in the product; if there is only one pole/zero in the spectral density, then we must convolve
the corresponding autocovariance function with that of the short memory portion, which can be safely truncated. This
truncation of the short memory autocovariance function – presuming that the long memory autocovariance function is
known analytically, or can be calculated to high accuracy – is called the splitting method, and is developed in Bertelli and
Caporin (2002) and Hurvich (2002).

This ingenious algorithm does not extend directly to having two or more poles/zeros, because then there are at least
three functions being convolved, which means there are at least two infinite summations—and there seems to be no way
to truncate these without a potentially tremendous loss of accuracy. The main insight of this paper is that a function f with
k ≥ 1 poles/zeros can be re-expressed as the sum of k distinct functions, each of which has a single pole/zero, together with
its own distinct short memory spectrum. This is akin to a partial fraction decomposition, though instead of polynomials, we
must work with somewhat more complicated frequency domain functions. The splitting method can be applied to each of
the k distinct terms, and the corresponding autocovariances simply summed up.

This algorithm allows us to consider a potentially large number of poles/zeros. In fact, in one of our illustrations (Sec-
tion 5), we have k = 26 seasonal poles! This is done without much worry about the potential loss of accuracy due to
truncation, because we only have the approximation error due to the splitting method, which is typically negligible due to
the rapid decay of autocovariances of short memory processes. Thus, complex time series data with multiple persistencies
(where the frequency of persistency may be either unknown – in which case it is a parameter to be estimated – or known)
can now be readily treated, whereas previously only special cases (e.g., seasonal ARFIMA, or the two-pole cases of McElroy
and Holan, 2012) could realistically be handled. We demonstrate this algorithmic breakthrough on a broad variety of series.

The resulting algorithms have been implemented for both a Gaussian likelihood and aWhittle likelihood, where the short
memory portion is semiparametrically described via the device of a cepstralmodel—this is just a Fourier expansion of the log
spectrum. The aforementioned algorithms have been coded using the R programming language (R Core Team, 2014) and are
available upon request from the first author. Adapting them to versions where the short memory portion is described via an
ARMA process is straightforward, and thus is not pursued here. (Note that equation (4.3) of McElroy and Holan, 2012, which
relates the cepstral coefficients to the ARMA roots, has a sign error.) Another application would be to consider several latent
components, each of which are potentially cyclically persistent. In this case, the autocovariance of the observed process is
given as the sum of the autocovariances associated with each latent process, as described in amore limited context in Holan
and McElroy (2012).

The focus of this paper is primarily algorithmic/computational and can be adapted across a wide-array of statistical
models. Specifically, the algorithms proposed herein should be useful to any of the cyclical long memory models currently
being utilized to analyze time series with multiple persistencies. Section 2 provides the general semiparametric framework
and shows how popular models can be embedded therein. Section 3 thoroughly develops the algorithm, whereas Section 4
presents numerical studies of speed and accuracy. We provide several illustrations in Section 5, utilizing our algorithm to
fit data with multiple persistencies across a variety of scientific disciplines. Concluding discussion is provided in Section 6,
with derivations left to an Appendix.

2. A semiparametric description of multiple persistencies

In this paper we focus on the k-GEXP process, which amounts to incorporating zeros and poles in the spectral density,
together with a cepstral description of the short memory. The short memory dynamics could also be described by an ARMA
process, resulting in a multi-pole extension of the ARFIMA; if readers are interested in this variant, the results of Section 3
(namely, the computation of autocovariances corresponding to the spectrum g) could be modified accordingly.

The k-GEXP model was introduced in McElroy and Holan (2012), and is recapitulated here. Let {Xt} be a mean zero
covariance stationary time series. We will suppose that {Xt} follows a k-factor Generalized Exponential model, or k-GEXP
model, which is for convenience defined in the frequency domain. The infinite moving average representation of a k-GEXP
is discussed in McElroy and Holan (2012), with coefficients {ψj} such that Xt =


j≥0 ψjϵt−j for some white noise (possible

non-Gaussian) process {ϵt}. The coefficients {ψj} of this time domain representation of the k-GEXP cannot be easily
expressed – as in the ARFIMA case – but can be computed from the spectral density. (The k-GEXPmodel is a generalization of
the simpler EXP model, allowing for poles in the spectrum at any frequency between 0 and π .) The k-GEXP spectral density
can be written compactly as

f (λ) = f −a
0 (λ) f −b

π (λ)

k
j=1

f
−cj
ωj (λ) g(λ), (1)
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where the functions of frequency fϑ are defined via

fϑ (λ) =

|1 − e−iλ
|
2 if ϑ = 0

|1 + e−iλ
|
2 if ϑ = π

|1 − e−iϑe−iλ
|
2
|1 − eiϑe−iλ

|
2 if ϑ ≠ 0, π

(2)

and the function g is bounded, representing the short memory portion of the spectrum. Also, the parameters a, b, c1, . . . , ck
are each bounded in (−1/2, 1/2) in order to guarantee stationarity. The frequencies ωℓ are distinct from one another, and
not equal to zero or π . When a parameter a, b, or cj is positive, there is a corresponding pole in the spectral density at
frequency zero, π , or ωj respectively—this is the case of long memory. On the other hand, negative parameters correspond
to a zero in the spectrum, and correspond to intermediate memory (or negative memory, also called anti-persistence by
some authors; see Beran, 2010 and the references therein). Note that the total number of poles/zeros in (1) is at most k+ 2,
with a factor being omitted when the corresponding persistency parameter is zero.

The short memory spectrum g corresponds to an EXP(q) model (Bloomfield, 1973) so that

g(λ) = σ 2 exp


q

j=1

gj cos(λj)


= exp


g0 +

1
2


0<|j|≤q

gje−iλj


, (3)

where g−j = gj. So the innovation variance σ 2 of the model is equal to exp(g0). Here q can be viewed as a finite integer,
with the case q = ∞ allowing for an arbitrary invertible short memory spectral density. Putting together the short memory
and long memory portions yields the k-GEXP(q) model: k + 2 parameters govern the degree of persistence, with up to
another k+2 parameters governing the peak locations (when they are not known a priori) or periodicities, and q parameters
governing the shortmemory dynamics. Typically amean parameter would also be utilized, whereas the innovation variance
can be estimated utilizing a profile likelihood. Note that, even though the model is formulated in the frequency domain,
estimation of parameters can be done in the time domain (by Gaussian likelihoodmaximization) or in the frequency domain
(by Whittle likelihood minimization).

By shifting the various ωℓ, one can capture a variety of quasi-cyclical phenomena, such as seasonality, cyclicality, and
long-termmovements in the process. For amean-zeroGaussian process, the spectrum f contains all of themodel parameters
of interest, so that one only needs to compute the autocovariances, i.e., the inverse Fourier Transform (FT), of the spectrum in
order to determine the Gaussian likelihood function. These autocovariances are necessary for both frequentist and Bayesian
approaches to model estimation, and are also required for forecasting applications. Therefore, it is vital to have an efficient
method of computing autocovariances for any given values of the associated model parameters.

One problem with the model as it stands, is that it is not identifiable when k > 1. This is because we can swap any two
frequencies ω1, ω2, along with their corresponding memory parameters, and obtain the exact same value of the spectral
density. In order to guarantee identifiability in practice, one might put a priori restrictions on the frequencies ωℓ, such as
insisting that each one belongs to a disjoint subset of (0, π). In our own implementations, we ensure that the variousωk are
distinct via the following parametrization: for θ1, θ2, . . . , θk ∈ R, and θ0 = 0, set

ωj+1 =
π exp(θj+1)+ ωj

exp(θj+1)+ 1

for j = 0, 1, . . . , k − 1. This ensures that ωj+1 ∈ (ωj, π).
For many applications of the model, the frequencies are known ahead of time and therefore are not even parameters.

For example, extremely persistent cyclical effects typically correspond to trends or seasonality, for which the corresponding
frequencies are known. Seasonality is a term referring to a situation where the sampling frequency relative to annual time
units is an integer. If there are p seasons, where p is integer, and the sampling frequency coincides with p, then seasonality
might manifest in the data. If seasonality is present, then it can often be described through peaks in the spectral density at
frequencies 2π j/p for 1 ≤ j ≤ p. Trend, on the other hand, is often described through polynomial functions or stochastic
components, and tends to contribute spectral mass at the low frequencies.

However, theremay be some occasions where the cyclical frequencies are not known ahead of time. For phenomena that
are not tied to the terrestrial cycle (approximately 365 days), the sampling frequencymay have no special meaning in terms
of seasons. For astronomical data, the existence of long-range cycleswith strong persistence is a knownphenomenon,where
the period can involve non-integer multiples of years. One of our case studies involves a time series of wind measurements,
with dynamics that are well-captured using amodel specification that exhibits long-range persistencies—one of which does
not correspond to a regular seasonal effect. Such phenomena might manifest as peaks in the spectral density, but the peak
frequency is not known a priori, and must be estimated.

A secondary issue is weak identifiability problems due to possible confounding of the short memory g and the zero-pole
(ZP) contributions to (1). Because values of the exponents close to zero make the spectrum approximately flat, excepting a
kink, the same behavior can be approximated by the cepstral coefficients. In finite samples it is possible to have confusion
between these elements, and therefore we have found it advisable to keep the cepstral order low (i.e., q ≤ 5). In practice,
this issue is not terribly important, because highly persistent peaks/troughs have a distinct spectral shape that is difficult to
capture, or even approximate, with a short memory spectral density.
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3. Derivation of the new algorithm

A key challenge in the computation of the autocovariance function (acf) for multiple-pole long memory processes is the
trade-off between computational efficiency and accuracy mentioned in McElroy and Holan (2012); truncation techniques
attempt to balance the horns of this dilemma. A splitting method, such as that proposed in Bertelli and Caporin (2002)
and Hurvich (2002), can be successful when there is only a single long memory pole in the spectrum; but with multiple
poles in the spectrum, longmemory autocovariances become convolvedwith other longmemory autocovariances, implying
that truncation of the convolution involves a substantial approximation error. The novel idea of this paper is to factor the
multi-pole form of the spectrum into a sum of several components, each of which only contains a single long memory pole.
Then each component can have its autocovariances calculated via splitting, and the results summed to produce the desired
outcome.

Some notation that we require is given next. We use z = e−iλ where λ ∈ [−π, π], and for any real-valued function g(λ),
its inverse FT is defined to be the (possibly complex) sequence γh(g), defined via the formula

γh(g) =
1
2π

 π

−π

g(λ)z−h dλ.

Conversely, the FT of a sequence {ah} is the function


∞

h=−∞
ahzh. This establishes our conventions concerning 2π . In the

case that g is even, its inverse FT sequence is symmetric. Furthermore, if g is the spectral density of a time series, its inverse
FT is interpretable as the acf of the process.

The key result is a factorization that we describe below, which is akin to a partial fraction decomposition of the spectrum.
Let d+

= max{d, 0} and d−
= min{d, 0} where d can be any of the exponents a, b, cj—if a particular term is not present

in the spectrum, this is handled by setting the exponent to zero. So d+
+ d−

= d throughout. Then, apart from the short
memory portion g , we can split f into two factors f − and f + corresponding to the terms having zeros and the terms having
poles, respectively. That is, f = f −f +g with

f −
= f −a−

0 f −b−

π

k
j=1

f
−c−j
ωj

f +
= f −a+

0 f −b+

π

k
j=1

f
−c+j
ωj .

We wish to factorize f into a sum of ZP terms that each involve a single component of the fω terms, together with a short
memory portion. Toward that end, we define the ZP ‘‘version’’ of the spectrum via

fZP = f −a
0 1{a≠0} + f −b

π 1{b≠0} +

k
j=1

f
−cj
ωj 1{k>0}. (4)

With this notation, we can state the algebraic factorization result.

Proposition 1. Given a k-GEXP spectrum of the form (1) and factors given by (2), there exists a short memory spectrum ν such
that

ν =


f −a−
0 f b

+

π 1{a≠0} + f −b−

π f a
+

0 1{b≠0}

 k
j=1

f
c+j
ωj + f a

+

0 f b
+

π

k
j=1


ℓ≠j

f
c+
ℓ
ωℓ f

−c−j
ωj 1{k>0},

τ = f −
· g/ν,

f = τ · fZP .

The function ν is bounded, and is also strictly positive if there are at least two ZP factors—in which case it corresponds to a short
memory process. The function τ has only short memory and negative memory (i.e., it has no poles).

This factorization yields a decomposition of f into a sum of up to k+2 terms, each of which involves τ divided by a factor
f −d
ϑ . Therefore, the inverse FT of each summand of f can be computed by convolving the inverse FT of the numerator τ and
denominator f −d

ϑ via the splittingmethod. This is advantageous, because: (a) exact formulas for the acfs of the ZP factors f −d
ω

are known, and (b) the inverse FT for τ can be calculated to decent approximation (using techniques of McElroy and Holan,
2012) since they have short/negative memory. The formulas needed are summarized in the following result, wherein we let
0 and F denote the Gamma function and hypergeometric function, respectively.

Proposition 2. The autocovariance sequence of the ZP factor τ/f dϑ is given by the following formulas:

γh

τ/f dϑ


=

∞
j=−∞

γj(τ )γh+j(f −d
ϑ ),
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γh(f −d
ϑ ) =



0(h + d)0(1 − 2d)
0(h − d + 1)0(1 − d)0(d)

, if ϑ = 0,

(−1)h
0(h + d)0(1 − 2d)

0(h − d + 1)0(1 − d)0(d)
, if ϑ = π,

√
π 0(1 − 2d) (2 sinϑ)1/2−2d


P2d−1/2
h−1/2 (cosϑ)+ (−1)h P2d−1/2

h−1/2 (− cosϑ)

, if ϑ ≠ 0, π,

P2d−1/2
h−1/2 (z) =


2h − 2
h − 2d


z P2d−1/2

h−3/2 (z)−


2d + h − 2
h − 2d


P2d−1/2
h−5/2 (z).

The functions P2d−1/2(z) are Legendre functions, and their recursive definition is initialized by

P2d−1/2
−1/2 (z) =


1 + z
1 − z

d−1/4 F(1/2, 1/2, 3/2 − 2d; (1 − z)/2)
0(3/2 − 2d)

,

P2d−1/2
1/2 (z) =


1 + z
1 − z

d−1/4 F(−1/2, 3/2, 3/2 − 2d; (1 − z)/2)
0(3/2 − 2d)

.

The first formula of Proposition 2, namely the convolution of the shortmemory τ autocovariances with the long/negative
memory ZP autocovariances, is called a ‘‘splitting formula’’. We can truncate the splitting formula at some threshold lag J
without much cost to accuracy, because the {γj(τ )} sequence is absolutely summable, and hence decays rapidly. However,
one caution is that the truncation of {γj(τ )} at J (i.e., setting γj(τ ) = 0 for j > J) can result in a sequence that is not positive
definite, such that the approximation to the inverse FT

γh

τ/f dϑ


≈ γ0(τ )γh(f −d

ϑ )+

J
j=1

γj(τ )

γh+j(f −d

ϑ )+ γh−j(f −d
ϑ )


need not be positive definite. This may seem to be a quibble, but we have found it to be quite important in practice, because
a nonpositive definite sequence implies negative eigenvalues in the corresponding Toeplitz covariance matrix, obviating
efforts at inversion. Our remedy is to construct a J-dependent process that has well-defined spectral density that closely
approximates τ . One way to do this is to determine the Wold coefficients of τ (obtained via determining the cepstral
coefficients, and utilizing the recursions described in Hurvich, 2002), and define τ (J) to be spectral density of the MA(J)
process corresponding to retaining only the first J + 1 Wold coefficients (the first Wold coefficient is always equal to one).
Letting ξk = 2π−1

 π
0 log τ(λ) cos(λk) dλ be the kth cepstral coefficient, for k ≥ 1, we have Pourahmadi’s recursions

(Pourahmadi, 1984) involving the Wold coefficients ψj (with ψ0 = 1):

ψj =
1
2j

j
k=1

ψj−kkξk. (5)

Then τ (J)(λ) = |
J

k=0 ψke−iλk
|
2 by definition, and its autocovariance sequence is guaranteed to be positive definite; hence

we utilize the approximation

γh

τ/f dϑ


≈ γ0(τ

(J))γh(f −d
ϑ )+

J
j=1

γj(τ
(J))


γh+j(f −d

ϑ )+ γh−j(f −d
ϑ )


. (6)

There is no need to take J particularly large in practice, due to the rapid decay rate of the Wold coefficients of τ(z)—
typically J = 10 is more than sufficient. We note that this approach to obtaining the J-dependent approximation is
practicable, because the jth Wold coefficient only depends (recursively) upon the first j cepstral coefficients, as shown in
Pourahmadi (1984) and Hurvich (2002). Therefore, one only needs the first J cepstral coefficients (we compute these using
numerical integration, which is extremely accurate for shortmemory spectra). Using the recursions to obtain the first J Wold
coefficients, one then computes the autocovariances of this MA(J) process.

Explicit steps of the entire algorithm are given as follows. Choose a truncation level J , and a total number of lags H for
the acf sequence.

1. Read in the parameters.
2. Compute g(λ), f −(λ), ν(λ), and τ(λ) for a mesh of λ frequencies.
3. The jth cepstral coefficient of τ is 2

 1
0 log τ(πx) cos(π jx) dx, which can be Riemann approximated at a given mesh.

4. Obtain theWold coefficientsψj for 1 ≤ j ≤ J of τ from the cepstral coefficients via (5), and compute the autocovariances
of τ (J) from these Wold coefficients.

5. The acf of each long/negative memory pole is given by the direct formula in Proposition 2.
6. Combine the acfs by convolution (6).
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This algorithm might be used to do forecasting, taking the parameters in the first step to be known estimates; or this
algorithm could be embedded in a routine to compute the Gaussian likelihood, inwhich case the parameters in Step 1 reflect
the current iterates in a numerical optimization scheme. In the case of the Gaussian likelihood, the innovations algorithm
(Brockwell and Davis, 1991) can be utilized, which has a loop over the sample size and is recursive in nature; similarly, a
variant for the Whittle likelihood is available. The mean-zero scaled log Gaussian likelihood, based on a sample of size n
from the data process – denoted by X = [X1, X2, . . . , Xn]

′ – is

L(ϕ; X) = X ′Σ−1(fϕ) X + log detΣ(fϕ), (7)

where Σ(fϕ) denotes the n × n Toeplitz covariance matrix corresponding to the spectral density fϕ , and ϕ abbreviates the
full list of model parameters excluding the mean (in our applications, we also include a parameter for the mean). Here we
utilize fϕ given by (1), and ϕ consists of all thememory parameters, togetherwith the ZP locations (unless these are assumed
to be known based on metadata) and the short memory cepstral coefficients gj. This assumes some truncation order q for
the EXP portion of the model. The innovations algorithm will evaluate both summands of (7), given only the acf sequence
of fϕ . The Whittle likelihood is instead given by

W(ϕ; X) = X ′Σ(f −1
ϕ ) X + log σ 2, (8)

where recall that σ 2 equals the exponential of g0, the initial cepstral coefficient. Here we must compute the autocovariance
of the inverse spectral density, but given the form of (1) this is quite easy to find: we just flip the sign on all the memory
parameters d, as well as the cepstral coefficients gj, and apply the algorithm above, followed by evaluation of (8). Together
with a routine to conduct nonlinear optimization, either objective function can be utilized to fit these models to time
series data (R code is available from the authors), resulting in maximum likelihood estimates (MLEs) andWhittle likelihood
estimates (WLEs) respectively. Mean effects can also be easily added if desired, either by direct optimization over specified
regression effects or via a concentrated likelihood utilizing GLS formulas (cf. discussion in McElroy and Holan, 2014).

4. Accuracy and speed of the algorithm

A discussion of other methodologies is given in McElroy and Holan (2012). For a FEXP – defined as the special case of a
k-GEXP with a single pole at frequency zero – the splitting method can be utilized to compute autocovariances. This
represents a trivial case of the present algorithm. Similarly, it is known that a 1-GEXP (having a single pole, which can
be located at any frequency) can be handled by the splitting method. McElroy and Holan (2012) considered efficient
approximation schemes for 2-GEXP and higher order k-GEXP processes, for which the splitting method is not viable. (The
approach ofMcElroy andHolan, 2012 is based on truncating the infinite series representation of the autocovariance function,
and utilizing special functions to approximate the truncation error.)

In order to make comparisons, it is necessary to know the true autocovariances of a k-GEXP. However, this is the very
quantity we are trying to compute, and it is not available to arbitrary accuracy. There is available an asymptotic formula for
the log determinant (ldet) of the autocovariance matrix, and so we can compare the ldet for our method, the McElroy and
Holan (2012) method, and the ldet based upon the asymptotic formula – given in Proposition 1 of McElroy and Holan (2012)
– denoted as ldetProp.

In the case of fractional Gaussian noise the ldet of the autocovariance sequence can be exactly calculated or approximated
to any degree of accuracy using the splitting method. In this case, examining the ldet of the newly proposed approach, we
find that all estimated ldets are within 1e−4 of ldetProp and within 1e−12 of the ldet obtained using splitting method—even
for d = 0.45 (for both n = 500 and 1000). Similarly, for FEXP processes with unit innovation variance and various short
memory specifications, all estimated ldets are within 1e−4 of the asymptotic ldet (ldetProp) and within 1e−12 of the ldet
obtained using splitting method—even for d = 0.45 (for both n = 500 and 1000).

For the 1-GEXP case, we consider sample sizes of n = 500 and 1000 with long memory parameter c1 ranging from 0.1
to 0.45. Additionally, the seasonal frequency is set at ω = 0.56, with the short memory portion g = (g0, g1) = (0, 0.75)—
which implies unit innovation variance. In particular, we compare the difference between the ldet of the new approach and
the asymptotic ldet to the difference between the ldet from the truncation approach and the asymptotic ldet (Table 1). Note
that, for the method of McElroy and Holan (2012), the truncation level JTrunc was set between 5000 and 100,000.

From Table 1, we see that both approaches are highly accurate and closely agree with the asymptotic approximation.
Further, for the 1-pole case, the number of terms needed for accurate approximation increases as the degree of persistence
increases. Even for the case of c1 = 0.25, it happens that 25,000 terms (Wold coefficients) are needed in order to obtain an
accurate approximation (for both n = 500 and 1000). The number of terms quickly increases to 100,000 for c1 = 0.35.
Consequently, computation is significantly more expensive for the truncation method relative to the newly proposed
algorithm.

The 2-GEXP case presents additional complications, as there are now multiple seasonal poles in the spectral density.
Here, we consider sample sizes of n = 500 and 1000 with long memory parameters (c1, c2) ranging between (0.1, 0.2)
to (0.1, 0.45) and (0.45, 0.2) to (0.45, 0.4). Additionally, the seasonal frequency is set at ω = (0.1, 0.56), with the short
memory portion g = (g0, g1) = (0, 0.75) (implying unit innovation variance). Again, we compare the difference between
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Table 1
Log determinant of the autocovariance sequence for a 1-GEXP model obtained using the asymptotic approximation of
Proposition 1 of McElroy and Holan (2012) (Prop), the algorithm of Section 3 (New), and the truncation approach of
McElroy and Holan (2012) (MH2012). In the case of the MH2012 approach we provide the truncation used, JTrunc . The
number in parenthesis denotes the difference between the estimated ldet and ldetProp . In the case of MH2012 , JTrunc was
chosen to reflect the smallest difference between ldetProp and the ldet from MH2012 .

log |Σ |: 1-GEXP: g = (0, 0.75); ω = 0.56

c1 ldet: n = 500 ldet: n = 1000
Prop New MH2012 Prop New MH2012

0.1 0.4299917 0.4299917 0.429932 0.44379 0.4437882 0.443785
(1.696498e−5) (1.568073e−5) (9.213278e−6) (5.240159e−6)

JTrunc = 5000 JTrunc = 5000

0.25 1.582358 1.582393 1.582377 1.669002 1.66902 1.668987
(3.501754e−5) (1.854933e−5) (1.775161e−5) (−1.433973e−5)

JTrunc = 25,000 JTrunc = 25,000

0.35 3.058414 3.058385 3.058331 3.228235 3.228223 3.228115
(−2.889742e−5) (−8.284450e−5) (−1.230519e−5) (−1.201864e−4)

JTrunc = 100,000 JTrunc = 100,000

0.45 5.973976 5.973767 5.972568 6.254700 6.2546 6.252199
(−2.088053e−4) (−1.407956e−3) (−9.965885e−5) (−2.501926e−3)

JTrunc = 100,000 JTrunc = 100,000

the ldet of the new approach and the asymptotic ldet to the difference between the ldet from the truncation approach and
the asymptotic ldet (Table 2).

From Table 2, we see that both approaches are fairly accurate and are in agreement with the asymptotic approximation.
However, in contrast to the 1-GEXP case, there is no definitive correspondence between the truncation needed for the
approach of McElroy and Holan (2012) (MH2012) and the degree of cyclical persistence; i.e., the truncation point in the
MH2012 approach is a non-monotonic function of the level of cyclical persistency. Also, although for moderately persistent
cases the MH2012 method is a slightly better approximation to ldetProp, this behavior is highly dependent on the truncation
chosen, whichwould be unknown in practice. This correspondencemay be due to the fact that theMcElroy andHolan (2012)
method is based upon asymptotic approximations, thereby generating a closer association to the asymptotic ldetProp.

Aside from accuracy, the main advantages of the new algorithm are computational efficiency and the ability to easily
accommodate spectra with more than two poles. The capacity to readily compute the autocovariance sequence in the
multiple-pole setting is extremely advantageous and not feasible without the algorithm of Section 3. In terms of speed,
we compare the computation time of one likelihood evaluation for several cases. In particular, we compute the likelihood
with the autocovariance matrix calculated using the truncation approach of McElroy and Holan (2012) and using the new
algorithm. All computations are carried out in the R programming language (R Development Core Team, 2014) using a
MacBook Pro 2.7 GHz Intel Core i7 with 16 GB 1600 MHz DDR3 RAM.

The first example considers the 2-GEXP specified in Table 2 with (c1, c2) = (0.1, 0.45). For n = 500 (JTrunc = 100,000),
the computation time for one likelihood evaluation of the MH2012 approach is 3.074 min, whereas the new algorithm (with
mesh size 10001) is 1.180 s. Similarly, for n = 1000 (JTrunc = 50,000), the MH2012 approach takes 51.410 s for one likelihood
evaluation, whereas the new algorithm took only 2.478 s (with mesh size 10001). For (c1, c2) = (0.45, 0.4), with n = 500
(JTrunc = 50,000) the MH2012 computation time for one likelihood evaluation was 50.167 s, whereas with the new approach
the computation took 1.229 s. Finally for (c1, c2) = (0.45, 0.4), with n = 1000 (JTrunc = 25,000) the MH2012 computation
time was 15.275 s for one likelihood evaluation, whereas with the new approach the computation took 2.548 s.

It is important to emphasize that all computations done here are completely in R (R Development Core Team, 2014). In
order to make estimation feasible, McElroy and Holan (2012) made use of Fortran subroutines using the R package inline.
Without the use of a lower level programming language such as Fortran or C++, maximum likelihood estimation would be
impractical using the approach ofMcElroy andHolan (2012). In contrast, the newapproach easily handles such computations
without the need to ‘‘optimize’’ computer code.

5. Case studies

To illustrate the utility of the algorithm introduced in Section 3, we examine four different datasets. The four examples
demonstrate the ability to compute autocovariances in our new approach under various model specifications (i.e., varying
the number of long range persistencies). In only the first example is another method viable, because k is small (k = 2); the
other examples have k = 7 or k = 27 poles, so that only our proposed method is feasible.
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Table 2
Log determinant of the autocovariance sequence for a 2-GEXP model obtained using the asymptotic approximation of
Proposition 1 of McElroy and Holan (2012) (Prop), the algorithm of Section 3 (New), and the truncation approach of McElroy
and Holan (2012) (MH2012). In the case of the MH2012 approach we provide the truncation used, JTrunc . The number in
parenthesis denotes the difference between the estimated ldet and ldetProp . In the case of MH2012 , JTrunc was chosen to reflect
the smallest difference between ldetProp and the ldet from MH2012 .

log |Σ |: 2-GEXP: g = (0, 0.75); ω = (0.1, 0.56)

(c1, c2) ldet: n = 500 ldet: n = 1000
Prop New MH2012 Prop New MH2012

(0.1, 0.2) 1.528072 1.497591 1.527665 1.597387 1.570535 1.596123
(−3.048125e−2) (−4.072432e−4) (−2.685184e−2) (−1.263973e−3)

JTrunc = 100,000 JTrunc = 50,000

(0.1, 0.3) 2.714834 2.687255 2.714331 2.853464 2.830055 2.852651
(−2.757927e−2) (−5.028845e−4) (−2.340929e−2) (−8.126799e−4)

JTrunc = 100,000 JTrunc = 100,000

(0.1, 0.45) 6.538299 6.515872 6.535380 6.832886 6.811977 6.834062
(−2.242651e−2) (−2.918457e−4) (−2.090914e−2) (1.175967e−3)

JTrunc = 100,000 JTrunc = 50,000

(0.45, 0.2) 8.134616 8.093399 8.13965 8.470792 8.437261 8.486669
(−4.121709e−2) (5.0335e−3) (−3.353121e−2) (1.587655e−2)

JTrunc = 50,000 JTrunc = 50,000

(0.45, 0.3) 9.492050 9.457665 9.494429 9.897542 9.874612 9.856134
(−3.438547e−2) (2.378529e−3) (−2.292996e−2) (−4.140792e−2)

JTrunc = 25,000 JTrunc = 50,000

(0.45, 0.4) 11.682510 11.66138 11.273010 12.185040 12.173 11.807010
(−2.113188e−2) (−0.409498) (−1.200251e−2) (−0.378036)

JTrunc = 50,000 JTrunc = 25,000

5.1. Quasi-biennial oscillations

We consider a series consisting of 11,000 daily observations beginning November 19, 1964, corresponding to the
east/west wind component from Truk Island (see Cressie and Wikle, 2011, Chapter 3), which are initially downsampled
at a rate of 50 days in order to facilitate computation. Our chief interest is in determining the exact period of the
secondary spectral peak (corresponding to a period of roughly 2.3 years). This latter effect is referred to as a quasi-biennial
oscillation (QBO), and is further described in Andrews et al. (1987) and Wikle et al. (1995); Fig. 1 displays the data (before
downsampling) along with the log spectrum (cepstrum) from fitted models.

We then fitted a 2-GEXP(5) model with two seasonal poles to the series. The results are given in Table 3, for MLEs and
WLEswith their standard errors. Note thatweparametrize the peak locations andpersistencieswith real numbers,which are
then mapped into bounded intervals—this ensures that peak persistencies take values in (−1/2, 1/2). The standard errors
(obtained from the numerical Hessians) are for these original parameters, but in parentheses are the transformed values.

We observe that the chief periods are 2.387 years and 1.003 years, with respective persistencies 0.384 and 0.363, corre-
sponding to the QBO and annual effect. In this case, the results for the Gaussian likelihood and the Whittle were extremely
similar, with standard errors the same up to three decimal places accuracy. In order to examine the impact of downsam-
pling, we changed the rate to 25 days and re-ran the results—with a lower downsampling rate, the effective sample size
increases but the two spectral peaks will appear closer together in spectral estimates. (We experimented with even lower
downsampling, but encountered numerical difficulties due to the close proximity of the peaks.) Table 4 gives these results,
which yield essentially the same periods (though the peak strengths are different). It is interesting that the standard errors
were also the same as those obtained with a higher downsampling rate.

5.2. Industrial Production

The monthly series of Industrial Production (Federal Reserve Board; http://research.stlouisfed.org/fred2/) is available
from 1919 onwards. Having first adjusted the data for a trading day effect, Easter holiday effects, and additive outliers,
we then studied the years 1949.1 through 2007.12 on the log-scale. Nonstationary trend effects in the data required a
single differencing; although a seasonal difference could be applied as well, we attempt estimation of the seasonal poles
through a GEXP model instead. Although the seasonal amplitude is small and hard to discern (left panel of Fig. 2), the data
does indeed have terrestrial periodicities, being sampled at monthly intervals, and hence we expect the spectral peaks to
occur at frequencies of the form 2π j/12. Therefore, the differenced log series was fitted by a 7-GEXP(3) model where the

http://research.stlouisfed.org/fred2/
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Table 3
Parameter estimates for the 2-GEXP(5) fitted to the QBO data, downsam-
pled at rate 50. The peak frequencies (period in years in parentheses) corre-
spond to ω1 and ω2 , while the peak strengths are c1 and c2 (values mapped
to (−1/2, 1/2) given in parentheses).

Downsample rate 50

Parameter MLE WLE
Est s.e. Est s.e.

g1 −2.025 0.328 −2.019 0.328
g2 −0.389 0.170 −0.391 0.170
g3 0.230 0.175 0.229 0.175
g4 0.021 0.158 0.020 0.158
g5 −0.255 0.141 −0.254 0.141
ω1 2.033 (2.387) 0.522 2.036 (2.387) 0.522
ω2 1.841 (1.003) 0.590 1.843 (1.003) 0.590
c1 −2.043 (0.384) 0.015 −2.053 (0.385) 0.015
c2 −1.523 (0.363) 0.015 −1.516 (0.363) 0.015
µ −4.551 0.273 −4.552 0.273

Table 4
Parameter estimates for the 2-GEXP(5) fitted to the QBO data, downsam-
pled at rate 25. The peak frequencies (period in years in parentheses) corre-
spond to ω1 and ω2 , while the peak strengths are c1 and c2 (values mapped
to (−1/2, 1/2) given in parentheses).

Downsample rate 25

Parameter MLE WLE
Est s.e. Est s.e.

g1 −2.422 0.328 −2.422 0.328
g2 −0.986 0.170 −0.986 0.170
g3 −0.381 0.175 −0.381 0.175
g4 −0.330 0.158 −0.330 0.158
g5 −0.105 0.141 −0.105 0.141
ω1 3.045 (2.386) 0.522 3.045 (2.386) 0.522
ω2 1.499 (1.005) 0.590 1.499 (1.005) 0.590
c1 −2.798 (0.455) 0.015 −2.798 (0.455) 0.015
c2 −2.393 (0.317) 0.015 −2.393 (0.317) 0.015
µ −4.926 0.273 −4.930 0.273
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Fig. 1. Plot of 11,000 observations of the east/west wind component from Truk Island beginning November 19, 1964 (left panel) and estimated cepstral
representation (log spectrum) (central and right panels), based on the 2-GEXP model fitted to the downsampled data (at a rate of 50 and 25 days) via
maximum likelihood estimation, with the log periodogram (bias-adjusted) overlaid.

trend/seasonal poles were fixed at π j/6 for 0 ≤ j ≤ 6. We might expect a, b ≠ 0 in the model, and cj ≠ 0 for 1 ≤ j ≤ 5,
which is indeed borne out by our estimates. As previously discussed, the choice of the order for the short memory EXP
portion was only meant for illustration and could be formally chosen through model selection methods if desired.

The results of Table 5 indicate that the trend memory is fairly weak (differencing having removedmost of the structure).
Moreover, for the Gaussian likelihood results the first seasonal peak is somewhat weak, but the memory at peaks two
through six all exceed 0.45, yielding pronounced effects. For the Whittle, the point estimate for the first seasonal peak is
not significantly different from short memory, whereas the results for the other peaks resemble those from the Gaussian
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Table 5
Parameter estimates for the 7-GEXP(3) fitted to the Industrial Production data.
The peak persistencies are a, b, and the cj (values mapped to (−1/2, 1/2) given
in parentheses).

Parameter MLE WLE
Est s.e. Est s.e.

g1 2.984 0.415 2.997 0.328
g2 1.318 0.164 1.304 0.148
g3 0.528 0.117 0.505 0.111
a −0.800 (−0.190) 0.416 −0.571 (−0.139) 0.374
c1 0.490 (0.121) 0.316 0.092 (0.023) 0.202
c2 3.488 (0.470) 1.258 3.746 (0.477) 1.228
c3 4.456 (0.489) 1.085 4.686 (0.491) 1.314
c4 4.275 (0.486) 1.286 4.427 (0.488) 1.353
c5 3.489 (0.470) 0.607 3.922 (0.481) 0.943
b 3.360 (0.467) 0.711 3.722 (0.476) 1.045
µ 0.003 0.0003 0.003 0.0003
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Fig. 2. Plot of Industrial Production data from January 1949 through December 2007 (left panel) and estimated cepstral representation (log spectrum)
(right panel), based on the 7-GEXP model fitted via maximum likelihood estimation, with the log periodogram (bias-adjusted) overlaid.

likelihood. While the MLE and WLE estimates are broadly similar, the standard errors are quite different for some of the
parameters. See Fig. 2 for a plot of the observed time series and estimated (MLE) cepstral representation.

5.3. Mauna Loa

TheMauna Loa time series has now been studied in several papers that treat seasonal long memory. The dataset consists
of 382 monthly atmospheric CO2 measurements collected at the summit of Mauna Loa in Hawaii, beginning in March 1958
(Keeling et al., 1989). While twin-peak models have been considered before for the second-differenced data, such as the
2-factor GARMA of Woodward et al. (1998) and the 2-GEXP(4) of McElroy and Holan (2012), the periodogram of the data
indicates that a model accommodating additional peaks is warranted. Because the data is terrestrial and monthly, it is
plausible that the spectral peak frequencies take the form π j/6 for 1 ≤ j ≤ 6, as with the previous example. Therefore
we again consider the 7-GEXP(3) model, and we compute the MLEs and WLEs for the once-differenced data (which was
adjusted for missing values in a pre-processing stage); see Table 6.

TheMLE results indicate a strong trend effect, aswell as strong seasonality in the first through fourth seasonal frequencies.
The point estimates for the fifth and sixth seasonal frequencies are not significantly different from shortmemory. Results for
the WLEs are broadly similar, although the trend memory is now significantly negative; also, the standard errors for many
of the parameters are smaller. See Fig. 3 for a plot of the observed time series and estimated (MLE) cepstral representation.

5.4. Unemployment insurance claims

The weekly time series of unemployment insurance claims from the Bureau of Labor Statistics (1987 through 2007,
for a total of 1040 observations; http://www.oui.doleta.gov/unemploy/claims) is clearly seasonal, and is a fairly important

http://www.oui.doleta.gov/unemploy/claims


54 T.S. McElroy, S.H. Holan / Computational Statistics and Data Analysis 101 (2016) 44–56

Table 6
Parameter estimates for the 7-GEXP(3) fitted to theMauna Loa data. The peak
persistencies are a, b, and the cj (values mapped to (−1/2, 1/2) given in
parentheses).

Parameter MLE WLE
Est s.e. Est s.e.

g1 −3.347 0.592 −1.388 0.400
g2 0.578 0.289 1.446 0.223
g3 −0.394 0.189 −0.470 0.158
a 1.564 (0.327) 0.682 −0.582 (−0.142) 0.249
c1 6.476 (0.498) 1.004 6.951 (0.499) 1.995
c2 4.402 (0.488) 0.934 4.808 (0.492) 1.929
c3 1.924 (0.373) 0.503 1.805 (0.359) 0.426
c4 1.482 (0.315) 0.416 2.233 (0.403) 0.748
c5 0.133 (0.033) 0.317 0.126 (0.031) 0.219
b −0.223 (−0.055) 0.643 −0.487 (−0.119) 0.433
µ 0.101 0.025 0.099 0.006
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Fig. 3. Plot of Mauna Loa CO2 data for 358 observations beginning March 1958 (left panel) and estimated cepstral representation (log spectrum) for the
first-differenced time series (right panel), based on the 7-GEXPmodel fitted via maximum likelihood estimation, with the log periodogram (bias-adjusted)
overlaid.

series for understanding movements in the employment sector of the economy. Like the Industrial Production example,
the spectral peak frequencies will be taken as known, where p = 52 is the number of seasons. Therefore, we assume that
spectral peaks are located at frequencies π j/26 for 1 ≤ j ≤ 25, in addition to peaks at frequency 0 and π . Hence we fit a
27-GEXP(5) model via the Gaussian andWhittle likelihoods (see Table 7). There are 32 parameters in the model, so that the
ratio of sample size to parameters is over thirty. The calculation of autocovariances for such a process is now feasible, which
we illustrate through providing model-fitting results.

The MLE and WLE estimates are broadly similar, although the standard errors are different in some cases. Excepting the
trend frequency, all of the spectral peak parameters are positive, and some are quite large, indicating substantial persistence.
It is interesting that one of theweakest peaks is the thirteenth (0.171), which corresponds to quarterly phenomena, whereas
the first seasonal peak (0.452), which corresponds to once-a-year phenomena, is one of the strongest. See Fig. 4 for a plot of
the observed time series and estimated (MLE) cepstral representation.

6. Discussion

This paper presents a new algorithm, that allows for computation of the autocovariance function of time series models
withmultiple persistencies. This is accomplished by rewriting themodel spectral density as a sum of single pole factors, and
using the fast splitting method on each summand. Our numerical work shows the accuracy of this approach, and the gains
in computation time over previous methods are substantial. More importantly, the encoding for multiple peak processes is
straightforward, compared to the algorithm of McElroy and Holan (2012).

Our focus is not on modeling, although four case studies are provided in order to illustrate that likelihood evaluation is
feasible. We have used the k-GEXP model to demonstrate the new algorithm, but k-GARMA variants could also be devised
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Table 7
Parameter estimates for the 27-GEXP(5) fitted to the unemployment insurance
claims data. The peak persistencies are a, b, and the cj (values mapped to
(−1/2, 1/2) given in parentheses).

Parameter MLE WLE
Est s.e. Est s.e.

g1 −1.672 1.104 −1.559 1.810
g2 −1.385 0.591 −1.284 0.887
g3 −0.282 0.429 −0.231 0.785
g4 0.369 0.339 0.388 0.558
g5 −0.040 0.296 −0.040 0.478
a −0.014 (−0.004) 0.363 0.014 (0.003) 0.495
c1 2.978 (0.452) 0.769 2.802 (0.443) 1.580
c2 4.089 (0.484) 0.829 4.225 (0.486) 1.325
c3 2.603 (0.431) 0.588 2.703 (0.437) 1.388
c4 3.489 (0.470) 0.758 3.667 (0.475) 1.267
c5 2.000 (0.381) 0.425 2.083 (0.389) 1.319
c6 2.165 (0.397) 0.556 1.931 (0.373) 1.107
c7 0.856 (0.202) 0.320 0.888 (0.208) 0.605
c8 2.489 (0.423) 0.666 2.254 (0.405) 1.193
c9 1.342 (0.293) 0.332 1.371 (0.298) 0.652
c10 1.093 (0.249) 0.321 1.103 (0.251) 0.584
c11 1.706 (0.346) 0.533 1.639 (0.337) 0.941
c12 3.956 (0.481) 0.992 4.268 (0.486) 1.708
c13 0.712 (0.171) 0.303 0.698 (0.168) 0.436
c14 1.047 (0.240) 0.362 1.034 (0.238) 0.570
c15 0.896 (0.210) 0.372 0.866 (0.204) 0.503
c16 2.351 (0.413) 0.881 2.432 (0.419) 1.611
c17 0.943 (0.220) 0.376 0.898 (0.210) 0.489
c18 3.562 (0.472) 1.201 3.506 (0.471) 1.431
c19 2.607 (0.431) 1.048 2.550 (0.428) 1.018
c20 1.499 (0.317) 0.488 1.436 (0.308) 0.557
c21 1.139 (0.258) 0.429 1.120 (0.254) 0.537
c22 3.033 (0.454) 0.975 3.096 (0.457) 1.095
c23 1.550 (0.325) 0.494 1.508 (0.319) 0.576
c24 3.473 (0.470) 0.954 3.666 (0.475) 1.247
c25 1.526 (0.321) 0.555 1.481 (0.315) 0.626
b 1.790 (0.357) 0.702 1.744 (0.351) 0.826
µ −0.00074 0.0015 −0.00088 0.0029
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Fig. 4. Plot of log unemployment insurance claims data from January 1987 through December 2007 (left panel) and estimated cepstral representation (log
spectrum) (right panel), based on the 27-GEXP model fitted via maximum likelihood estimation, with the log periodogram (bias-adjusted) overlaid.

along the same lines, with similar gains to speed and accuracy. Previous analysis of time series with multiple persistencies
has been hampered by computation time; this work enables practitioners to more readily utilize multiple-pole models.
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Appendix. Proofs

Proof of Proposition 1. Because f = f − f + g , it suffices to prove that fZP = f +
· ν. Using d = d+

+ d− for all values of d,
and multiplying each term of ν by f +, we obtain fZP at once. The assertions about ν follow because the function evidently
has no poles, and being a sum of non-negative terms can only have a zero if this zero is common to all the summands; but
this is impossible due to the distinct locations of the various ϑ frequencies. (In the case where there is only one ZP factor, ν
would indeed have a zero.) �

Proof of Proposition 2. The first formula is straight convolution, while the second formula for the ZP factor follows from
the ARFIMA(0, d, 0) results described in Brockwell and Davis (1991) in the cases that ϑ = 0, π . For the third case, we refer
to the GARMA(0, d, 0) results of Chung (1996). �
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