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Abstract The paper reviews the topic of extremal time series. The literature docu-
menting the presence of extremes in time series data is first reviewed, followed by
a discussion of various probabilistic measures, along with the associated statistical
inference problems. The impact of extremes upon statistical analyses is discussed,
and the connection to extremal latent components is emphasized. Two data sets
illustrate the methods.

Keywords Extremal clustering · Extremal index · Extremogram · Noah effect ·
Regular variation · Tail index
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1 Introduction

Many time series exhibit anomalies of various species, such as outliers, extremes,
and other aberrancies. The frequency and magnitude of such anomalies – as well
as the possibility of their clustering – varies depending on the scientific field and
the measurement instruments. Some data streams have inherent sources of extremal
behavior, such that extreme values are ubiquitous in the observed series, while others
may exhibit only isolated outliers, which may have been induced by the vagaries of
measurement. Because such aberrancies can greatly distort common statistics – such
as sample means and sample autocorrelations – used in time series analysis, there is
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468 T. McElroy

a consensus that detecting, measuring, and accounting for such behavior is vital to
obtaining valid statistical results, and that failure to do so can generate spurious con-
clusions. Moreover, for many applications the frequency and magnitude of extremes
themselves is of chief interest (e.g., weather data). These matters are the topic of this
review paper: the detection, measurement, and analysis of extremes in time series
data.

It is useful to distinguish between phenomena that innately generate extreme
observations (e.g., seismic activity, flooding, or economic contagion) and fairly stable
phenomena whose record has been contaminated (e.g., by data entry errors, reclassi-
fications, or sampling mechanisms). When it is possible – on the basis of metadata –
to distinguish between innate extremes and contaminations, the techniques of detec-
tion and measurement can be determined accordingly. However, in some cases the
distinction is empirically unclear.

Aberrant values arising from contamination are typically described as outliers,
and are treated with statistical techniques diverse from those used to analyze proper
extremes. The study of extremal time series is focused on extreme values that arise
as innate facets of a stochastic process. This article focuses on extremal time series,
omitting the outlier literature; the scope of this paper is to discuss the analysis of
extremal time series data, highlight the best current methods, and direct the interested
reader to related literature for deeper study.

2 The presence of extremes in time series data

There is a substantial literature documenting the presence of anomalies in time series
data. (We focus on the time series literature, although work on robust estimation
goes back at least to Newcomb (1886), as discussed in Stigler (1973)). Foremost
was Benoit B. Mandelbrot, who described the presence in hydrological time series
– i.e., Nile river flood levels – of both long-range dependence and heavy tails; see
Mandelbrot and Wallis (1968, 1969). Here, the term long-range dependence refers to
non-trivial serial correlation in the time series data, that actually has a sustained and
long-term pattern of correlation, while heavy tails refers to the slow rate of decay
observed in the tail of the marginal probability density function. Mandelbrot also
coined the evocative terminology of the Noah and Joseph effects, for heavy tails and
long-range dependence respectively. This nomenclature was drawn from the Old Tes-
tament, referring respectively to a global flood (an extremal event in hydrology) and
to periods of persistent famine and abundance in Egypt circa 2000 B.C. (indicative
of long-range dependence in agronomy):

“...all the fountains of the great deep [were] broken up, and the windows of
heaven were opened. And the rain was upon the earth forty days and forty
nights.” (Genesis 7:11-12).

“Behold, there shall come seven years of great plenty throughout all the land
of Egypt: And there shall arise after them seven years of famine...” (Genesis
41:29-30).
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On the measurement and treatment of extremes in time series 469

Mandelbrot also argued that the Noah and Joseph phenomena were present in
communications data (Berger and Mandelbrot 1963; Mandelbrot 1965), economic
data (Mandelbrot 1963, 1969), and more broadly were present throughout the natu-
ral sciences (Mandelbrot 1974, 1983). Beginning with Fama (1965), which asserted
the heavy-tailed nature of stock market prices, there were a few articles published
on the topic of heavy tails in financial returns, such as Clark (1973) and Epps and
Epps (1976), signaling an increasing interest among economists. While the financial
motivation for such investigations has been the control of risk (and minimization of
financial losses), in the environmental sciences interest has principally focused on
extremes because of the direct impact upon society (e.g., storm damage generated by
extremes in wind and precipitation time series).

By the 1990s there was a greatly increased body of literature on time series
extremes. Castillo (1988) documented the presence of heavy tails in hydrology;
Koedijk et al. (1990) studied extremal data in economics and finance; Duffy et al.
(1993, 1994) as well as Meier-Hellstern et al. (1991) considered heavy-tailed tele-
traffic data; Grigoriu (1995) considered applications of heavy-tailed processes to
reliability and structural engineering problems. Willinger et al. (1997) studied the
connection between high variability (extreme values) and self-similarity (a stochas-
tic characterization of long-range dependence) in teletraffic data, relating the Noah
effect parameters (in traffic waiting times) to Joseph effect parameters (long-range
dependence in aggregate network traffic). Also see Beran et al. (1995), Willinger
et al. (1995), and Heath et al. (1997) for related work.

In the late 1990s, the Internet was just coming under scientific study, and the
empirical connection between Noah and Joseph effects in teletraffic time series then
prompted much of the subsequent mathematical research into extremal stochastic
processes over the succeeding two decades. Sidney Resnick claimed that “...such
phenomena as file lengths, cpu time to complete a job, call holding times, interar-
rival times between packets in a network and lengths of on/off cycles appear to be
generated by distributions which have heavy tails” (Resnick 1997, p.1805). Subse-
quent articles on teletraffic data include Crovella et al. (1998), Cappe et al. (2002),
and D’Auria and Resnick (2006, 2008). The book of Resnick (2007) extends this
discussion, and also explores applications of extremal theory to the field of insurance.

Generally speaking, there has been an explosion of articles – since the turn of the
century – treating extremal time series in the natural and social sciences; here we
mention only a few references that have a statistical orientation. Insurance claims,
for example, are directly connected to the uncertainties of life on this planet, and
given that insurance is marketed as a buffer against severe calamities, extremes must
be accounted for in the stochastic structure of insurance models. The book of Reiss
and Thomas (1997) provides illustrations arising in insurance, finance, and hydrol-
ogy, and discusses the XTREMES software; the volume of Coles (2001) provides
some examples from the natural sciences. Anderson and Meerschaert (1998) exam-
ined river flow with heavy-tailed distributions, and Tesfaye et al. (2006) considered
seasonality as well. Weller et al. (2012) applied extreme-value methodology to spatial
precipitation data; also, Thibaud et al. (2013) considered an application to hydrology
of spatial extremal processes.
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470 T. McElroy

Turning to economics, it is natural to expect anomalies in markets, as human
behavior is closely dependent upon natural disasters (e.g., drought, hurricane, earth-
quake) or man-made debacles (e.g., terrorism, war, embargo, piracy). In recent
literature, Mikosch (2003) discussed difficulties with the assertion of Mandelbrot
(1969) that financial data follow a stable distribution. Farmer et al. (2004) showed
that heavy tails are intrinsic to markets in general, and Iglesias (2012) applied extreme
value ideas to the study of the foreign exchange market. The presence of extremes
– as well as long-range dependence – in trading volume is considered in Rossi and
Santucci de Magistris (2013), and extremal values in shortfall is studied in Linton
and Xiao (2013). Hill and Shneyerov (2013) considered heavy tails in cross-sectional
auction bid data, and Davison et al. (2013) discussed the presence of extremes in tem-
perature (e.g., heatwaves) and precipitation (e.g., flooding), with concomitant effects
on food security.

If one is not restricting the viewpoint to time series processses, the amount of
literature expands greatly to include insurance and catastrophe data (Beirlant et al.
2004), the classical province of extreme value theory (Embrechts et al. 1997), as
well as demographics – infant birth weight data was studied by Chernozhukov and
Fernández-Val (2011). Ruin theory and the calculation of Value at Risk (VaR) has a
long history, though the early literature focused on techniques for non-serially cor-
related data (McNeil and Frey 2000, as well as Xiao and Koenker 2009, consider
approaches involving extreme value theory for time series). We mention that a few of
the above citations – Weller et al. (2012) and Thibaud et al. (2013) – discuss extremal
spatial processes; this is a nascent field, but given Mandelbrot’s prophetic prescrip-
tion for the role of extreme value theory in the natural sciences, it seems an entirely
plausible arena of application.

As a concrete example of an extremal time series, we display in Fig. 1 a time series
obtained by counting the number of packets arriving in one-second intervals. Known
as the OctExt Ethernet trace, this is integer-valued data, characterized by frequent
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Fig. 1 OctExt Ethernet trace (Source: Bellcore Morristown Research and Engineering facility, 1994)
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zero values and large extremes. We’ll return to this example in Section 3, to illustrate
some of the inferential methods of extremal time series.

As a second illustration, consider Fig. 2, which displays the average quarterly price
of the West Texas Intermediate standard blend of crude oil (Source: Department of
Energy), from 1970.Q1 through 2005.Q4. This series, which was studied in Trimbur
(2010), exhibits extremes in its growth rate (Phillips 1990). The dramatic movements
in the series could be explained in terms of realignments in the oil market. If we
believe that anomalies are the result of a singular market shock, then they can be
treated as a special case treated with outlier methodologies; if instead we believe that
such upsets are a natural feature of commodity markets, where human beings are
driven by greed and fear, then a stochastic approach is more appropriate. We explore
the impact of extremes upon understanding oil price trends in Section 4.

3 Measurement and estimation of extremes

If the data anomalies are viewed as part of the stochastic structure of the time series,
then the use of fixed effects to model them will artificially thin the tails of the
marginal distribution, and potentially lead to understatements of the true kurtosis –
with ramifications to quantiles and forecast uncertainty. Given that extreme events
(such as a terrorist attack or natural disaster) may recur in the future, it is misleading
to exclude these data from quantifications of extremal dependence. In favor of this
view, there is a substantial literature extending the study of extremes to the context
of time series. We first review the popular stochastic structures, and then discuss the
corresponding statistical inference problems.
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Fig. 2 Price of West Texas Intermediate standard blend of crude oil (Source: Department of Energy), in
US Dollars per barrel; adjusted (base year 2000) using the GDP deflator (Source: Bureau of Economic
Analysis) as a price index
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472 T. McElroy

3.1 Measures of extremal dependence

There are several measures of extremal dependence considered in the literature,
which are reviewed and evaluated in Fasen et al. (2010); we begin by discussing the
clustering of extremes. The empirical phenomenon of outlier patches (Martin and
Yohai 1986) has been formalized probabilistically via the concept of extremal clus-
tering – often referred to simply as “extremal dependence” – in Leadbetter (1983).
Chapter 8 of Embrechts et al. (1997) provides a historical overview; early work
includes Leadbetter (1974), which generalizes the contributions of Sibuya (1959) and
Loynes (1965). Extremal clustering means that extreme values are likely to occur in
temporal proximity (recall the Joseph effect, discussed in Section 2). The work of
Leadbetter et al. (1983) provides a flexible framework (encompassing many stochas-
tic models used for time series data) for defining extremal clustering, using the
concept of “exceedances”. Also see Leadbetter and Rootzén (1988).

We follow the discussion in Davis et al. (2013), which provides an excellent
overview of the topic of extremal clustering. Given a strictly stationary discrete time
stochastic process {Xt } with marginal cumalitive distribution function (cdf) F , we
suppose the existence of a sequence an such that

n (1 − F(an)) → 1 (1)

as n → ∞. For example, if the marginal distribution has a Pareto-like right tail, i.e.,
P[X0 > x] ∼ C x−α as x → ∞, for some index α > 0 and constant C > 0, then (1)
is satisfied with an = C1/αn1/α . More generally, an can be given (non-uniquely) by
the right-tail quantile corresponding to the fraction 1/n.

One can assess the incidence and clustering of extremes by simply counting
extremal phenomena – this is the idea behind the point process of exceedances. With
1A denoting the indicator function for a set A, given a sample X1, X2, · · · , Xn we
can define the point process of exceedances as a random measure Nn on the Borel
sets of (0, 1], such that

Nn(B) =
n∑

t=1

1[t/n∈B, Xt>an]. (2)

By altering the set B, it is possible to examine subsets of indices t for which extremal
phenomena occur. According to Hsing et al. (1988), under a weak dependence con-
dition the sequence of extremal measures Nn converge weakly to a homogeneous
compound Poisson process with intensity θ , where the limiting cluster size (a dis-
crete random variable) has distribution π . Necessarily θ ≥ 0, but it can also be shown
that θ ≤ 1 must be true; θ is called the extremal index, and is defined in Leadbetter
(1983) – although the concept appears in prior literature, such as Loynes (1965).

In the case of an i.i.d. process, the extremal index equals one (θ = 1). Under some
mild assumptions (Rootzén 1978, 2009) the reciprocal of the extremal index equals
the mean of π , so that greater dependence (small θ ) indicates a higher probability of
clustering, with θ = 0 corresponding to long-range dependence. However, θ = 1 can
also occur with non-i.i.d. data; Leadbetter et al. (1983) showed that Gaussian time
series with even a very substantial pattern of serial correlation have unit extremal
index.
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Markovich (2014) studied various properties of extremal clustering. Davis et al.
(2013) discussed the explicit form of θ for a variety of particular stochastic processes
{Xt }, including linear processes, Markov processes, GARCH processes, and Stochas-
tic Volatility (SV) models. Nevertheless, the expressions for the extremal index are
typically too complicated to allow for parametric inference.

Of separate interest is the tail index α, which quantifies the likelihood of obtain-
ing an anomalous value – separately from the question of clustering. Again with F

denoting the cdf of the marginal X0, a general definition is implicitly given via

1 − F(x) = x−α L+(x) F (−x) = x−α L−(x) (3)

for x > 0, where L+ and L− are slowly-varying functions. A slowly-varying function
L has the property that L(tx)/L(x) → 1 as x → ∞ for all t > 0 (Embrechts et al.
1997). (One can broaden the definition, to allow for different α for the right and left
tails.) The parameter α is called the tail index.

There is a vast literature on tail index estimation in the i.i.d. case, and many articles
investigate the related extreme-value index (not to be confused with the extremal
index) defined as the reciprocal of α. There is also a substantial literature on tail index
estimation from time series data, where it is acknowledged that serial dependence
will impact inference. Interest in the tail index stems from its direct connection to the
incidence of extremes, which in turn affects VaR (Fasen et al. 2014), forecasting, and
moments (e.g., expected claim size in insurance applications). As in the case of the
Noah effect, heavy-tailed time series with a small α (α < 2) have infinite variance,
which interferes with the classical Hilbert space methodology used for extrapolation
and signal extraction.

In fact, the autocorrelation function can be quite misleading for extremal time
series. In Jach et al. (2012) a Noah-Joseph (NJ) process was studied, which exhibited
both infinite variance and long memory (in particular, having finite autocovariances);
letting {Zt } be a Gaussian process with arbitrary serial correlation and letting {St } be
an i.i.d. positive process with tail index α/2, it follows that

Xt = √
St · Zt (4)

defines a process {Xt } satisfying (3) with autocovariance function well-defined at
non-zero lags. If α > 2 the variance is also finite, but if α < 2 the so-called
NJ process has infinite variance, implying that the sample autocorrelation func-
tion resembles that of white noise. For such a process (which embodies both of
the features that Mandelbrot observed in nature) the sample autocorrelations are
misleading.

Along these lines, Davis and Mikosch (2009b) in the context of a GARCH
process stated that “the autocorrelation function provides little insight into the depen-
dence structure of the process,” and the authors go on to discuss difficulties with
assessing serial dependence; also see Davis and Mikosch (2009a), as well as Hill
(2009) for work on cross-correlations of exceedances. This discussion motivates the
extremogram of Davis and Mikosch (2009b), defined as

γAB(h) = lim
n→∞ n Cov

(
1[a−1

n X0∈A], 1[a−1
n Xh∈B]

)
(5)
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474 T. McElroy

for integer h, where the sets A and B should be bounded away from zero. Here the
sequence an must be suitably chosen, and in practice is typically taken to satisfy (1)
in absolute values of the random variable, i.e., nP[|X0| > an] → 1. Then it follows
that with the choice of A = B = (1, ∞) in Eq. 5 that

ρ(h) = γ(1,∞) (1,∞)(h) = lim
x→∞P[Xh > x|X0 > x], (6)

which is a more intuitive expression than (5). The coefficient of tail dependence (Led-
ford and Tawn 2003) is a separate – and in some sense, “orthogonal” – concept from
the extremogram, being defined through the expression

P[Xh > x|X0 > x] ∼ x1−1/ηh L(x), (7)

where L is slowly-varying. Ledford and Tawn (2003) define �h = 2ηh−1 ∈ (−1, 1]
as their measure of extremal dependence (i.e., the coefficient of tail dependence).
While a nonzero ρ(h) in Eq. 6 corresponds to �h = 1, or full extremal dependence,
a value �h < 1 for all h implies the extremogram resembles the autocorrelation
function of white noise.

Other measures of extremal dependence include the extreme dependence measure
of Resnick (2004), and the extremal coefficient function of Fasen et al. (2010). An
overview and comparison of these measures is discussed in Larsson and Resnick
(2012); also see Hill (2011a). Hill (2011b) makes the point that the extremal index
and extremogram only capture linear tail dependence, and the study of nonlinear tail
dependence requires other tools.

Many more examples involving the extremogram are provided in Davis et al.
(2013); the authors also mentioned that regular variation provides a sufficient
paradigm for which the extremogram is well-defined. A time series has regular vari-
ation if all its finite-dimensional distributions possess the regular variation property
of random vectors. This requires that for any random vector X = [X1, X2, · · · , Xd ]′
sampled from the time series {Xt }, with x > 0

P[‖X‖ > x] = x−α L(x) (8)

for a slowly-varying function L and some vector norm ‖ · ‖ on R
d , and also that

P [X/‖X‖ ∈ ·|‖X‖ > x]
w−→ P[	 ∈ ·],

where the limit is taken as x → ∞ and is a weak convergence over the Borel sets of
the unit sphere (	 is a random vector supported on the unit sphere in R

d ). Resnick
(1997) summarized the basic theory of regularly varying processes; as such processes
are heavy-tailed, they constitute time series for which tail index, extremal index,
and extremogram are all valid concepts. Davis et al. (2013) provided a useful list of
commonly studied regularly varying processes, with a discussion of their associated
extremogram ρ(h), including linear processes, stochastic recurrence equations, SV
models, GARCH processes, α-stable processes, and max-stable processes.

Some of these concepts can be extended to continous-time processes, to the spa-
tial context, or even to space-time processes. Schlather (2002) discussed max-stable
random fields, based upon the root idea of a max-stable process – essentially the
weak limit of the maxima of a collection of i.i.d. processes (de Haan 1984). Several
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stationary spatial models were proposed in de Haan and Pereira (2006), and the con-
sistency of estimators was established. Some other constructions were considered in
Kabluchko (2009) and Kabluchko et al. (2009). This work has been extended to the
case of a space-time process by Davis et al. (2013a); also see Davis et al. (2013b) and
Huser and Davison (2014).

3.2 Inference for extremal measures

In the previous subsection we discussed the extremal index, the tail index, and the
extremogram. The first two objects are parameters that are well-defined for a wide
class of stochastic processes; while both the extremal index and tail index can be
defined for some i.i.d. data, the former becomes trivial (θ = 1 always). The tail
index is still a meaningful parameter when serial dependence is present, but infer-
ence becomes more challenging; moreover, its estimation is affected by extremal
clustering. The extremogram, on the other hand, is a broad measure of extremal
dependence, which is well-defined for regularly varying processes. We discuss infer-
ence for each in order; for brevity we omit discussion of other measures, such as the
extreme dependence measure.

Leadbetter and Nandagopalan (1989) introduced a nonparametric estimator of θ ,
later extended by Nandagopalan (1990), defined as

θ̂ =
∑n−1

t=1 1[Xt≤un<Xt+1]∑n
t=1 1[Xt>un]

(9)

for an exceedance threshold un satisfying

n (1 − F(un)) → ∞. (10)

This condition can essentially be viewed as taking un = o(an), with an defined
via (1); adopting (10) yields a consistent estimator of θ under some weak depen-
dence assumptions. The choice of un has been studied in Davision and Smith (1990),
which also provides a treatment of modeling, estimation, and diagnosis for size and
occurence of exceedances over thresholds. More recently, Gomes et al. (2008) stud-
ied a reduced bias version of Eq. 9, and utilized subsampling (Politis et al. 1999)
methods to improve performance.

Smith and Weissman (1994) provided an overview of some early literature on
estimation, pointing out that the “runs” estimator of Smith (1989) is more general
than that of Nandagopalan (1990). Given a tuning parameter rn (the length of the
runs) chosen by the practitioner, the runs estimator is defined via

θ =
∑n−rn

t=1 1[Xt>un] · 1[Xt+1≤un] · · · 1[Xt+rn≤un]∑n
t=1 1[Xt>un]

. (11)

Clearly θ with the choice rn = 1 is identical with θ̂ .
Concurrently, Hsing (1991a) considered estimation of certain functionals of the

empirical cluster size distribution, and studied applications of these results to con-
ducting inference for the extremal index. Later Hsing (1993) proposed an adaptive
inference procedure for the extremal index. Another approach to modeling thresholds
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is given in Smith et al. (1997), which considers a Markovian time series structure and
utilizes bivariate extreme value theory to propose transition distributions.

More recently, Ledford and Tawn (2003) proposed diagnostic tools to evaluate the
serial dependence assumptions utilized in the analysis of extremal processes. Also
Ferro and Segers (2003) considered the impact of a de-clustering scheme upon clus-
tering characteristics, and proposed an automated de-clustering algorithm; bootstrap
methods were advanced for estimating the variability. This work was later extended
by Robert (2009a), which established asymptotic results for the interval estimators
of Ferro and Segers (2003). Also see Robert et al. (2009) and Robert (2009b).

There has been considerably more literature on tail index inference; methods orig-
inally developed for i.i.d. data have been applied to weakly dependent time series.
While for short time series (e.g., the oil series of Fig. 2) a parametric specification
may be attractive, for longer time series (e.g., the OctExt Ethernet trace of Fig. 1) the
parametric approach is less feasible – the number of parameters required to explain
the marginal structure becomes intractable. As argued in Drees (2008), the parametric
model misspecification can be quite damaging in the context of tail index estimation.
Hence, semi-parametric and nonparametric approaches to extreme value estimation
have become the norm for longer extremal time series.

Consider (3). This formulation for the marginal distribution describes the tail index
parameter α, while allowing for the presence of a nuisance function L. A parametric
approach attempts to provide an exact specification for L (many potential distribu-
tions, such as Pareto and Student t, are discussed in Embrechts et al. 1997), while
a semi-parametric approach might adopt an infinite basis expansion, allowing for
more basis functions as sample size expands. Nonparametric approaches do not take
the form of L into account in construction of the estimator, but are designed to be
generally effective (e.g., consistent) for a variety of nuisance functions.

The Hill estimator (Hill 1975), which has become a benchmark estimator of the
tail index by virtue of its early formulation and good statistical properties, is given by

α̂
(k)
HILL =

⎛

⎝1

k

k∑

j=1

log X(j) − log X(k)

⎞

⎠
−1

(12)

in the case of positive random variables (if negative values are present, extensions are
possible), where X(j) is the j th upper order statistic of the sample X1, X2, · · · , Xn.
For theoretical derivations, it is assumed that 1/k + k/n → 0 as n → ∞, with the
perspective that k = k(n) is a function of sample size. In practice, k is chosen as some
small fraction of n; see Drees and Kaufmann (1998) for practical recommendations,
and McElroy and Nagaraja (2016) for a discussion. An excellent recent review of the
i.i.d. case is Gomes and Guillou (2015), in which many other tail index estimators are
discussed. However, there seems to be no systematic investigation of the selection of
k when serial dependence is present.

Hsing (1991b) extended the asymptotic normality of the Hill estimator to the case
of serially correlated data. This paper seems to be a chronological outlier; interest in
extremal time series blossomed at the turn of the century, as more empirical literature
appeared that documented the coincidence of heavy tails and serial correlation in
teletraffic data (Resnick and Stărică 1995, 1998). The results for the Hill estimator
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were broadened by Drees (2000), who studied the tail empirical process – a measure
of exceedances not unlike the point process measure (2). This work was extended
in Drees (2002), and applied to quantile estimators (Csȯrgȯ and Yu 1996) – used in
VaR applications – in Drees (2003). Hill (2009) established convergence results for
tail arrays, thereby broadening the class of time series for which the Hill estimator
is effective; also see Hill (2010). Brito and Freitas (2010) considered an estimator
similar to Hill’s (1975), and established its validity under serial dependence.

A feature of Drees’ work is the wide applicability of empirical tail process results
to a broad class of tail index estimators. Further theoretical work in this direction
includes Rootzén (2009) and Drees and Rootzén (2010), which extended the results
on tail empirical processes, and focused upon studying extremal clustering. The
impact of long-range dependence on the empirical tail process was considered in
Kulik and Soulier (2011), and was extended by McElroy and Jach (2012a) to NJ time
series.

The Hill and related estimators are semi-parametric, in that selection of a tun-
ing parameter k is required, where its optimal selection ultimately depends upon
the unknown structure of L. (Another semi-parametric approach based on quan-
tiles is given in Holan and McElroy 2010). Turning to nonparametric estimators,
Meerschaert and Scheffler (1998) proposed tail index estimation based upon sample
moments (and not order statistics), which utilized the fact that for α ∈ (0, 2) a time
series with marginal structure given by Eq. 3 obeys a non-central limit theorem. In
particular,

α̂MS = 2
log n

log
(∑n

t=1 X2
t

) (13)

utilizes the result that the sample second moment for such heavy-tailed processes
is bounded in probability of order n−2/αL2(n). In contrast to Eq. 12, it does not
require the choice of a tuning parameter. This idea was extended in Politis (2002) and
McElroy and Politis (2007c).

In the case of a GARCH process, a moment-based estimator was proposed by
Berkes et al. (2003). The theory of Kesten (1973) on stochastic recurrence rela-
tions provided the framework to establish (Mikosch and Stărică 2000) that stochastic
volatility can be associated with heavy-tailed marginals – also see Basrak et al.
(2002). Such a result indicates that heavy tails may be manifested in time series data
via infinite moments – and not by visually salient bursts (cf., Fig. 1) – and hence
moment-based methods may be useful, in contrast with methodology based upon
order statistics.

Another idea in the detection of extremes is based on the question: how would the
data change if the extreme were omitted? This query motivates the outlier detection
literature, but the same thinking can be applied to stochastic extremes by windowing
the data. McElroy and Politis (2007b) introduced the notion of a scan, which allows
one to study the growth rate of a simple statistic – such as the sample second moment
underlying the MS statistic (13) – as a function of sample size. A related idea is the
max self-similar concept of Stoev et al. (2011), which is based on the scaling property
of block maxima (also see Hamidieh et al. 2009).

Turning to estimation of the extremogram, there is a sparser literature due to
the relative novelty of the concept – see Larsson and Resnick (2012). Davis et al.
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(2012) remarked on the difficulties attendant on developing credible intervals for the
extremogram, and employ the stationary bootstrap to meet these challenges. Davis
et al. (2013) establish consistency and asymptotic normality under a condition similar
to Eq. 10. Mikosch and Zhao (2014) considered estimation of the Fourier transform
of the extremogram (6), viewing this as a spectral quantity yielding frequency infor-
mation about extremes; their estimator is a periodogram of extreme events. They
extended this to integrated functionals of this rare-event periodogram in Mikosch and
Zhao (2015).

By placing the regular variation on {Zt } instead of {St } in Eq. 4, and allowing the
volatility {St } to have short- or long-range dependence, one obtains a SV process that
is often utilized to model financial log returns. Kulik and Soulier (2011, 2013) studied
such a process, for which the extremal index is θ = 1 and the extremogram is that
of white noise (Davis et al. 2013); Kulik and Soulier (2013) showed that measures
of conditional extremal events are nontrivial in such a case, and long memory in the
volatility has an impact on their asymptotics. These results were further refined in
Kulik and Soulier (2015), through their study of the conditional extreme value.

In all of these inference problems, limiting distributions may be non-pivotal,
and/or may converge at unknown rates. While self-normalization (McElroy and Poli-
tis 2002) has been advanced to address the second problem, a variety of resampling
methods have been proposed to obtain asymptotic quantiles. Lahiri (2003) provided
a comprehensive background for resampling and subsampling techniques, with some
discussion of the bootstrap methodology for extremal time series. Ferro and Segers
(2003) utilized the bootstrap to measure the variability of their estimates of the
extremal index. The work of Doukhan et al. (2011) – with comments and discus-
sion – advances the application of subsampling methodology to extremal time series,
with a focus on inference problems. Davis et al. (2012) and Mikosch and Zhao
(2015) applied the bootstrap to conduct inference for the extremogram. Applications
are considered in Li et al. (2008) – who considered the bootstrap and jack-knife
on oceanographic data – and in Kyselý (2008), which gave an empirical study of
parametric and nonparametric bootstrap performance on extreme-value data.

Beyond problems of inference, resampling/subsampling methods have been used
to determine tuning parameters and assist with extremal estimation. Danielsson et al.
(2001) applied the bootstrap to address the problem of estimating the tuning param-
eter k in the Hill estimator (12). A similar idea is employed in Pandey et al. (2003)
for extreme quantile inference. Gomes et al. (2008) applied subsampling and the
jack-knife to assist with estimation, while Gomes et al. (2012) utilized resampling
methods to obtain an adaptive estimate of the extreme value index.

3.3 Application to OctExt data

Returning to the OctExt Ethernet Data displayed in Fig. 1, we proceed to apply
some of the above statistical methods. While the plot shows marked evidence of
extremes, it also seems plausible that the extremes are clustered. In order to estimate
the extremal index via (9) or (11), it is necessary to specify un appropriately. The dis-
cussion above indicates that we could take un = o(n1/α), assuming some estimate
of the tail index α. Utilizing Eq. 12 for the Hill estimator, with k chosen to be small
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relative to n, should yield an estimate. The choices of k = [n2/3], k = [n1/2], and
k = [n1/3] with n = 1000 yield tuning parameters of 100, 31, and 10 respectively,
with

α̂
(100)
HILL = 1.53, α̂

(31)
HILL = 1.85, α̂

(10)
HILL = 2.71.

This demonstrates the general feature that the estimate greatly depends upon the tun-
ing parameter. If we repeat the exercise with a range of tuning parameters, say for k

between 9 and 500 (half the sample size), we obtain a plot of Hill estimates that is
quite variable – referred to by some as a Hill horror plot; see Fig. 3. Without recourse
to any of the more nuanced techniques mentioned above, we obtain merely a vague
confirmation that the data is heavy-tailed, with α roughly between 1 and 3.

An alternative to the Hill estimator is to utilize the moment-based estimator (13),
which yields the estimate α̂MS = 1.35; this choice yields as an upper bound for
un the number 
n1/α̂MS � = 107, which exceeds the maximum of the data – if we
computed θ̂ on this basis, we’d obtain the value one. Clearly, we must take un much

smaller. With the largest Hill estimate we obtain 
n1/α̂
(10)
HILL� = 12, and the choice of

un = 12 yields 25 exceedances. Computing (11) over a range of rn (from 1 up to 248,
after which θ is zero) yields estimates of the extremal index ranging from about .6
down to zero; see Fig. 4. These methods give some rough guesses about the extreme
value behavior in the time series, but there is little confidence associated with any
single point estimate (without a deeper analysis) due to the high sensitivity of results
to tuning parameters.

4 The impact of extremes

Given that extremes have been identified and measured (e.g., via estimation of the
tail index parameter), we may wish to account for the impact of extremes. Suppose
that we are interested in VaR for financial data, or wish to compute a ruin probability
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Fig. 4 Extremal Index for OctExt Data, plotted as a function of the run length rn, with threshold un = 12

for insurance claim data, or wish to determine the likelihood of a catastrophic event:
these scenarios essentially require knowledge of the marginal distribution of the time
series, so that a now-cast or fore-cast that accounts for the extremal nature can be
accurately computed. For such applications, measurement of the extremal parameters
– perhaps followed by a fuller parametric description of the marginal distribution –
is immediately connected to the goals of analysis. See Embrechts et al. (1997) for an
extensive discussion of actuarial and financial applications.

There is a substantial literature that describes the impact of heavy-tailed marginal
distributions on common statistics, such as sample moments, in the context of seri-
ally dependent data. Davis and Resnick (1985, 1986) explored sample means and
autocovariances for linear process with α-stable errors, and numerous articles have
expanded these early efforts. Kokoszka and Taqqu (1996, 1999) extended these early
results to the case of long-range dependence, and Basrak et al. (2012) established
limit theorems for empirical processes of cluster functionals. Also Kulik and Soulier
(2012) provided nice results for sample autocovariances of heavy tailed stochastic
volatility models with long memory. Anderson and Meerschaert (1997) considered
the seasonal case, while Meerschaert and Scheffler (2001) made extensions to mul-
tivariate heavy-tailed time series. Horváth and Kokoszka (2008) further developed
inference for sample autocorrelations in extremal time series; similarly, inference
problems for NJ processes (4) were considered in McElroy and Politis (2007d), Jach
et al. (2012), and McElroy and Jach 2012b. McElroy and Politis (2007a) studied
inference for the mean, in the context of infinite variance data observed at irregular
spatial observations.

Beyond the work of Kokoszka and Taqqu (1996, 1999), there are a few articles on
fitting extremal time series models. Hill (2013a) studied the fitting of infinite vari-
ance autoregressions; Hill (2015) considered fitting the GARCH model to financial
data, allowing for heavy-tailed (and asymmetric) errors. Hill and Aguilar (2013) con-
sidered moment-based score statistics when the time series data has infinite variance,
with applications to volatility spillover in the financial literature on market contagion;
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also see Aguilar and Hill (2015). In terms of spatial inference, Einmahl et al. (2015)
studied the fitting of high-dimensional spatial data with application to the analysis of
wind speed.

There are many applications that make direct use of the measures of extremal
dependence. For example, the VaR problem for extremal data has been considered in
Gencay and Selcuk (2004) and Gilli and Këllezi (2006). Suppose the lower quantile
qp is defined such that 1 − F(qp) = p ∈ (0, 1); the VaR is defined as −qp > 0,
with probability p of a loss −Xt exceeding the threshold −qp. The expected shortfall
is defined as the expected loss given it exceeds the VaR; the problem of estimating
expected shortfall is approached nonparametrically in Hill (2013b). Also see Linton
and Xiao (2013).

Bollerslev et al. (2013) applied extreme value theory to estimate extreme jumps in
financial asset prices. There can be systematic or idiosyncratic jumps in such data,
and their article shows these jumps to be heavy-tailed, and assesses extreme depen-
dencies in these jump tails. Also see Rossi and Santucci de Magistris (2013). Another
interesting application is to the testing of common values in first-price auctions,
where the Hill estimator is directly employed (Hill and Shneyerov 2013).

In other contexts, extreme values are merely a nuisance, and it is desirable to
remove – or control for – the extreme effects, so that we may proceed to other goals
of analysis. For example, we may wish to forecast the trend or cyclical movements in
a time series, first accounting for extremes (e.g., consider Fig. 2). Or we may wish to
seasonally adjust agricultural yield data, where only the seasonal component exhibits
extremes. Or perhaps the goal is to estimate the real volatility of a financial asset, and
the series of volatility estimates need to be cleaned of extremes before understanding
the serial dependence structure.

For forecasting and signal extraction problems, there are two chief paradigms:
first, we might attempt to remove the extreme values and then proceed with a method-
ology that is optimal for light-tailed time series data. Second, we might leave the
extremes and instead utilize a methodology that is robust with respect to the pres-
ence of extremes. In the first approach, if the extremes have been treated as outliers
– via the device of using regressors – then the regression-adjusted data will gener-
ally be lighter-tailed (discussed in Findley et al. 1998). If instead the extremes are
viewed as being stochastic (appropriate for more systemic extreme-value behavior)
then extreme-value adjustment takes the form of shrinkage. In this case, we might
develop forecasting or signal extraction methods that directly account for data or
latent components that are heavy-tailed.

We develop this discussion of extremal signal extraction somewhat more deeply.
Consider the framework

Yt = Xt + Et, (14)

where {Xt } represents an unobserved stochastic trend, while {Et } is i.i.d. noise.
The 
1 Hodrick-Prescott (HP) trend of Kim et al. (2009) is obtained by finding the
minimizers X1, X2, · · · , Xn of

n∑

t=1

(Yt − Xt)
2 + λ

n−1∑

t=2

|Xt−1 − 2Xt + Xt+1| (15)
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for some λ ≥ 0. The usual Hodrick-Prescott trend is obtained if the absolute value
in the second term of Eq. 15 is instead a square; the solution is the conditional
expectation of trend given data when {Xt } and {Et } are Gaussian and the trend is
an integrated random walk (McElroy 2008). Interestingly, Yamada and Jin (2013)
showed that the criterion (15) corresponds to Gaussian noise with an integrated
random walk trend drive by the double exponential distribution.

More generally, let Wt = (1 − B)2Xt be i.i.d. of probability density f , poten-
tially corresponding to a regularly varying distribution (3), and suppose that {Wt }
is independent of X1 and X2. With {Et } i.i.d. Gaussian (and independent of the
trend) with variance σ 2, the conditional probability density of X1, X2, · · · , Xn given
Y1, Y2, · · · , Yn is proportional to

n∏

t=3

f (Wt) · (2πσ 2)
−n/2

exp

{
−

n∑

t=1

(Yt − Xt)
2

2σ 2

}
.

After eliminating constants, 2σ 2 times the negative log of this conditional probability
density equals (15) in the case that f is double-exponential, identifying λ with 2σ 2.
This indicates that the trend estimator corresponds to the mode of the conditional
density of trend given data.

It is an interesting open problem to study the features of trend estimates arising
from regularly varying trend innovations – or to allocate the heavy tails to the noise
{Et } instead. Heavy-tailed trend innovations may be suitable for modeling stochas-
tic level shifts, whereas heavy-tailed noise is appropriate for idiosyncratic extremal
events; Trimbur (2010) considered a student t distribution for both stochastic
components. For a general f , criterion (15) becomes modified to

n∑

t=1

(Yt − Xt)
2 − λ

n∑

t=3

log f (Wt), (16)

and this can be applied in the case of a heavy-tailed distribution. For example, when
f is student t with α degrees of freedom, then − log f (x) ∝ .5(1+α) log(1+α−1x2),
and λ = σ 2(1 + α).

More generally, there is scope for applications that synthesize the error-structure
form of Eq. 14 with the stochastic approach to extremal time series described in
Section 3. Rendering time series (and spatial) data analysis robust with respect to
anomalies will significantly broaden the impact of extreme value theory. Develop-
ing a disciplined scientific procedure for discriminating between deterministic and
stochastic approaches to extreme-value treatment is an important (and challenging)
objective.

Returning to the Oil Price data of Fig. 2, we proceed to estimate trends in the data.
The 
1 HP filter implicitly defined via (15) depends upon a choice of the smoothing
parameter λ, and final results are heavily contingent upon this, much like in the case
of tuning parameter selection for the tail index estimation of OctExt data. We com-
pute the resulting trend with the somewhat arbitrary choice of λ = 60, and repeat the
exercise with the heavy-tailed criterion (16) based upon a student t with one degree
of freedom (and again with λ = 60). The resulting trend estimates are displayed in
the left and right panels, respectively, of Fig. 5.
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Fig. 5 Oil price data (black solid) with estimated trends (red dot dashed), from the 
1 HP (left panel)
and the heavy-tailed HP (right panel) based on λ = 60

Whereas the overall degree of smoothing (i.e., to what extent peaks are retained)
is similar for both methods, there are some important differences in the results. The
heavy-tailed filter does a superior job of tracking the long-term movements in the
series. In contrast, the 
1 HP does more smoothing of kinks, and is itself less smooth
than the conventional HP filter. Depending on the goals of analysis, the preservation
of kinks and sudden level shifts in the trend could be a desirable feature.

Altering the noise-to-signal ratio λ up to 125 induces additional smoothing, which
is displayed in Fig. 6 for both methods. The 
1 HP still has kinks in odd locations,
whereas the heavy-tailed HP has a single peak in the early 1980s.

5 Discussion

Stochastic anomalies, or extremes, are prevalent in time series data encountered
throughout the social and natural sciences. Some of the chief measures of these
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Fig. 6 Oil price data (black solid) with estimated trends (red dot dashed), from the 
1 HP (left panel) and
the heavy-tailed HP (right panel) based on λ = 125
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anomalies include the tail index, the extremal index, and the extromogram. Some
applications require an explicit measurement of these quantities, whereas in other
cases anomalies merely reflect a nuisance to be corrected. While many techniques
are available – giving the practitioner a breadth of possible tools – there seems to be
little consensus in the literature as to which methods are best, or even how to decide
between competitors. For example, in tail index estimation alone there are copious
estimators, each of which has a carefully developed estimation methodology – but
which is best, or most appropriate for a given series? In classic time series model
building, there are many tools available for evaluating postulated models, and rigor-
ously comparing their performance on a given series; but the literature on extremal
time series more resembles that of nonparametric spectral density estimation, where
a variety of tapers and bandwidths are available to the practitioner, each of which has
their own partisans.

There lacks an agreed upon set of criteria for determining which tools are appro-
priate for an analysis, or even how to select the tuning parameters of the method.
Why should one favor the Hill estimator over a moment-based estimator, or the
extremogram over the extreme dependence measure? (Assuming one is ignorant, as
in practice, about the true data process). It seems the field has not yet coalesced about
some canonical choice of methods. This situation might be compared to the literature
on nonparametric spectral density estimation, which proceeded through a competi-
tion of various tapers – with various schema for bandwidth choice – until a recent
surge of work finally provided tools for assessing the impact of taper and bandwidth
on the finite-sample distribution. An analagous breakthrough in this topic of extremal
time series has not yet occurred. As a consequence, it is hard to imagine making a
case for any of these techniques being used in official statistics at a national statisti-
cal agency or central bank, due to the marked subjectivity of putative methods, and
the lack of objective defensible criteria for selecting between contenders.

So what are the key questions that need to be addressed? Given that nonparametric
and semi-parametric methods are favored (which seem appropriate for longer series),
how can we evaluate the fitness of a particular estimator for a series, versus competi-
tors? This question seems akin to a model selection problem, or to the assessment
of the impact of taper choice upon spectral density estimation. Such an evaluation
should take into account the tuning of the estimator, where the tuning parameter
may have been selected according to some optimality criterion. The tuning parame-
ter (which is featured in tail index estimators, the extremal index estimators, and also
the extremogram) is akin to the bandwith parameter in spectral density estimation;
can tuning parameters be estimated according to particular user-criteria, analogous
to how time series model parameters can be fitted to optimize one-step ahead or
multi-step ahead forecasting loss functions, according to the desired application?

For example, suppose that we are interested in trend estimation for the Oil price
data, and the trend is generated from Eq. 16 via a choice of α; if we use a Hill esti-
mator, the tuning parameter k could be selected such that the loss function (16) is
minimized. Or as another example, in a VaR application an empirical version of the
expected shortfall could be devised to obtain a loss function for the tuning param-
eter of α. Cross-validation studies are in the same vein, but require partitions of
the data; it is more appealing to devise a loss function directly tied to the goals of
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analysis, and select between methods and parameters accordingly. Expanding the
extremal time series literature in these directions (e.g., forecasting, signal extraction,
VaR minimization) should be, in our opinion, the focus of substantial future research
efforts.
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Fasen, V., Klüppelberg, C., Menzel, A.: Quantifying extreme risks. In: Klüppelberg, C., Straub, D., Welpe,
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