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Abstract

The U.S. Census Bureau depends on the Master Address File (MAF) to prepare address lists for the
decennial census and household surveys. Accuracy of the MAF is critical to these operations. The Cen-
sus Bureau has considered statistical models to help characterize and predict errors on the MAF. This
work follows Young, Raim, & Johnson (Accepted, 2015) and further investigates zero-inflated negative
binomial regression to model adds from the 2010 Address Canvassing operation. We consider several
supplemental data sources including the Planning Database, the Longitudinal Employer-Household Dy-
namics data, and land use data, in addition to the database with outcomes from the operation. Collection
of the 2010 Address Canvassing data was subject to a variety of influences not captured in the data.
These influences include variations in field representative behavior, in-office post-processing of field data,
and other operational details not available at the time of data analysis. Therefore, it is not obvious
which predictors explain outcomes from the operation, and variable selection is especially critical for this
analysis. We carry out an exhaustive variable selection, consisting of forward and backward selection
steps, and compare candidate models by several likelihood and prediction-based criteria. This method
allows us to consider two-way interactions and to rank predictors by their contribution to the model.
Our initial results find that predictors based on missing delivery point type, historical coverage on the
Delivery Sequence File, and IRS 1040 forms with no block ID or no MAFID to be among the most useful.
The model obtained from the variable selection is shown to fit well to a majority of the blocks, but the
relatively small proportion of blocks which do not fit well tend to be those with the most observed adds.
Therefore, future research is needed to identify other useful predictors or to permit more heterogeneity
within the model. We stress that we are not making recommendations for future Census Bureau opera-
tions; our purpose is to obtain a plausible statistical model for MAF coverage error based on the 2010
Address Canvassing outcomes.

Keywords: zero-inflated counts; negative binomial; logistic regression; variable selection; address can-
vassing.

1 Introduction

The U.S. Census Bureau maintains a database called the Master Address File (MAF) that contains every
known residential address in the United States and Puerto Rico. The MAF is used to prepare an address list
for the decennial census and for more frequently conducted household sample surveys such as the American
Community Survey (ACS) and the Current Population Survey (CPS). Thus, census and sample survey
operations at the Census Bureau depend critically on the MAF containing accurate, up-to-date information.

When a housing unit exists in the field but not on the MAF, we say that undercoverage occurs. Alter-
natively, overcoverage occurs when a housing unit is listed in the MAF but does not actually exist or is not
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residential. This terminology is taken from survey sampling,1 and is appropriate because the MAF forms
the basis of sampling frames used for sample surveys. We speak of coverage error here at the level of housing
units, as opposed to person-level coverage error which is also associated with the census. Undercoverage
can cause housing units of interest to be excluded from a survey or census and results to be compromised.
Overcoverage can lead to costly nonresponse follow-up work when attempts are made to visit the address
and contact inhabitants. Clearly, neither of these outcomes is desirable.

In practice, addresses are never removed from the MAF, and multiple entries can exist for the same
housing unit. The Census Bureau regularly produces MAF extracts for usage within the agency; these
extracts present a view of active addresses on the MAF where each address is represented by a single entry.
Furthermore, consumers of the MAF are usually interested in only a subset of a MAF extract. For example,
when drawing a sample of housing units for a survey, only those units eligible for the survey are needed. A
set of rules to identify such a subset is called a filter (U.S. Census Bureau, 2014a, Chapter 3). The extracting
and filtering processes are necessary to generate usable address lists from the MAF, but are also potential
sources of overcoverage and undercoverage.

There are several processes that update the MAF regularly. The Delivery Sequence File (DSF), obtained
from the United States Postal Service, provides the majority of city-style addresses in the MAF (Schar
et al., 2012). The Postal Service collects DSF data primarily for the purpose of mail delivery and may not
always identify the addresses of interest to the Census Bureau. The Census Bureau makes use of other
address providers as well, such as local governments through the Local Update of Census Addresses (LUCA)
program, and maintains programs such as Demographic Area Address Listing (DAAL) and Community
Address Updating System (CAUS), which update addresses on a regular basis. Despite these efforts, the
MAF can never completely reflect all habitable addresses in the field. The field is constantly changing, and
it is unrealistic to expect that all updates will be caught immediately and recorded in the database without
any error or ambiguity.

To prepare the MAF for the 2010 Decennial Census, the Census Bureau invested nearly half a billion
dollars in the 2010 Address Canvassing (AdCan) operation. U.S. Census Bureau (2012) reports costs and
other logistical results from this operation, which involved 111,105 field representatives (FRs) walking 5.9
million census blocks2 in the United States and Puerto Rico. A universe of 144.9 million addresses called
the “dependent list” was prepared from the MAF to be checked in the field. Each FR was given a hand-
held computer containing the dependent list, and was tasked with verifying the addresses and suggesting
corrections. If an address was found in the field and was not listed in the MAF (i.e., undercoverage), the
address was considered an “add”. Similarly, if an address was listed in the MAF but was not found in the
field (i.e., overcoverage), the address was considered a “delete.” The results of the AdCan operation are
listed below in Table 1.1. For this report, we take “New Adds” to be the outcome of our interest. Another
action which may be considered to be coverage error is “Matched to Records”. This occurred when an FR
attempted to add an address but later determined it to already be present in the MAF but not geocoded to
a precise location or otherwise excluded from the dependent list. Some modelers within the Census Bureau
have summed “New Adds” and “Matched to Records” together as the measurement of undercoverage, but
we consider them as two fundamentally different actions and do not make use of “Matched to Records” in
this work. We also do not model overcoverage in this report, but the main outcome of interest would be
“Does not Exist - Double Delete”.

Address canvassing provided assurance that the 2010 Decennial Census would consider all eligible house-
holds, but its high cost made it the second most expensive operation of the 2010 Census after nonresponse
follow-up (Boies et al., 2012). The majority of housing units were confirmed to be accurately recorded in
the MAF prior to AdCan; Table 1.1 shows that approximately 62% of considered housing units were simply
verified during the AdCan operation. Furthermore, as discussed in Section 3, of the census blocks in our
modeling universe, 77.88% had zero adds, 57.87% had zero deletes, and 50% of blocks had both zero adds and
zero deletes. After 2010, the Census Bureau began research to replace some of the in-field canvassing with

1Coverage rates definitions. Accessed June 25, 2015. http://www.census.gov/programs-surveys/acs/methodology/

sample-size-and-data-quality/coverage-rates-definitions.html.
2This block count refers to the 2010 census collection geography, as opposed to 2010 tabulation geography which is used in

the remainder of the paper.
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Table 1.1: 2010 Address Canvassing operation results. Source: U.S. Census Bureau (2012)

Action # HUs % HUs

New Add 6,624,155 4.23

Matched to Records 4,152,739 2.65

Change 19,608,785 12.51

Move 5,450,563 3.47

Verify 97,635,517 62.31

Does not Exist - Double Delete 15,819,921 10.10

Duplicate 4,085,556 2.61

Nonresidential 1,238,260 0.79

Uninhabitable 551,566 0.35

Unduplicated Rejected Records 1,536,094 0.98

Total 156,703,156 100.00

activities that could be carried out from the office in order to avoid some of the cost. One major component
of this research has been statistical modeling. Boies et al. (2012) investigate the use of logistic regression
models to predict coverage errors and to prioritize the canvassing operation after 2010. By ordering census
blocks by the predicted probability of having a substantial amount of coverage error, we can produce a list
of blocks most likely to differ from the MAF. A canvassing operation with a reduced in-field workload could
deploy FRs to walk only the selected blocks, which could avoid a substantial proportion of cost of the 2010
operation. One caveat of logistic regression is that an event of interest, such as {Adds ≥ 1 or Deletes > 3},
must be determined to characterize “substantial” coverage error observed in address canvassing. Young et al.
(2015) instead consider modeling add or delete counts at the census block level using zero-inflated negative
binomial (ZINB) and zero-inflated Poisson (ZIP) models. As discussed in Hilbe (2011), such models are used
to account for the high prevalence of zero counts. Non-statistical approaches to reduce in-field canvassing
are also under consideration at Census Bureau. For example, the Geography Division (GEO) is considering
aerial imagery and its ability to detect change over time (U.S. Census Bureau, 2014b).

This report follows Young et al. (2015), and considers an alternative method for variable selection under
ZINB regression. Young et al. (2015) follow a procedure that includes screening predictors in the 2010 AdCan
database and dropping those with low correlation to the outcome or a high degree of multicollinearity.
In this report, we make use of forward and backward variable selection steps that allow us to determine
which variables are most useful and which are extraneous or detrimental to the model. The data sources
considered include the 2010 AdCan database along with the Planning Database, a dataset describing land
use, DSF stability index variables, variables from the Longitudinal Employer-Household Dynamics program,
foreclosure counts from the RealtyTrac data, and selected counts of IRS 1040 returns. These data sources
are described in Section 2. We carry out selection in the count regression and zero-inflated regression parts
of the ZINB model separately, using logistic regression as a surrogate for the zero-inflated part of the model
and negative binomial regression as a surrogate for the count part. The forward selection allows us to see,
at each step, which variable in the available candidates will yield the greatest improvement to the model.
At each backward selection step, we can compare contributions from variables already in the model.

Variable selection is of particular importance in the modeling of address canvassing outcomes. Adds and
deletes are obtained through a complicated sequence of field operations and in-office adjudication, and it
has not been clear from the onset which variables serve as strong predictors. It is hypothesized that strong
predictors would capture both change in the field and an inability to detect that change without canvassing
(e.g. because the block has poor DSF coverage). We stress that the models obtained in this paper are not
necessarily recommended for operations; rather, to investigate one possible method of variable selection and
its ability to identify signal in a large set of candidate predictors.

The Census Bureau recently carried out the 2015 Address Validation Test (AVT) (U.S. Census Bureau,
2015).3 For the AVT, 10,100 blocks were sampled from the U.S. and fully canvassed. Adds, deletes, and

3This work discussed in this paper was conducted outside of the AVT project. Namely, the Title 26 datasets used in the
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other canvassing outcomes were recorded, validated, and eventually made available for analysis. The AVT
and future tests provide one possible way for models fitted on past data to be evaluated for relevance to
more current data and to be updated. This report focuses on the 2010 Address Canvassing operation data,
which offers a comprehensive view of MAF coverage error during the months preceding the 2010 Census,
and continues to be a natural starting point for modeling efforts. Our first objective is to adequately explain
the 2010 Address Canvassing operation outcomes by fitting the 2010 Address Canvassing operation data.

The Census Bureau’s consideration to replace or reduce an expensive labor-intensive in-field operation
using in-office modeling is not limited to address canvassing. Investigations are also being carried out to
replace nonresponse follow-up with administrative record data (Morris et al., 2015) and to improve the
efficiency of fieldwork in surveys (Slud and Erdman, 2013). These initiatives have potentially common
threads, and might somehow benefit from being considered together in the same light.

There are many questions to be addressed in future MAF modeling efforts. For example, once we arrive
at a very good fitting model, the method of selecting or excluding blocks for canvassing may be considered
further. One simple idea is illustrated in this report and Young et al. (2015), but this method makes use only
of point estimates and ignores the uncertainty expressed in the model. It may also be of interest to move
beyond our relatively simple count models to explore issues such as unobserved heterogeneity among blocks,
the bivariate relationship between adds and deletes, and additional data sources. There are also important
policy questions, such as how to integrate statistical modeling with aerial imagery analysis and other efforts
underway at the Census Bureau, and how to determine if a model is “good enough” to be used operationally.

The rest of the report proceeds as follows. Section 2 discusses data sources used in the analysis. Section 3
shows some exploratory analysis on the two response variables, and also provides some insight into the
available predictors and their relationships with the response variables. Section 4 discusses the methods
used in the count regression analysis. In Section 5, we present a statistical model for adds and discuss in
detail how it was obtained. Section 6 concludes the report and suggests future ideas for the modeling effort.
Appendix A lists all variables used in the analysis and how they were coded into predictors, and gives some
additional tables and figures.

2 Data Sources

The main source of variables for our model is the 2010 AdCan database. The variables considered in this
report are listed in Table A.1. This database was prepared by the Decennial Statistical Studies Division
(DSSD) of the Census Bureau for the purpose of statistical modeling (Tomaszewski, 2014). It contains
block-level variables based on indicator variables at the address level. For example, there are variables that
summarize the presence of seasonal housing units within each block. Block level summary variables are given
as both sums and means of the address level indicators; we consider only the sum variables in this report.
Also, six versions of these variables are given, corresponding to three “positive” filtering criteria: HUs sent
out for AdCan, HUs eligible for ACS, geocoded HUs; and three “negative” filtering criteria: HUs not sent
out for AdCan, HUs not eligible for ACS, HUs not geocoded. To avoid redundant variables, we considered
only variables based on the positive filters. There are also several categorical indicators (e.g. an urban versus
rural indicator and a type of enumeration area category) and continuous variables (e.g. measures of land area
and water area). From this database, we define our modeling universe as blocks with valid addresses prior
to the Address Canvassing operation in the 50 United States and Washington, D.C. This yields a universe
of 6,539,119 blocks.

The Census Bureau Planning Database (PDB) contains variables correlated with mail nonresponse (Bruce
and Robinson, 2004). The most recent version of the PDB prior to the 2010 Address Canvassing operation is
the 2000 PDB, which is based on 2000 census tabulation geography and is publicly available at the tract level.
Its variables include various housing attributes (e.g. crowded housing) and person attributes (e.g. language
isolation). Based on these characteristics, each tract is assigned a hard-to-count score that explains the
degree of enumeration difficulty. Table A.2 shows variables we considered from the PDB. Because our block

present work were not used in research to prepare the official AVT report.
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universe is based on 2010 tabulation geography, we allocate the 2000 information to 2010 tracts in the
following way. For each tract in the 2000 tabulation geography, we used public geography files4 to identify
all of the tracts from 2010 tabulation geography that intersect with it. Suppose J tracts from 2010, indexed
1, . . . , J , have land areas a1, . . . , aJ intersecting with the 2000 tract. For each variable in the 2000 PDB, a
proportion ak/

∑J
j=1 aj of the 2000 tract’s value was “donated” to the kth 2010 tract. In this way, variables

for each 2010 tract are assigned as a sum of donations from all intersecting 2000 tracts.
The Land Use data shown in Table A.3 was provided by the Geography Division at Census Bureau.

It contains block-level data regarding each block’s distance to certain landmark areas and the percentage
of physical geographical features on each block, provided by the National Land Cover Database (NLCD)
(Homer et al., 2007).

Along with the Land Use data, the Geography Division (GEO) provided us with a “DSF stability index”
at the block level. This variable represents an aggregate of the stability of the HUs within each block and is
based on data from between spring 2000 and spring 2009. If a HU’s stability index is close to 1, this suggests
that the address has been present in the DSF for the given time period. This is referred to as “complete
coverage” on the DSF. At the block level, a DSF Stability Index close to 1 indicates that the block contains
a majority of housing units with complete coverage. Likewise, a DSF Stability Index close to 0 indicates
that the block contains a majority of housing units with poor DSF coverage. The variables in this dataset
are listed in Table A.4.

The Center for Economic Studies (CES) at Census Bureau is responsible for the Longitudinal Employer-
Household Dynamics (LEHD) program, which provides a wealth of publicly available economic data.5 The
LEHD Origin-Destination Employment Statistics (LODES) data provides tract level information on work-
force characteristics and growth. CES provided candidate predictors based on public LEHD/LODES data
from 2007 and 2008, which is given at the tract level for the 2010 tabulation geography. These variables,
listed in Table A.5, are based on residence area characteristics and workplace area characteristics for primary
jobs of the workforce.

RealtyTrac is a provider of United States housing, including comprehensive data on home foreclosures.6

We make use of variables based on counts of foreclosed homes at the block level in 2005, 2006, 2007 and
2008; these are shown in Table A.6.

Table A.7 lists three variables based on IRS records for tax year 2007, which were provided by CES.
These variables capture counts of IRS 1040 returns that had no block ID, no MAFID, and both no block
ID and no MAFID. This information was not directly available before address canvassing, and had to be
computed by taking shares from counts that would have been available at the level of U.S. Postal Service
ZIP code. By considering such counts, we hope to indirectly capture the ability of post offices to maintain
the DSF for their associated region of mail delivery. It is suspected that some post offices are more effective
than others at identifying and recording changes to the DSF, and that presence of IRS 1040 returns without
block IDs or MAFIDs could be an indicator of less effective DSF updating. The January 2014 MAF extract
was used to calculate each block’s share of housing units in each ZIP code, which was used to allocate “no
block ID”, “no MAFID”, and “no block ID and no MAFID” counts from the ZIP code level to the block
level.

In order to obtain a predictive model, covariates should be based on information that would have been
available before the outcome is observed. To the best of our knowledge, all candidate predictors are based
on information which would have been available before the 2010 AdCan operation.

3 Exploratory Analysis

As previously mentioned, 77.88% of the 6,539,119 blocks in our universe had zero adds. Because of this,
the data are heavily right-skewed. This is confirmed by the histogram in Figure 3.1, which is truncated to
show only blocks with at most 10 adds. Taking the natural logarithm of these outcomes does not produce

42010 Census Block Relationship Files website. http://www.census.gov/geo/maps-data/data/rel_blk_download.html
5LEHD website. http://lehd.ces.census.gov
6RealtyTrac website. http://www.realtytrac.com

5

http://www.census.gov/geo/maps-data/data/rel_blk_download.html
http://lehd.ces.census.gov
http://www.realtytrac.com


Figure 3.1: Histograms of add counts per block (truncated to 10 or less) from 2010 AdCan operation.

a bell-shaped distribution, as demonstrated in Figure 3.2. The overdispersion and high percentage of zeros
suggests modeling the outcomes using a zero-inflated negative binomial distribution, which is discussed in
Section 4.

This pattern of overdispersion also occurs regularly among the candidate predictors. For example, in
the Planning Database, consider the percent of people unemployed in a given tract (pct_unemploy_2010).
In Figure 3.3, the histogram of the original variable shows that it is highly right-skewed. However, the
log-transformed version (log_pct_unemploy) follows a bell-shaped distribution. This transformation was
applied liberally to count predictors and helped to avoid models which: (1) did not converge, (2) yielded
a Hessian which could not be used to estimate standard errors, or (3) gave estimates with wildly varying
magnitudes leading to ridiculously large prediction errors. To avoid taking the logarithm of zero, a small
offset was added to most variables; the offset was taken to be 1 for most count variables, and a small
increment was used for continuous variables.

After coding the variables as described in Appendix A, we computed Pearson correlations between the
candidate predictors versus log(adds + 1) in the hopes of identifying several very strong predictors. These
correlations are displayed in Figure 3.4 along with basic summary statistics. The histogram and boxplots
also display a 95% confidence interval for the mean and median of the correlations, respectively, which is
centered near zero. From the boxplot, we can see that the variable log_delptypeBk_sum has a relatively
large correlation (0.45) with the log of adds. This variable is a measure of housing units with a blank delivery
type. Besides that one instance, it was difficult to identify very strong candidate predictors for adds based
on these figures alone. We proceeded with variable selection in the context of statistical models as described
in Section 4.

Figure A.2 shows a map of all observed adds from the 2010 Address Canvassing operation. We can see
a few interesting patterns from this map. First, it appears that blocks with large adds, colored in blue and
dark blue, seem to cluster together. Second, most of these clusters appear to be in major cities across the
United States. For example, New York City and Long Island in New York contain a large amount of adds,
as well as Philadelphia, Pennsylvania. One major exception is West Virginia, which also appears to contain
large amounts of adds. Finally, the eastern half of the country appears to have more adds than the western
half of the country. This might be explained by higher population densities in the eastern states.
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(a) (b)

Figure 3.2: Histograms of log-add and log-delete counts per block (truncated to 10 or less) from 2010 AdCan
operation.

(a) (b)

Figure 3.3: Histogram of pct unemploy 2010.
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Histogram of Variable Correlation with Adds
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Figure 3.4: Correlations between candidate predictors and adds.

4 Methodology

Of the 6,539,119 blocks in our modeling universe, we select a systematic sample of 100,000 blocks as the
training set for modeling. All model selection and fitting is done on the training set, while the resulting
model is evaluated on the entire block universe. This helps to ensure that we are not overfitting to the 2010
AdCan outcomes, and also keeps computational requirements manageable. The training set was selected
by a systematic sample using PROC SURVEYSELECT in SAS. To obtain this sample, we sorted the universe of
blocks by state FIPS code, then by number of pre-AdCan HUs within each state from largest to smallest
count. After randomly selecting a starting point in the list, the sample is determined by skipping indices at
a fixed interval so that a desired number n = 100,000 blocks are included.

Let N = 6, 539, 119 denote the number of blocks in the universe and T ⊂ {1, . . . , N} denote the training
set. The add count on the ith block will be denoted as yi. Following Young et al. (2015), we consider a
regression model for {y1, . . . , yN} based on the zero-inflated negative binomial (ZINB) distribution. ZINB is
commonly used to model count data with large frequency of zeros that cannot be explained only by a count
distribution; see Hilbe (2011) for details. We consider the parameterization of the ZINB density given by

f(y | µ, κ, π) = π1{0}(y) + (1− π)
Γ(y + 1/κ)

Γ(y + 1)Γ(1/κ)

(κµ)y

(1 + κµ)y+1/κ
, y = 0, 1, . . . (4.1)

where µ > 0, κ > 0, π ∈ (0, 1), and 1A represents the indicator function on the set A (i.e. 1A(x) = 1 if x ∈ A
and 1A(x) = 0 otherwise). To denote that a random variable Y is drawn from f(y | µ, κ, π), we will write
Y ∼ ZINB(µ, κ, π). In this case, E(Y ) = (1 − π)µ and Var(Y ) = (1 − π)µ{1 + µ(κ + π)}. When π → 0,
(4.1) becomes the negative binomial distribution which we will write as Y ∼ NB(µ, κ). The Poisson(µ)
distribution is a special case of NB(µ, κ) where κ → 0. We will write Z ∼ Ber(π) for a random Z drawn
from a Bernoulli distribution with probability of success π. The density (4.1) can be obtained by finding the
marginal distribution of Y when Z ∼ Ber(π) and

Y ∼

{
NB(µ, κ) if Z = 0,

0 if Z = 1.
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Here, Z = 1 represents a latent state where zero is always observed (i.e. a block is stable and no HUs will
be added), and Z = 0 represents a latent state where a count (i.e. zero or more adds) could be observed.
Consider a d1-dimensional covariate x to be linked to the count mean µ and a d2-dimensional covariate w
to be linked to the probability of systematic zero π. A corresponding regression model can be written as

Y ∼ ZINB(µ, κ, π), log(µ) = xTβ + log t, logit(π) = wTγ, (4.2)

where β ∈ Rd1 and γ ∈ Rd2 . The term t > 0 is an offset or exposure which facilitates interpretation by
a count rate µ/t = exp{xTβ}. Suppose our data consists of {(yi,xi,wi, ti) : i ∈ {1, . . . , N}}, and assume
model (4.2) for each yi independently. We can formulate the likelihood of the training set as

L(β, κ,γ) =
∏
i∈T

f

(
yi

∣∣∣∣ µi = exp{xTi β + ti}, κ, πi =
1

1 + exp{−wT
i γ}

)
.

ZINB is a widely used model and off-the-shelf software packages are available to carry out estimation by
maximum likelihood. We make use of the COUNTREG procedure in SAS to fit ZINB. The goal for this work
is to determine a reasonable x and w from the currently available data sources to predict y, or to ascertain
that no satisfactory x and w exist. For the remainder of the paper, we assume a ZINB model as our
eventual goal and focus on the selection of predictors. The idea is that, once a reasonable set of predictors
is determined, future work could change or relax the model assumptions (e.g. by considering more complex
models) to perhaps make better use of the data (e.g. through dimension reduction or alternative codings of
the predictors).

We carry out variable selection using forward and backward selection steps with customized code that
we have implemented in R. We found programming such a procedure to be more natural in R than in SAS.
We also found fitting a negative binomial or logistic regression in R to be much faster and more reliable than
fitting a ZINB model in R with available packages. Therefore, variable selection is split into two phases.
One phase takes y to be the outcome and makes use of negative binomial regression; this corresponds to
the latent state where a count is observed. The other phase takes the event [y = 0] to be the outcome and
makes use of logistic regression. This corresponds to the state where systematic zeros are observed. In each
phase, we consider two kinds of steps.

Add1. An Add1 step starts with an initial model and adds one candidate predictor at a time. The
resulting model fits can then be compared side-by-side to decide which candidate, if any, should be added.
Let x = (x1, . . . , xp) be the covariates in the initial model and let x∗ = (x∗1, . . . , x

∗
q) be candidates which

could be added. Fit q models using

(x1, . . . , xp, x
∗
1), . . . , (x1, . . . , xp, x

∗
q),

plus the initial model using x. For each model, compute the log-likelihood, Akaike’s Information Criterion
(AIC), Bayesian Information Criterion (BIC), sum of squared prediction errors (SSPE), and sum of absolute
prediction errors (APE). The models can then be compared by these criteria and the most helpful x∗j can be
added to the initial model in subsequent steps. We found that some x∗j can improve the likelihood but can
also have a detrimental effect on prediction error. We avoid automating the selection process and manually
examine the criteria from the q + 1 model fits. As a rule of thumb, we sort the fits by log-likelihood, and
select the variable which most improves the log-likelihood while also taking care to keep the prediction error
as small as possible.

Drop1. A Drop1 step starts with an initial model and drops one predictor at a time. The resulting
model fits can then be compared side-by-side to decide which predictor, if any, should be dropped. Let
x = (x1, . . . , xp) be the covariates in the initial model. Fit p models using

(x2, x3, . . . , xp), (x1, x3, . . . , xp), . . . , (x1, x2, . . . , xp−1),
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plus the initial model using x. For each model, compute the same criteria as in the Add1 step. Our rule of
thumb is to drop the variable whose absence is the least detrimental to the log-likelihood, and where absence
of the variable also does not have a detrimental effect on prediction error. If no such variables are present in
the model, no change is made. A Drop1 step is useful for ranking the utility of predictors in a given model.

Add1 and Drop1 steps are sequenced together by the analyst to arrive at a satisfactory model; that
is, a model where all candidate predictors have been considered, and where no variables in the model are
extraneous or detrimental. This method of variable selection helps the analyst develop a strong intuition
about available predictors, but can be tedious as it requires frequent manual intervention. Future work
should consider automated methods which give the same kind of intuition. Note that all variable selection
is carried out on the training set T to protect against overfitting.

The prediction error criteria are defined as

SSPE =
∑
i∈S

(yi − ŷi)2 and APE =
∑
i∈S
|yi − ŷi|,

where ŷi are predictions obtained from the model and S is some subset of the data (e.g. the model universe or
the training set). We also define the mean-square prediction error (MSPE) and the mean absolute prediction
error (MAPE) by dividing SSPE and APE, respectively, by the number of observations in S. We do not
consider statistical significance in our battery of criteria. In our experience, predictors with significant coeffi-
cients have been extraneous or detrimental to prediction error; on the other hand, nonsignificant coefficients
have led to improved predictions.

A variable’s utility or detriment can change dramatically given other variables in the model. For example,
two predictors may explain roughly the same variability in the outcome. Predictors may also be dependent
on each other, causing a potential collinearity problem. An interaction between two or more predictors may
be a useful covariate, and its utility may further depend on the presence or absence of other covariates.
The Add1/Drop1 framework allows two-way interactions and alternative codings of predictors (placing into
categories, log-transforming, etc) to be considered without additional effort. We consider all pairs of two-way
interactions between candidate predictors whose main effects are included in the model.7

To detect the presence of a multicollinearity problem, we consider the Generalized Variance Inflation
Factor (GVIF) proposed by Fox and Monette (1992) and used by Young et al. (2015). Suppose predictors

(x1, . . . , xp) correspond to estimated coefficients β̂ = (β̂1, . . . , β̂p) and are partitioned into G groups by
the analyst. As an example, for a categorical variable split into dummies, we may want to consider their
collinearity as a unit. Trivially, each predictor can belong to its own group. Let R̂ denote the estimated
correlation matrix of β̂. The GVIF for group g, for g = 1, . . . , G, is computed as

det(R̂1) det(R̂2)/ det(R̂),

where R̂1 contains the rows and columns of R̂ corresponding to coefficients in group g, and R̂2 contains the
remaining rows and columns. As with the traditional Variance Inflation Factor, a large GVIF indicates a
problem with multicollinearity. The GVIF reflects the relationship between the volumes of two confidence
regions for β̂: the estimated region versus an ideal region. A GVIF of 1 indicates no evidence of a problem
due to multicollinearity.

Also following Young et al. (2015), we consider the randomized quantile residuals proposed by Dunn
and Smyth (1996). Suppose Yi is drawn independently from cumulative distribution function (cdf) Fθi

for
i = 1, . . . , n. Denote Φ−1 as the quantile function for N(0, 1) and let

F
(L)
i = lim

z↑Yi

Fθ̂i
(z) and F

(U)
i = Fθ̂i

(Yi).

7If an interpretable model is desired, the analyst can choose to follow common best practices for adding and dropping
predictors. For example, if a two-way interaction is present in the model, it is usually suggested for both main effects to be
present. The analyst may also wish to avoid dropping dummies that compose a categorical predictor. In this work, we are more
interested in prediction than interpretability.
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where θ̂i is an estimate of θi. The residual is computed as ri = Φ−1(Ui) using a draw Ui from the uniform

distribution on the interval (F
(L)
i , F

(U)
i ). When Fθi

is a continuous cdf, F
(L)
i = F

(U)
i and the residual

simplifies to ri = Φ−1(Fθ̂i
(Yi)). The idea for these residuals is that, if the estimated models Fθ̂i

fit well, then
r1, . . . , rn should be distributed approximately as a random sample from N(0, 1). In practice, the residuals
can be used to diagnose the fit of the model by checking boxplots, Normal Q-Q plots, and so on. The
randomness of the residuals may be seen as a potential downside, as their values partially depend on the
state of a random number generator. It can also be seen as an advantage, providing some jitter and leading
to more interpretable plots when analyzing discrete data.

5 ZINB Model for Adds

In this section we obtain a ZINB model for adds using the set of candidate predictors introduced in Section 2.
Variables are selected using the Add1/Drop1 method discussed in Section 4. First, Section 5.1 considers
the event [y = 0] as the outcome and selects variables for a logistic regression model. Section 5.2 selects
variables for a negative binomial regression model using y as the response. These two results are combined
in Section 5.3 to obtain a single ZINB regression model: the zero-inflated regression using the predictors
obtained in Section 5.1, and the count regression using the predictors obtained in Section 5.2. The ZINB
model is then evaluated for goodness-of-fit to the training dataset and its ability to extrapolate to the full
block universe in Section 5.4.

5.1 Bernoulli Selection

Model selection began with an initial set of variables from the AdCan database, listed in Table A.8, based on
prior modeling experience. The table shows the fit for the initial regression model, including the estimates
for the coefficients and associated standard error, z-statistics, and p-values. Starting from this initial model,
Add1 and Drop1 steps were taken as described in Table 5.1. First, candidate predictors from the AdCan DB
were considered. Next, variables from the supplementary data sources described in Section 2 were considered
as candidates. Finally, all possible two-way interactions from the selected predictors were considered as
candidates. Note that, if a two-way interaction was selected in one step, its interaction with a third variable
would be considered in a subsequent step; in this way, higher order interactions were considered as well.

The first row of Table 5.1 shows that we first ran a Drop1 step on our initial model. This process dropped
every variable from the initial model in turn and computed the log-likelihood, AIC, BIC, SSPE and APE.
The output was displayed in a table with rows corresponding to models with one predictor dropped, sorted
by log-likelihood in ascending order. From this output, we noted that dropping log_acs_hu_ratio led to
a slightly simpler model whose fit was almost equivalent. The predictor log_acs_hu_ratio was therefore
dropped, followed by several other predictors in subsequent steps. In the fourth step, an Add1 step helped
us to determine that the candidate log_mafsrc1_sum should be added to the model.

Table 5.2 shows details for a Drop1 step using predictors selected to be in the final model; this table
was computed after Table 5.1. We also list the GVIF for each variable, excluding the full model and the
intercept. We can see, for example, that dropping log landmeters2 yields a very similar fit to the full
model. However, we decided to keep log landmeters2 because the quadratic term log_landmeters2_sq

is also present in the model, and is providing a more substantial improvement to the fit. We see that
log_delptypeBk_sum appears to be the most helpful predictor; if dropped, there is a significant degrade in
fit. The set of predictors notated as log_devel*_pct is associated with a high GVIF. This was noted in
case problems were encountered later in the model building process. For completeness, the estimates for the
final model are listed in Table A.9.

5.2 Negative Binomial Selection

Results for variable selection of the negative binomial regression model are analogous to those in Section 5.1.
Table A.10 shows the initial model selected from the AdCan database from previous experience. Table 5.3
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Table 5.1: Bernoulli Add1/Drop1 selection with AdCan DB variables.

AdCan DB Steps LogLik AIC BIC SSPE APE

0 Initial -43815.61 87663.22 87815.43 13846.82 27670.01

1 Drop log acs hu ratio -43815.76 87661.52 87804.21 13846.78 27669.60

2 Drop log gc sum -43816.05 87660.09 87793.27 13846.44 27669.61

3 Drop log business sum -43816.95 87659.91 87783.57 13845.82 27669.11

4 Add log mafsrc1 sum -43684.80 87397.60 87530.78 13806.06 27579.27

5 Add log compcity1 sum -43649.36 87328.73 87471.42 13793.74 27549.87

Supplemental Steps LogLik AIC BIC SSPE APE

1 Add log forest* pct -43403.55 86843.09 87014.33 13702.57 27347.94

2 Add log irs1040ng -43147.98 86333.96 86514.71 13613.40 27176.52

3 Add log pct crowd occp u -42996.04 86032.09 86222.35 13565.01 27085.40

4 Add log crops pct -42894.10 85830.21 86029.98 13527.67 27011.14

5 Add log dsf si spr09 -42812.80 85669.60 85878.89 13503.96 26949.49

6 Add log shrub pct -42749.23 85544.47 85763.27 13481.73 26901.20

7 Add log devel* pct -42701.94 85457.89 85714.74 13466.32 26873.57

8 Add stability index -42662.65 85381.30 85647.66 13454.58 26853.09

9 Add hu block2tract ratio -42636.46 85330.91 85606.79 13445.67 26838.67

10 Add log pct pop 0 17 -42611.10 85282.20 85567.59 13436.57 26822.35

11 Add log irs1040nb -42542.48 85146.95 85441.86 13409.99 26774.47

12 Add log irs1040nm -42466.18 84996.35 85300.77 13386.86 26729.95

13 Add log htc -42427.21 84920.42 85234.35 13374.92 26709.55

14 Add log pct mlt u 10p str -42403.57 84875.15 85198.59 13368.77 26696.56

15 Add log pct not single u strc -42378.69 84827.39 85160.34 13360.71 26681.74

16 Add log pct black -42356.64 84785.28 85127.75 13352.51 26665.80

17 Drop log hu density ratio -42356.64 84783.29 85116.24 13352.50 26665.83

Interaction Steps LogLik AIC BIC SSPE APE

1 Add I1 -42222.04 84516.08 84858.55 13305.19 26562.30

2 Add I2 -42145.33 84364.66 84716.64 13276.19 26509.46

3 Add I3 -42070.75 84217.50 84578.99 13244.43 26437.04

4 Add I4 -42008.87 84095.73 84466.73 13226.09 26404.02

5 Add I5 -41946.73 83973.47 84353.98 13202.67 26363.23

6 Add I6 -41908.02 83898.05 84288.08 13190.87 26339.09

7 Drop urbanZERO -41908.02 83898.05 84288.08 13190.87 26339.09

8 Drop teaUER -41912.09 83902.17 84273.17 13191.83 26341.53

Variable/Group Definitions

I1: log compcity1 sum:log devel1 pct

I2: log dep list:log dsf si spr09

I3: log landmeters2:log dsf si spr09

I4: log delptypeBk sum:log dsf si spr09

I5: log dsf si spr09:log irs1040nm

I6: log devel2 pct:log irs1040nb

log forest* pct: log forest1 pct, log forest2 pct, log forest3 pct

log devel* pct: log devel0 pct, log devel1 pct, log devel2 pct, log devel3 pct
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Table 5.2: Drop1 for final selected Bernoulli model.

Drop LogLik AIC BIC SSPE APE GVIF

<FULL MODEL> -41912.09 83902.17 84273.17 13191.83 26341.53 ---

log landmeters2 -41912.15 83900.30 84261.79 13191.93 26341.54 8.3035

log irs1040nm -41912.17 83900.33 84261.82 13191.78 26341.46 2.5217

log compcity1 sum -41916.20 83908.40 84269.89 13192.75 26346.62 15.2929

hu block2tract ratio -41917.14 83910.27 84271.77 13194.03 26346.33 2.7258

hasSeasonalY -41919.59 83915.18 84276.67 13194.58 26347.93 1.0476

log unitstat1 sum -41920.94 83917.88 84279.37 13193.28 26342.98 19.9653

teaMOM -41929.74 83935.48 84296.97 13197.91 26351.72 1.7314

log dep list -41930.84 83937.69 84299.18 13195.97 26352.39 17.1194

log pct not single u strc -41931.13 83938.26 84299.75 13198.36 26352.72 11.7245

log htc -41932.17 83940.34 84301.83 13197.33 26352.83 7.6980

log pct mlt u 10p strc -41939.81 83955.62 84317.11 13198.17 26353.99 2.6670

log pct black -41940.83 83957.66 84319.15 13202.76 26361.12 1.7512

log shrub pct -41949.37 83974.74 84336.23 13204.72 26369.67 1.4111

I1 -41949.57 83975.13 84336.62 13203.23 26364.63 11.1165

log forest* pct -41954.51 83981.02 84323.49 13203.95 26371.48 2.4973

Intercept -41955.00 83986.01 84347.50 13205.35 26383.00 ---

log devel* pct -41961.01 83992.02 84324.97 13206.73 26373.57 95.6188

I2 -41963.58 84003.16 84364.66 13208.29 26379.30 9.6059

log mafsrc1 sum -41965.68 84007.36 84368.85 13208.85 26375.61 2.1558

log landmeters2 sq -41969.28 84014.56 84376.06 13213.10 26367.67 4.7501

I3 -41970.24 84016.47 84377.96 13213.48 26379.76 18.4979

log isVacantY sum -41971.26 84018.52 84380.01 13215.65 26388.27 1.5412

I4 -41980.05 84036.10 84397.59 13212.25 26377.59 6.9441

log eds res sum -41994.06 84064.12 84425.62 13213.91 26393.10 1.8156

log pct pop 0 17 -41994.56 84065.12 84426.61 13219.72 26391.34 6.7107

log crops pct -41996.13 84068.26 84429.75 13224.24 26407.01 1.8849

I5 -41998.72 84073.43 84434.92 13225.13 26407.14 26.4756

log irs1040nb -42001.31 84078.61 84440.10 13223.37 26398.75 2.0666

stability index -42004.05 84084.10 84445.59 13223.06 26399.24 2.7371

I6 -42041.89 84159.79 84521.28 13241.89 26453.13 6.4004

log pct crowd occp u -42048.89 84173.78 84535.27 13237.98 26428.97 1.9901

log irs1040ng -42056.02 84188.03 84549.52 13246.17 26442.34 1.8875

log dsf si spr09 -42255.39 84586.77 84948.26 13312.72 26582.05 56.2278

log delptypeBk sum -42323.42 84722.85 85084.34 13323.03 26629.75 19.9653

Variable/Group Definitions

I1: log devel2 pct:log irs1040nb

I2: log compcity1 sum:log devel1 pct

I3: log dsf si spr09:log irs1040nm

I4: log delptypeBk sum:log dsf si spr09

I5: log dep list:log dsf si spr09

I6: log landmeters2:log dsf si spr09

log forest* pct: log forest1 pct,log forest2 pct,log forest3 pct

log devel* pct: log devel0 pct, log devel1 pct, log devel2 pct, log devel3 pct
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describes the Add1/Drop1 selection process for the negative binomial model. Table 5.4 shows a Drop1 step
for the final selected model along with GVIFs. Estimates for the final model are listed in Table A.11. In
our experience, the negative binomial model was much more prone to the problem of added variables giving
a large improvement to the log-likelihood but causing a detrimental effect to prediction error. For example,
selecting log_delptypeBk_sum as a predictor increased SSPE by an order of magnitude (not shown). If we
instead coded the underlying variable dpreac_a9_delptypeBk_sum as the indicator has_delptypeBk, we
obtained a large improvement to the log-likelihood without the increase in prediction error. Indeed, this
turned out to be the most useful predictor according to Table 5.4.

5.3 Zero-Inflated Negative Binomial Model

A zero-inflated negative binomial model was obtained by taking the final model from Section 5.1 as the
covariate w in the ZINB regression model (4.2), and by taking the final model from Section 5.2 as the
covariate x. We used the Newton-Raphson algorithm in PROC COUNTREG, and checked that the algorithm
converged with a positive definite Hessian (so that covariances could be estimated). Estimates for the count
regression coefficients and dispersion parameter are listed in Table 5.6, while Table 5.7 shows estimates for
the zero-inflation coefficients. Each table gives standard errors, p-values and 95% confidence intervals along
with the estimates.

There are a few interesting things to note in Table 5.6. First, we can see that the variable with the
strongest influence on mean add count is stability_index. This variable represents a measure of consistency
for a block’s DSF history. Recall from Section 2 that values closer to 1 suggest HUs on the block have
complete and accurate histories in the DSF, while values closer to 0 suggest poor DSF coverage. Our estimate
of −0.8793 in the count regression suggests that higher values of stability_index are associated with a
smaller mean count, which is consistent with our intuition. We also note that certain variables, including
teaMOM, log_unitstat1_sum, log_forest2_pct and log_irs1040nm, are not significant at the 5% level.
We did not exclude these variables from the model because they were seen to improve the log-likelihood and
prediction error in Section 5.2.

From Table 5.7, we see hu_block2tract_ratio has the largest influence on the probability of systematic
zero for a block. This seems intuitive because this variable is measuring the ratio of pre-AdCan HUs in a
block to the count in the tract. If this ratio is high, we might expect to see an area with more activity
than its surrounding areas, and therefore more adds. Our estimate of −4.4435 suggests that the probability
of a systematic zero decreases for larger values of the ratio, which is consistent with our intuition. As in
Table 5.6, there are several variables that are not significant at the 5% level, including log_crops_pct,
log_devel0_pct, log_irs1040nm, and the interaction term log_devel1_pct:log_compcity1_sum.

5.4 ZINB Model Evaluation

Table 5.8 shows the model fit statistics for our zero-inflated adds model. The log-likelihood, AIC and BIC
were computed using the training set, and thus cannot be used for direct comparison with other models
unless the same training set is used. Prediction errors were computed, however, using all blocks in the
universe, facilitating direct comparison against other models. Fit statistics for negative binomial and Poisson
regression models are shown as well, using the same predictors in the count regression as ZINB. We can see
that negative binomial is fairly close to ZINB in terms of log-likelihood, AIC, and BIC, while Poisson is worse
by an order of magnitude. Alternatively, the Poisson SSPE and APE rivals ZINB. The decreased magnitude
of SSPE and APE for Poisson was due to the distribution’s tendency to produce smaller predictions and not
because it produces more accurate predictions than negative binomial.

Figure 5.1 shows plots of the randomized quantile residuals computed on the training set. The Q-Q plot
shows that our model is not capturing extreme values well. Furthermore, the plot of the residuals vs. log-
predictions shows a trend where the residuals become larger in magnitude as log-prediction approaches
zero. Figure A.1 shows quantile residuals for the negative binomial and Poisson models, respectively, for
comparison. It is apparent from these plots that the negative binomial model fit is comparable to ZINB
while Poisson is notably worse.
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Table 5.3: NegBin Add1/Drop1 selection with AdCan DB variables.

AdCan DB Steps LogLik AIC BIC SSPE APE

0 Initial -88685.72 177405.4 177567.2 2241029 109489.5

1 Add log mafsrc2 sum -88683.88 177403.8 177575.0 2212585 109220.2

Supplemental Steps LogLik AIC BIC SSPE APE

1 Add stability index -87993.59 176023.2 176194.4 2322641 108110.0

2 Add log irs1040ng -87719.45 175476.9 175657.6 2212165 107215.4

3 Add log irs1040nb -87480.24 175000.5 175190.7 2187939 106409.2

4 Add log devel* pct -87366.96 174781.9 175010.2 2151479 105895.5

5 Add log crops pct -87205.61 174461.2 174699.1 2146343 105429.5

6 Add log pct crowd occp u -87101.30 174254.6 174501.9 2131212 104890.0

7 Add log pct pop 0 17 -87034.80 174123.6 174380.5 2131989 104932.3

8 Add log pct not single u strc -86944.05 173944.1 174210.5 2122462 104622.0

9 Add log forest* pct -86898.75 173859.5 174154.4 2108162 104299.6

10 Add log dsf si spr00 -86830.08 173724.2 174028.6 2124208 104610.7

11 Add log shrub pct -86780.09 173626.2 173940.1 2123697 104602.3

12 Add log dsf si spr09 -86699.76 173467.5 173791.0 2180394 105472.2

13 Add pct unemploy zero -86658.59 173387.2 173720.1 2167083 105419.5

14 Add log pct li hh indo europe -86608.32 173288.6 173631.1 2166127 105399.7

15 Add log irs1040nm -86563.72 173201.4 173553.4 2165367 105140.1

16 Add log pct mlt u 2p strc -86522.99 173122.0 173483.5 2173598 105081.9

17 Add realtrac * 2007 -86472.60 173027.2 173417.2 2189715 105348.9

18 Add log pct api -86442.92 172969.8 173369.4 2193304 105528.8

19 Add uni dist* -86411.79 172919.6 173376.2 2198854 105687.2

20 Drop log acs hu ratio -86412.05 172918.1 173365.2 2199715 105703.0

21 Drop uni dist3 -86412.32 172916.6 173354.2 2200831 105712.8

22 Drop urbanZERO -86412.91 172915.8 173343.9 2201206 105687.4

23 Drop realtrac 6 10 2007 -86413.60 172915.2 173333.8 2201698 105677.6

24 Drop uni dist5 -86414.42 172914.8 173323.9 2201086 105675.5

25 Drop uni dist1 -86416.15 172916.3 173315.8 2201842 105665.4

26 Drop uni dist4 -86419.00 172920.0 173310.0 2200246 105649.4

Interaction Steps LogLik AIC BIC SSPE APE

1 Add I1 -86208.79 172501.6 172901.1 2208588 105394.5

2 Add I2 -86118.12 172322.2 172731.3 2204527 104928.7

3 Add I3 -86031.04 172150.1 172568.7 2195509 105283.9

4 Add I4 -85970.86 172031.7 172459.8 2116908 104301.2

Variable/Group Definitions

I1: log dep list:log devel1 pct

I2: log landmeters2:log dsf si spr00

I3: log unitstat1 sum:log hu density ratio

I4: log eds res sum:stability index

log devel* pct: log devel0 pct, log devel1 pct, log devel2 pct, log devel3 pct

log forest* pct: log forest1 pct, log forest2 pct, log forest3 pct

realtrac * 2007: realtrac 1 5 2007, realtrac 6 10 2007, realtrac 11plus 2007

uni dist*: uni dist0, uni dist1, uni dist2, uni dist3, uni dist4, uni dist5
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Table 5.4: Drop1 for final selected Negbin model.

Drop LogLik AIC BIC SSPE APE GVIF

<FULL MODEL> -85970.86 172031.7 172459.8 2116908 104301.2 ---

log landmeters2 -85975.77 172039.5 172458.1 2109846 104093.4 9.2939

log business sum -85976.07 172040.1 172458.7 2111715 104130.4 2.2585

Intercept -85983.26 172054.5 172473.1 2120100 104308.6 ---

teaUER -85984.96 172057.9 172476.5 2117310 104345.4 1.1121

log gc sum -85985.54 172059.1 172477.6 2117925 104185.3 31.0442

teaMOM -85990.41 172068.8 172487.4 2115589 104309.4 1.8585

uni dist* -85992.94 172071.9 172480.9 2107489 104125.7 1.1063

log forest* pct -85995.01 172074.0 172473.6 2130724 104584.9 2.5406

log pct api -85995.98 172080.0 172498.5 2112394 104178.7 2.0437

log eds res sum -85996.06 172080.1 172498.7 2148298 104831.1 8.2536

log unitstat1 sum -85997.23 172082.5 172501.0 2110715 103995.9 19.9242

hasSeasonalY -85999.01 172086.0 172504.6 2122769 104305.4 1.0885

log dsf si spr00 -86000.35 172088.7 172507.3 2153736 104917.1 6.7937

pct unemploy zero -86002.79 172093.6 172512.1 2119111 104357.6 6.4168

log shrub pct -86008.07 172104.1 172522.7 2114421 104302.0 1.4539

realtrac * 2007 -86011.64 172109.3 172518.3 2120530 104171.3 1.2003

log irs1040nm -86015.24 172118.5 172537.0 2121257 104539.0 1.2678

log pct mlt u 2p strc -86016.01 172120.0 172538.6 2120598 104420.4 5.8404

log pct li hh indo europe -86018.48 172125.0 172543.5 2117652 104341.4 1.4805

I1 -86031.04 172150.1 172568.7 2195509 105283.9 8.6869

log pct not single u strc -86036.58 172161.2 172579.7 2119094 104507.2 9.3992

log landmeters2 sq -86047.09 172182.2 172600.8 2146784 104952.0 4.6563

log crops pct -86053.84 172195.7 172614.2 2117041 104482.7 1.8612

I2 -86062.70 172213.4 172632.0 2094190 103836.2 6.2153

log isVacantY sum -86074.54 172237.1 172655.7 2120337 104247.6 1.5819

log dsf si spr09 -86081.78 172251.6 172670.1 2125316 103928.2 9.0949

log irs1040nb -86095.41 172278.8 172697.4 2136627 105213.2 1.4427

log pct crowd occp u -86100.99 172290.0 172708.5 2132394 104728.3 1.9708

log dep list -86105.48 172299.0 172717.5 2118011 104864.7 26.5083

I3 -86107.98 172304.0 172722.5 2117005 104402.1 4.9722

log devel* pct -86116.55 172315.1 172705.1 2128059 104691.7 19.7455

log pct pop 0 17 -86131.23 172350.5 172769.0 2124477 104634.4 9.5865

log hu density ratio -86137.27 172362.5 172781.1 2089070 103620.0 8.3270

I4 -86159.75 172407.5 172826.1 2128475 104896.0 8.1616

stability index -86189.57 172467.1 172885.7 2147184 105481.3 2.8988

log irs1040ng -86193.97 172475.9 172894.5 2122896 104799.9 1.9294

has delptypeBk -86252.72 172593.4 173012.0 2159779 105825.5 1.5264

Variable/Group Definitions

I1: log eds res sum:stability index

I2: log unitstat1 sum:log hu density ratio

I3: log landmeters2:log dsf si spr00

I4: log dep list:log devel1 pct

log devel* pct: log devel0 pct, log devel1 pct, log devel2 pct, log devel3 pct

log forest* pct: log forest1 pct, log forest2 pct, log forest3 pct

uni dist*: uni dist0, uni dist2
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We take a closer look at the randomized quantile residuals for ZINB in Figure 5.2. The boxplot on the
left shows the residuals indicating a “good” fit with absolute value no larger than 3, while the boxplot on the
right shows “bad” residuals with absolute value greater than 3. Recall that the residuals follow a standard
normal distribution under a good fitting model; therefore, most residuals are expected to be between -3 and
3. Most of the 99,512 good residuals have observed add counts close to zero. On the other hand, only 488
out of 100,000 residuals are considered bad; however, these blocks tend to have larger observed add counts.

The results in Figures 5.1 and 5.2 are restricted to the training set and are based on a single com-
putation of the residuals (which have a random component and will vary slightly from computation to
computation). We next compute each residual 1,000 times on the full universe using the estimates from

Tables 5.6 and 5.7, yielding r
(1)
i , . . . , r

(1000)
i for each i = 1, . . . , N . The following results use averaged resid-

uals r̄i =
∑1000
`=1 r

(`)
i /1000 for i = 1, . . . , N . Out of 6,539,119 blocks, 25,237 (or about 0.39%) have “bad” r̄i

such that their absolute value is greater than 3. However, this small proportion of blocks contains 1,059,624
(about 18.81%) of the total 5,632,150 adds. Of the 3,182 counties in the universe, 2,573 counties contain at
least one bad r̄i, demonstrating that the lack of fit is scattered across the nation. Finally, we note that all
of the bad r̄i exhibit large observed counts and small predicted counts; this indicates that we are missing
covariates to detect add activity in these cases. Future work could determine if there is a fundamental dif-
ference between the good and bad blocks. Initial attempts to make this distinction using classification trees
did not provide additional insight. We suggest that the phenomenon of bad residuals be better understood
before using a MAF error model in an operational setting.

Table 5.9 provides a more in-depth look at the raw residuals |yi− ŷi| for i = 1, . . . , N . Here, we view the
distribution of raw residuals, grouped by the outcome y. For example, the first row shows the quantiles of
raw residuals for all blocks in which 0 adds were observed. The last column shows that there were 5,092,781
blocks with 0 adds. Of these blocks, we can see that the smallest raw residual is 0.001, as indicated by
the 0 quantile. We can also see that, of these blocks, the median raw residual was 0.236, and 97.5% of the
residuals were less than 2.682. If we observe all of the values in each quantile, excluding the 100% quantile,
we can see that in general, the residuals are increasing for blocks with higher numbers of adds. Clearly, the
model does a better job at predicting the smaller values, which is not surprising based on the residual plots
and the intuition that larger counts will be associated with larger errors.

Table 5.10 shows state level estimates of adds based on our zero-inflated count model. The model predicts
approximately 98% of adds at the address level nationwide, and also performs well in certain states, including
predicting approximately 96% of observed adds in Arizona and approximately 104% of observed adds in New
York. However, the model does not do as well for other states. For example, the model predicts only 63%
of the observed adds in Washington D.C., and predicts 58% more than the observed adds in Iowa.

We can also see these state level estimates in Figure A.3, which can be compared to Figure A.2. Figure A.3
verifies that the model does not predict as many large adds as were observed in the field. We can also see
that where the count is low, and where there is a lower population density, the prediction accuracy improves.
Figure A.4 shows “bad” quantile residuals at the block level. It is interesting, yet not surprising, to note
that these bad residuals appear to be clustered around major cities, such as New York City, Philadelphia,
and Atlanta.

Table 5.11 shows results of a simulated 2010 address canvassing if we were to canvass blocks based on
our predictions. To do this, we first sorted blocks in descending order based on the number of predicted
adds. The column “% HU Canvassed” represents a threshold for the amount of canvassing we would allow.
For example, 20% means that we would select the first k blocks in our sorted list containing at most 20%
of the HUs that existed before AdCan.8 Based on the blocks we select for canvassing, we calculate the false
positive rate (FPR) and true positive rate (TPR). In this case, a “false positive” is a block that we select to
canvass because our model predicted there would be at least one add, but when canvassed, no adds are found.
Thus, the FPR is the percentage of all blocks selected for the canvassing operation in which no adds were
found during canvassing. Similarly, a “true positive” is a block that we decide to canvass because our model

8A similar method of selecting blocks has commonly been used by AdCan modelers at Census Bureau, but other choices are
possible. A threshold of 20% represents a large reduction to the canvassing operation. We could consider a larger threshold as
a more conservative approach, or set a threshold for the amount of allowed undercoverage instead.
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Table 5.5: Comparison of final model from this paper (“RG”) versus Young et al. (2015) (“YRJ”).

Metric RG Model YRJ Model

1 Sum of squared prediction errors ........................... 235,779,143 572,745,208

2 Mean of squared prediction errors .......................... 36.0567 87.5875

3 Sum of absolute prediction errors .......................... 6,897,446 7,769,202

4 Mean of absolute prediction errors ......................... 1.0548 1.1881

5 Number of blocks in universe with average residual ......... 25,237 24,943

greater than 3 ("bad residuals")

6 Number of observed adds in bad blocks ...................... 1,059,624 937,907

7 Number of counties containing at least one bad block ....... 2,573 2,512

from the universe

8 2010 adds captured by predicted add count† ................. 1,870,340 3,219,174

9 2010 blocks canvassed by predicted add count† .............. 232,971 870,610

10 2010 adds captured by predicted add rate† .................. 3,600,931 3,295,730

11 2010 blocks canvassed by predicted add rate† ............... 2,688,849 1,114,702
†Refers to a simulated address canvassing operation where blocks containing up to 20% of pre-AdCan housing units
may be selected for canvassing. Metrics 8 and 9 are based on selecting blocks with the largest add count predicted
by the model, while metrics 10 and 11 are based on selecting blocks with the largest predicted add rate.

predicts at least one add, and when canvassed we find at least one add. Therefore, the TPR is the percentage
of all blocks containing at least one add which are selected for the canvassing operation. Figure 5.3 shows
the add capture rate curve and receiver operating characteristic (ROC) curve corresponding to Table 5.11.
Figure 5.3(a) shows that, with perfect knowledge of the locations of the adds, and sorting blocks in the same
way as our model, we would only have to canvass blocks containing about 40% of the pre-AdCan housing
units in order to capture all adds. Using 40% as the threshold for our model would allow us to capture about
60% of the adds. Figure 5.3(b) tells the same story in terms of the TPR and FPR; to canvass 80% of the
blocks with at least one add would require an FPR of 42%.

Table 5.12 is similar to Table 5.11, except now the housing units are sorted in descending order based on
the ratio of predicted number of adds to pre-AdCan HUs. Figure 5.4 shows the canvassing and ROC curves
corresponding to this method of selecting blocks. This method tends to capture more adds than sorting by
the raw prediction, but also tends to produce a larger number of false positives. For example, if we were to
canvass blocks containing 40% of housing units using the ratio, we would capture around 81% of the adds.
However, to canvass 80% of the blocks with at least one add would require an FPR of 59%.

Results for the ZINB model in this paper can be compared to Young et al. (2015) to gauge the effectiveness
of our variable selection method versus the simpler screening method. Both models were developed and
evaluated using the same universe of blocks. Table 5.5 shows such a comparison. Results from this paper
are denoted as “RG” and results from Young et al. (2015) as “YRJ”. Metrics 5, 6, and 7 are based on
randomized quantile residuals averaged over 1,000 repetitions, as described earlier in this section. RG
provides a noticeably better overall fit, but somewhat fewer bad residuals are obtained under YRJ. This
suggests that RG is missing covariates that were effective in YRJ to explain add counts in some blocks.
Note that the design matrix for the RG count regression has d1 = 39 columns and the ZI regression has
d2 = 44 columns. On the other hand, YRJ has d1 = 31 and d2 = 4, and many of the variables in the
count regressions of RG and YRJ do not overlap. The number of bad residuals could potentially be used
as a criterion for future model selection to improve upon the RG approach. Metrics 8–11 compare results
for canvassing selection between the models. RG produces a much smaller list when sorting by predictions
(metrics 8 and 9), while YRG tends to capture many more adds at the cost of a larger list. In addition, RG
captures more adds when sorting by prediction rate (metrics 10 and 11), at the cost of a much larger block
list. By choosing between the two sorting methods, better results are possible with RG for one criterion. On
the other hand, YRG appears to producing more balanced results.

18



Table 5.6: Parameter estimates for ZINB adds model, count regression and dispersion portions of model.

Coefficient Estimate SE p-value CL Lo CL Hi

Intercept 0.6101 0.0980 <.0001 0.4180 0.8022

log dep list -0.6519 0.0369 <.0001 -0.7243 -0.5796

log landmeters2 -0.0226 0.0113 0.0463 -0.0448 -4e-04

log eds res sum -0.1806 0.0328 <.0001 -0.2448 -0.1163

log landmeters2 sq -0.0109 0.0021 <.0001 -0.0150 -0.0067

log business sum 0.0349 0.0165 0.0338 0.0027 0.0672

teaMOM -0.0405 0.0274 0.1399 -0.0943 0.0133

teaUER 0.3025 0.0519 <.0001 0.2007 0.4043

log gc sum 0.2504 0.0426 <.0001 0.1670 0.3339

hasSeasonalY 0.4119 0.0541 <.0001 0.3059 0.5179

log unitstat1 sum -0.0344 0.0329 0.2967 -0.0989 0.0302

has delptypeBk -0.0501 0.0244 0.0404 -0.0980 -0.0022

log isVacantY sum 0.1727 0.0132 <.0001 0.1467 0.1986

log hu density ratio -0.2706 0.0138 <.0001 -0.2976 -0.2436

stability index -0.8793 0.0430 <.0001 -0.9636 -0.7950

log irs1040ng 0.1855 0.0139 <.0001 0.1583 0.2126

log irs1040nb 0.0849 0.0063 <.0001 0.0726 0.0972

log devel0 pct 0.0259 0.0082 0.0016 0.0098 0.0419

log devel1 pct 0.2119 0.0147 <.0001 0.1831 0.2406

log devel2 pct 0.1082 0.0091 <.0001 0.0904 0.1260

log devel3 pct 0.0499 0.0134 0.0002 0.0236 0.0761

log crops pct -0.1080 0.0084 <.0001 -0.1243 -0.0916

log pct crowd occp u 0.1911 0.0220 <.0001 0.1481 0.2341

log pct pop 0 17 -0.3190 0.0230 <.0001 -0.3641 -0.2740

log pct not single u strc 0.1678 0.0206 <.0001 0.1274 0.2082

log forest1 pct -0.0154 0.0080 0.0556 -0.0311 4e-04

log forest2 pct -0.0094 0.0095 0.3232 -0.0279 0.0092

log forest3 pct 0.0305 0.0121 0.0118 0.0067 0.0542

log dsf si spr00 -0.1037 0.0142 <.0001 -0.1315 -0.0759

log shrub pct 0.0411 0.0092 <.0001 0.0232 0.0591

log dsf si spr09 0.1471 0.0162 <.0001 0.1154 0.1788

pct unemploy zero -0.3067 0.0456 <.0001 -0.3961 -0.2173

log pct li hh indo europe 0.2187 0.0320 <.0001 0.1559 0.2815

log irs1040nm 0.0012 0.0104 0.9084 -0.0192 0.0216

log pct mlt u 2p strc -0.1110 0.0160 <.0001 -0.1425 -0.0796

realtrac 1 5 2007 -0.2369 0.0334 <.0001 -0.3024 -0.1715

realtrac 11plus 2007 0.2460 0.0857 0.0041 0.0781 0.4139

log pct api 0.2139 0.0236 <.0001 0.1677 0.2602

uni dist0 0.4486 0.1102 <.0001 0.2326 0.6646

uni dist2 0.1033 0.0445 0.0203 0.0161 0.1904

log dep list:log devel1 pct -0.0820 0.0048 <.0001 -0.0914 -0.0725

log landmeters2:log dsf si spr00 0.0480 0.0033 <.0001 0.0415 0.0545

log unitstat1 sum:log hu density ratio 0.0670 0.0048 <.0001 0.0576 0.0765

log eds res sum:stability index 0.2609 0.0401 <.0001 0.1823 0.3394

Dispersion 1.9918 0.0328 <.0001 1.9276 2.0560
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Table 5.7: Parameter estimates for ZINB adds model, zero-inflated regression portion of model.

Coefficient Estimate SE p-value CL Lo CL Hi

Intercept 0.0221 0.2162 0.9185 -0.4016 0.4459

log dep list -0.1813 0.0463 <.0001 -0.2721 -0.0904

log landmeters2 0.0888 0.0286 0.0019 0.0327 0.1450

log eds res sum -0.2973 0.0292 <.0001 -0.3546 -0.2400

log landmeters2 sq 0.0127 0.0049 0.0092 0.0031 0.0223

teaMOM 0.3981 0.0662 <.0001 0.2683 0.5279

hasSeasonalY -0.8338 0.3716 0.0248 -1.5621 -0.1055

log unitstat1 sum 0.2108 0.0570 0.0002 0.0990 0.3225

log delptypeBk sum -1.6071 0.0725 <.0001 -1.7492 -1.4650

log isVacantY sum -0.1201 0.0312 0.0001 -0.1812 -0.0590

log mafsrc1 sum -0.1385 0.0175 <.0001 -0.1729 -0.1041

log compcity1 sum 0.4212 0.0652 <.0001 0.2934 0.5490

log forest1 pct -0.0891 0.0190 <.0001 -0.1263 -0.0519

log forest2 pct -0.1231 0.0268 <.0001 -0.1756 -0.0706

log forest3 pct -0.1355 0.0387 0.0005 -0.2114 -0.0596

log irs1040ng -0.2034 0.0301 <.0001 -0.2623 -0.1444

log pct crowd occp u -0.3167 0.0384 <.0001 -0.3919 -0.2414

log crops pct 0.0281 0.0201 0.1630 -0.0114 0.0675

log dsf si spr09 -1.8498 0.0943 <.0001 -2.0347 -1.6650

log shrub pct -0.1365 0.0238 <.0001 -0.1833 -0.0898

log devel0 pct -0.0018 0.0142 0.8996 -0.0296 0.0261

log devel1 pct 0.0873 0.0260 0.0008 0.0364 0.1382

log devel2 pct 0.2889 0.0277 <.0001 0.2347 0.3432

log devel3 pct 0.0852 0.0188 <.0001 0.0484 0.1221

stability index -0.3301 0.0824 <.0001 -0.4915 -0.1686

hu block2tract ratio -4.4435 1.4134 0.0017 -7.2136 -1.6734

log pct pop 0 17 0.0850 0.0328 0.0095 0.0208 0.1493

log irs1040nb -0.0752 0.0156 <.0001 -0.1059 -0.0446

log irs1040nm -0.0234 0.0324 0.4693 -0.0868 0.0400

log htc -0.0732 0.0175 <.0001 -0.1075 -0.0390

log pct mlt u 10p strc 0.2275 0.0292 <.0001 0.1703 0.2848

log pct not single u strc -0.1191 0.0409 0.0036 -0.1993 -0.0389

log pct black 0.1233 0.0194 <.0001 0.0854 0.1613

log devel1 pct:log compcity1 sum 0.0083 0.0091 0.3635 -0.0096 0.0262

log dep list:log dsf si spr09 0.1356 0.0135 <.0001 0.1091 0.1621

log landmeters2:log dsf si spr09 -0.0996 0.0083 <.0001 -0.1159 -0.0833

log dsf si spr09:log delptypeBk sum 0.1493 0.0239 <.0001 0.1024 0.1962

log dsf si spr09:log irs1040nm -0.1092 0.0131 <.0001 -0.1350 -0.0835

log irs1040nb:log devel2 pct 0.0384 0.0052 <.0001 0.0282 0.0486

Table 5.8: Fit statistics for ZINB Adds model. Log-likelihood, AIC and BIC are computed on the training
set. Prediction error measures SSPE, MSPE, APE, and MAPE are computed using all blocks in the universe.

ZINB NegBin Poisson

Training Set LogLik -83,113 -85,971 -152,561

AIC 166,393 172,032 305,210

BIC 167,192 172,460 305,629

Universe SSPE 235,779,143 240,267,978 232,626,457

MSPE 36.0567 36.7432 35.5746

APE 6,897,446 7,054,974 6,900,898

MAPE 1.0548 1.0789 1.0553
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(a) (b)

Figure 5.1: Randomized quantile residuals from ZINB model computed on the training set.
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Figure 5.2: Residuals with absolute value no greater than 3 is shown in left box. Right box shows residuals
with absolute value greater than 3.
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Table 5.9: Quantiles of absolute residuals for observed counts.

Quantile for Absolute Residual

Observed 0 0.025 0.05 0.5 0.95 0.975 1 n

0 0.001 0.034 0.047 0.236 1.813 2.682 623.076 5,092,781

1 0.000 0.037 0.073 0.649 2.594 3.978 274.625 707,952

2 0.000 0.073 0.145 1.249 2.932 4.696 298.860 266,872

3 0.000 0.117 0.233 1.867 3.144 5.227 266.697 135,526

4 0.000 0.170 0.349 2.539 3.909 5.534 132.903 81,136

5 0.000 0.239 0.465 3.221 4.869 5.845 122.354 52,276

6 0.000 0.300 0.577 3.965 5.834 5.959 131.859 37,024

7 0.001 0.380 0.760 4.673 6.812 6.927 192.298 26,704

8 0.001 0.451 0.925 5.518 7.806 7.922 88.949 20,720

9 0.001 0.547 1.125 6.199 8.771 8.891 63.426 16,147

[10, 15) 0.001 0.899 1.728 8.214 12.524 13.252 282.965 44,953

[15, 20) 0.006 1.732 3.394 12.668 17.608 18.267 244.095 19,788

[20, 25) 0.007 2.654 4.855 17.285 22.648 23.347 145.006 10,771

[25, 30) 0.003 3.676 6.959 21.601 27.435 27.986 306.231 6,411

[30, 35) 0.032 5.197 9.567 26.631 32.550 33.136 217.028 4,342

[35, 40) 0.060 7.133 11.952 31.296 37.377 37.983 126.742 2,854

[40, 45) 0.069 7.514 13.137 36.009 42.433 43.025 113.617 2,156

[45, 50) 0.673 11.838 17.812 41.590 47.718 48.133 282.034 1,654

[50, 55) 0.455 14.055 21.105 45.880 52.344 53.002 79.372 1,216

[55, 60) 0.105 19.110 25.006 51.343 57.611 58.322 177.431 942

[60, 65) 0.634 13.721 24.864 56.501 62.901 63.661 74.981 846

[65, 70) 1.468 21.747 31.446 60.736 67.570 68.173 68.888 627

[70, 75) 5.063 21.417 33.018 66.964 72.802 73.377 122.100 578

[75, 80) 4.897 24.306 36.500 71.605 77.339 78.116 78.872 456

[80, 85) 31.625 42.064 49.810 76.988 83.140 83.591 83.917 421

[85, 90) 1.997 27.365 46.929 81.176 87.748 87.995 88.897 344

[90, 95) 8.838 41.817 54.864 86.751 92.439 92.927 93.809 273

[95, 100) 11.960 55.444 65.641 92.876 98.216 98.592 98.832 315

[100, 200) 1.224 61.084 77.171 119.357 182.155 188.807 437.275 2,084

[200, 300) 1.955 157.030 179.236 226.089 284.299 289.063 298.584 544

[300, 400) 248.534 281.976 291.277 329.913 383.152 390.189 398.628 221

[400, 500) 149.312 357.271 384.476 435.238 491.178 495.371 495.691 99

[500, 1000) 453.317 469.041 481.368 625.933 896.527 950.374 988.716 73

[1000, 5000) 1041.198 1043.260 1045.322 1270.179 2389.017 3011.024 3633.032 13
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Table 5.10: State level coverage estimates.

State Observed Adds Predicted Adds Ratio HUs Blocks

AL 157,450 151,847.60 0.96 2,392,330 143,079

AK 38,131 25,452.23 0.67 323,647 10,858

AZ 140,553 134,911.10 0.96 3,079,198 118,362

AR 87,925 100,239.10 1.14 1,494,997 103,004

CA 386,516 411,125.60 1.06 14,786,176 425,696

CO 74,115 86,457.54 1.17 2,481,927 116,085

CT 30,045 36,770.49 1.22 1,561,327 48,583

DE 20,564 18,685.54 0.91 390,686 15,563

DC 9,409 5,916.85 0.63 316,722 4,567

FL 308,930 321,416.50 1.04 10,072,338 317,818

GA 222,328 214,016.20 0.96 4,721,702 182,212

HI 48,322 33,879.41 0.70 510,781 11,066

ID 48,621 42,870.88 0.88 714,804 57,946

IL 118,561 132,829.90 1.12 5,725,571 315,050

IN 75,160 76,860.22 1.02 2,983,379 188,390

IA 23,857 37,725.09 1.58 1,424,149 144,205

KS 28,465 42,946.07 1.51 1,332,228 134,564

KY 147,040 106,649.60 0.73 2,137,716 94,669

LA 118,691 99,365.27 0.84 2,191,785 107,510

ME 88,957 71,771.20 0.81 758,022 37,306

MD 46,200 40,594.83 0.88 2,576,329 85,114

MA 73,992 83,283.95 1.13 2,989,361 99,964

MI 134,967 146,420.50 1.08 4,937,906 219,787

MN 84,706 90,327.32 1.07 2,476,363 159,975

MS 109,252 107,851.10 0.99 1,382,160 90,537

MO 139,851 144,472.00 1.03 2,912,338 193,592

MT 44,117 47,774.81 1.08 552,090 52,246

NE 21,041 30,919.65 1.47 841,438 104,353

NV 48,756 42,715.47 0.88 1,289,125 36,940

NH 48,409 43,622.85 0.90 617,883 29,837

NJ 92,253 92,007.15 1.00 3,760,709 122,371

NM 96,314 85,377.00 0.89 1,064,238 65,249

NY 318,808 331,593.90 1.04 9,019,977 255,527

NC 220,956 228,837.60 1.04 5,088,628 198,757

ND 15,519 18,800.71 1.21 350,168 55,705

OH 100,342 106,774.90 1.06 5,527,999 251,222

OK 128,419 131,399.90 1.02 1,739,117 140,420

OR 65,116 61,638.39 0.95 1,738,982 89,920

PA 254,214 226,768.10 0.89 5,996,659 302,288

RI 14,235 14,395.27 1.01 473,918 17,938

SC 109,847 114,368.50 1.04 2,557,421 118,836

SD 20,683 23,209.02 1.12 368,986 48,275

TN 129,803 119,201.70 0.92 3,044,881 151,188

TX 540,799 508,966.30 0.94 10,663,218 474,444

UT 57,992 40,824.88 0.70 952,217 45,970

VT 20,463 27,469.29 1.34 431,035 19,451

VA 121,289 124,589.40 1.03 3,709,883 153,940

WA 146,613 109,016.70 0.74 2,890,612 122,440

WV 155,323 101,414.20 0.65 934,461 65,825

WI 76,759 102,233.30 1.33 2,770,549 161,698

WY 21,472 20,956.14 0.98 287,471 28,777

US 5,632,150 5,519,561 0.98 143,345,607 6,539,119

23



Table 5.11: Canvassing using predicted number of adds.

% HU Canvassed FPR TPR Captured Adds Blocks Canvassed

0.00 0.00 0.00 0 0

0.05 0.00 0.02 531,049 27,341

0.10 0.00 0.04 990,657 75,593

0.15 0.01 0.08 1,439,819 143,439

0.20 0.01 0.12 1,870,340 232,971

0.25 0.02 0.17 2,285,421 347,464

0.30 0.03 0.23 2,681,182 488,725

0.35 0.05 0.30 3,055,350 660,373

0.40 0.07 0.37 3,403,383 864,590

0.45 0.09 0.44 3,726,573 1,104,423

0.50 0.13 0.51 4,023,194 1,380,848

0.55 0.17 0.58 4,292,387 1,694,572

0.60 0.22 0.65 4,534,161 2,049,923

0.65 0.28 0.71 4,746,765 2,442,790

0.70 0.35 0.77 4,935,117 2,874,633

0.75 0.42 0.82 5,100,564 3,343,100

0.80 0.51 0.87 5,247,746 3,848,260

0.85 0.60 0.91 5,370,259 4,387,645

0.90 0.71 0.94 5,471,435 4,970,682

0.95 0.83 0.97 5,556,841 5,621,326

1.00 1.00 1.00 5,632,150 6,539,119

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% HU Canvass

%
 E

ve
nt

s 
C

ap
tu

re
d

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ●

Perfect
Model

(a) Add capture rate.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

Perfect
Model

(b) ROC curve.

Figure 5.3: Canvassing using predicted number of adds from ZINB Adds model.
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Table 5.12: Canvassing using ratio of predicted number of adds to HUs.

% HU Canvassed FPR TPR Captured Adds Blocks Canvassed

0.00 0.00 0.00 0 0

0.05 0.14 0.28 1,765,560 1,136,726

0.10 0.23 0.42 2,614,613 1,765,485

0.15 0.30 0.52 3,185,617 2,264,339

0.20 0.36 0.60 3,600,931 2,688,849

0.25 0.41 0.66 3,921,279 3,058,043

0.30 0.46 0.71 4,184,387 3,386,628

0.35 0.51 0.75 4,403,136 3,681,057

0.40 0.55 0.78 4,579,042 3,951,077

0.45 0.59 0.81 4,739,085 4,205,379

0.50 0.63 0.84 4,876,692 4,449,650

0.55 0.67 0.87 4,995,490 4,685,952

0.60 0.71 0.89 5,105,193 4,918,795

0.65 0.75 0.91 5,204,995 5,151,096

0.70 0.79 0.93 5,287,798 5,379,376

0.75 0.83 0.94 5,362,654 5,604,186

0.80 0.87 0.96 5,434,725 5,822,045

0.85 0.91 0.97 5,496,226 6,030,328

0.90 0.94 0.98 5,547,080 6,225,538

0.95 0.97 0.99 5,591,990 6,402,255

1.00 1.00 1.00 5,632,150 6,539,119
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Figure 5.4: Canvassing using ratio of predicted number of adds to HUs using ZINB Adds model.

25



6 Conclusions

This report discussed the modeling of addresses added to the MAF which were obtained through the 2010
AdCan operation. The add counts indicated where our usual MAF updating procedures did not match the
field before the 2010 Census. The mechanism that caused the adds was complex and not fully known at the
time of data analysis. For example, determination of a housing unit as an add was subject to FR behavior,
in-office adjudication, and other operational details which were not available in the data. Therefore, an
exhaustive variable selection was needed to find predictors that could explain the observed adds. We made
use of a stepwise method that is simple and intuitive, but also quite time-consuming. This method allowed
us to consider several supplemental datasets and determine the most useful predictors. It also allowed us
to consider two-way interactions and to rank the selected variables by their contribution to the model.
Evaluation of the resulting zero-inflated negative binomial model found that a small proportion (0.39%) of
blocks are not well explained by the model, but these tend to be the ones with the most adds.

Future work should investigate the nature of the poor-fitting blocks. We may be missing important pre-
dictors to explain adds, or perhaps their mechanism for producing adds is fundamentally different. We could
also consider ways to better handle the heterogeneity from a purely modeling standpoint. Random effects
could be used to allow additional variability in the observed counts (McCulloch et al., 2008) or to induce
spatial dependence between nearby blocks (Banerjee et al., 2003). Finite mixtures of regressions (Frühwirth-
Schnatter, 2006) could be used to model several heterogeneous subpopulations with fundamentally different
regression functions.

One reviewer points out that our training set contains very few blocks with large numbers of housing
units, relative to the sample size of 100,000. For example, 30,608 blocks in the modeling universe had more
than 300 pre-AdCan housing units. These blocks contained 318,412 adds. Of these 30,608 blocks, 469 were
included in our sample, and only 230 of these 469 had at least one add. Blocks with many pre-AdCan
housing units had a high potential for large add counts, and perhaps including more in the training set could
improve the model’s ability to detect adds. More careful selection of the training set could be considered in
future work.

Aside from improving the model, other issues mentioned briefly in this report also remain to be addressed.
These include evaluating models for use in operations and determining precisely how the models would be
used in an operation. We have not developed a model for deletes or matched adds in this report, but
such efforts could potentially be carried out using similar methodology, or perhaps combined into a unified
methodology.
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Sylvia Frühwirth-Schnatter. Finite Mixture and Markov Switching Models. Springer, 2006.

Joseph M. Hilbe. Negative Binomial Regression. Cambridge University Press, 2nd edition, 2011.

Collin Homer, Jon Dewitz, Joyce Fry, Michael Coan, Nazmul Hossian, Charles Larson, Nate Herold, Alexa
McKerrow, J. Nick VanDriel, and James Wickham. Completion of the 2001 National Land Cover Database
for the conterminous United States. Photogrammetric Engineering and Remote Sensing, 73(4):337 – 341,
2007.

Charles E. McCulloch, Shayle R. Searle, and John M. Neuhaus. Generalized, Linear, and Mixed Models.
Wiley-Interscience, 2nd edition, 2008.

Darcy Steeg Morris, Andrew Keller, and Brian Clark. An approach for using administrative records to
reduce contacts in the 2020 census. In JSM Proceedings, Government Statistics Section. Alexandria, VA:
American Statistical Association, pages 3278–3292, 2015.

Bryan Schar, James Lawrence, Star Ying, and Jim Hartman. An Investigation into Expanding the Com-
munity Address Updating System Universe. In DSSD 2012 American Community Survey Memorandum
Series, 2012.

Eric Slud and Chandra Erdman. Adaptive Curtailment of Survey Followup Based on Contact History Data.
In Proceedings of the Federal Committee on Statistical Methodology (FCSM) Research Conference, 2013.

Christine Gibson Tomaszewski. 2009 Targeted Address Canvassing User Documentation. In DSSD 2020
Decennial Census RT Memorandum Series, 2014.

U.S. Census Bureau. 2010 Census Address Canvassing Operational Assessment. In 2010 Census Planning
Memoranda Series: 2010 Census Program for Evaluations and Experiments. U.S. Census Bureau, 2012.
URL https://www.census.gov/2010census/pdf/2010_Census_AC_Operational_Assessment.pdf.

U.S. Census Bureau. American Community Survey Design and Methodology, January 2014a. URL http:

//www.census.gov/programs-surveys/acs/methodology/design-and-methodology.html.

U.S. Census Bureau. Geography Division Address Canvassing Recommendation, 2014b. URL http://www2.

census.gov/geo/pdfs/gssi/Address_Canvassing_Recommendation.pdf.

27

https://www.census.gov/2010census/partners/pdf/TractLevelCensus2000Apr_2_09.pdf
https://www.census.gov/2010census/pdf/2010_Census_AC_Operational_Assessment.pdf
http://www.census.gov/programs-surveys/acs/methodology/design-and-methodology.html
http://www.census.gov/programs-surveys/acs/methodology/design-and-methodology.html
http://www2.census.gov/geo/pdfs/gssi/Address_Canvassing_Recommendation.pdf
http://www2.census.gov/geo/pdfs/gssi/Address_Canvassing_Recommendation.pdf


U.S. Census Bureau. Analysis of Statistical Models using the 2015 Master Address File Model Validation
Test Results, 2015. In progress.

Derek S. Young, Andrew M. Raim, and Nancy R. Johnson. Zero-Inflated Modeling for Characterizing
Coverage Errors of Extracts from the U.S. Census Bureau’s Master Address File, 2015. Accepted for
publication to Journal of the Royal Statistical Society: Series A.

28



A Additional Tables and Figures

Table A.1: Variables from AdCan database.

Variable Name Description

actionA_sum Blocks with zero adds.
y = I(actionA_sum = 0)

d_flag_ac_count_sum Number of housing units in a block as a result of canvassing.
log_dep_list = log(d_flag_ac_count_sum)

gqv_tea_cat Type of enumeration area..
MOM: mailout/mailback or military.
UER: list/enumerate for 2000, remote update/enumerate for 2010 or remote Alaska
or update/enumerate.
teaMOM = I(gqv_tea_cat = ’MOM’)

teaUER = I(gqv_tea_cat = ’UER’)

dacs09s_ur_urban Block is in an urban or rural area.
urbanZERO = I(dacs09s_ur_urban = 0)

log_landmeters2 Land area in square kilometers.
log_landmeters2 = log(a12_LandMeters2 + 0.0001)

log_landmeters2_sq = log_landmeters2^2

log_acs_hu_ratio ACS Housing unit ratio.
log_acs_hu_ratio = log(d_flag_a9_count_sum / d_flag_ac_count_sum + 1)

d_flag_gc_count_sum Number of geocoded housing units prior to Address Canvassing.
log_gc_sum = log(d_flag_gc_count_sum + 1)

dpreac_gc_eds_res_sum Number of excluded from delivery statistics Delivery Point Type housing units.
log_eds_res_sum = log(dpreac_gc_eds_res_sum + 1)

dpreac_gc_business_sum Number of business related DSF Delivery Point Type housing units.
log_business_sum = log(dpreac_gc_business_sum + 1)

dpreac_gc_isSeasonalY_sum Seasonal housing units on block, i.e. unit is only occupied at certain times of the year.
log_isSeasonalY_sum = log(dpreac_gc_isSeasonalY_sum + 1)

hasSeasonalY = I(dpreac_gc_isSeasonalY_sum > 0)

dpreac_gc_unitstat1_sum Number of valid living quarters.
log_unitstat1_sum = log(dpreac_gc_unitstat1_sum + 1)

dpreac_a9_delptypeBk_sum Number of blank Delivery Point Type housing units.
log_delptypeBk_sum = log(dpreac_a9_delptypeBk_sum + 1)

dpreac_a9_mafsrc1_sum Number of housing units with MAF Source Code of DSF - Delivery Sequence File.
log_mafsrc1_sum = log(dpreac_a9_mafsrc1_sum + 1)

dpreac_gc_adcanaf0_sum Number of housing units not valid for Address Canvassing delivery.
log_adcanaf0_sum = log(dpreac_gc_adcanaf0_sum + 1)

dpreac_a9_isVacantY_sum Number of vacant housing units.
log_isVacantY_sum = log(dpreac_a9_isVacantY_sum + 1)

dpreac_a9_compcity1_sum Number of housing units with complete city style address information.
log_compcity1_sum = log(dpreac_a9_compcity1_sum + 1)

dpreac_a9_delptypeBk_sum Indicator of whether or not the block contains at least one blank Delivery Point Type
housing.
has_delptypeBk = I(dpreac_a9_delptypeBk_sum > 0)

dpreac_a9_mafsrc2_sum Number of housing units with MAF Source Code of 1990 ACF.
log_mafsrc2_sum = I(dpreac_a9_mafsrc2_sum + 1)
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(Derived) Housing unit density at the block level.
block_hu_density = d_flag_ac_count_sum / (a12_LandMeters2 + 0.0001)

Housing unit density at the tract level
tract_hu_density = tract_ac_count_sum / (tract_landmeters2 + 0.0001)

Housing unit density ratio from block to tract level
log_hu_density_ratio = log(block_hu_density / tract_hu_density)

Total housing unit ratio from block to tract level
hu_block2tract_ratio = d_flag_ac_count_sum / tract_ac_count_sum

Table A.2: Variables from 2000 Census Planning Database. The 2010 suffix indicates that the data originally
from 2000 census geography has been transformed to 2010 geography.

Variable Name Description

htc_2010 ”Hard-to-Count” score.
log_htc = log(htc_2010 + 0.1)

htc_zero = I(htc_2010 = 0)

mail_return_rate_2010 Mail return rate.
log_mail_return_rate = log(mail_return_rate_2010 + 1)

mail_return_rate_zero = I(mail_return_rate_2010 = 0)

pct_vacant_hu_2010 Percent vacant units.
log_pct_vacant_hu = log(pct_vacant_hu_2010 + 1)

pct_vacant_hu_zero = I(pct_vacant_hu_2010 = 0)

pct_single_u_strc_2010 Percent single detached or attached housing units in structure.
log_pct_single_u_strc = log(pct_single_u_strc_2010 + 1)

pct_single_u_strc_zero = I(pct_single_u_strc_2010 = 0)

pct_not_single_u_strc_2010 Percent of housing units that are not single detached or attached units.
log_pct_not_single_u_strc = log(pct_not_single_u_strc_2010 + 1)

pct_not_single_u_strc_zero = I(pct_not_single_u_strc_2010 = 0)

pct_mlt_u_10p_strc_2010 Percent 10 or more housing units in structure.
log_pct_mlt_u_10p_strc = log(pct_mlt_u_10p_strc_2010 + 1)

pct_mlt_u_10p_strc_zero = I(pct_mlt_u_10p_strc_2010 = 0)

pct_mlt_u_2p_strc_2010 Percent 2 or more housing units in structure.
log_pct_mlt_u_2p_strc = log(pct_mlt_u_2p_strc_2010 + 1)

pct_mlt_u_2p_strc_zero = I(pct_mlt_u_2p_strc_2010 = 0)

pct_mobile_home_2010 Percent trailer/mobile home.
log_pct_mobile_home = log(pct_mobile_home_2010 + 1)

pct_mobile_home_zero = I(pct_mobile_home_2010 = 0)

pct_renter_occp_hu_2010 Percent renter occupied.
log_pct_renter_occp_hu = log(pct_renter_occp_hu_2010 + 1)

pct_renter_occp_hu_zero = I(pct_renter_occp_hu_2010 = 0)

pct_crowd_occp_u_2010 Percent occupied units with ≥ 1.5 persons per room.
log_pct_crowd_occp_u = log(pct_crowd_occp_u_2010 + 1)

pct_crowd_occp_u_zero = I(pct_crowd_occp_u_2010 = 0)

pct_not_hb_wf_hh_2010 Percent households that are not husband/wife families.
log_pct_not_hb_wf_hh = log(pct_not_hb_wf_hh_2010 + 1)

pct_not_hb_wf_hh_zero = I(pct_not_hb_wf_hh_2010 = 0)

pct_occp_u_no_ph_srvc_2010 Percent occupied units with no telephone service.
log_pct_occp_u_no_ph_srvc = log(pct_occp_u_no_ph_srvc_2010 + 1)

pct_occp_u_no_ph_srvc_zero = I(pct_occp_u_no_ph_srvc_2010 = 0)
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pct_not_hs_grad_2010 Percent of ages 25+ who are not high school graduates.
log_pct_not_hs_grad = log(pct_not_hs_grad_2010 + 1)

pct_not_hs_grad_zero = I(pct_not_hs_grad_2010 = 0)

pct_prs_blw_pov_lev_2010 Percent people below poverty.
log_pct_prs_blw_pov_lev = log(pct_prs_blw_pov_lev_2010 + 1)

pct_prs_blw_pov_lev_zero = I(pct_prs_blw_pov_lev_2010 = 0)

pct_pub_asst_inc_2010 Percent households with public assistance income.
log_pct_pub_asst_inc = log(pct_pub_asst_inc_2010 + 1)

pct_pub_asst_inc_zero = I(pct_pub_asst_inc_2010 = 0)

pct_unemploy_2010 Percent of people unemployed.
log_pct_unemploy = log(pct_unemploy_2010 + 1)

pct_unemploy_zero = I(pct_unemploy_2010 = 0)

pct_li_hh_2010 Percent linguistically isolated households.
log_pct_li_hh = log(pct_li_hh_2010 + 1)

pct_li_hh_zero = I(pct_li_hh_2010 = 0)

pct_li_hh_span_2010 Percent linguistically isolated Spanish households.
log_pct_li_hh_span = log(pct_li_hh_span_2010 + 1)

pct_li_hh_span_zero = I(pct_li_hh_span_2010 = 0)

pct_li_hh_indo_europe_2010 Percent linguistically isolated Indo-European households.
log_pct_li_hh_indo_europe = log(pct_li_hh_indo_europe_2010 + 1)

pct_li_hh_indo_europe_zero = I(pct_li_hh_indo_europe_2010 = 0)

pct_li_hh_api_2010 Percent linguistically isolated Asian and Pacific Islander households.
log_pct_li_hh_api = log(pct_li_hh_api_2010 + 1)

pct_li_hh_api_zero = I(pct_li_hh_api_2010 = 0)

pct_li_hh_other_2010 Percent isolated other language households.
log_pct_li_hh_other = log(pct_li_hh_other_2010 + 1)

pct_li_hh_other_zero = I(pct_li_hh_other_2010 = 0)

pct_occp_hu_moved_2010 Percent occupied units where householder moved into unit in 1999–2000.
log_pct_occp_hu_moved = log(pct_occp_hu_moved_2010 + 1)

pct_occp_hu_moved_zero = I(pct_occp_hu_moved_2010 = 0)

pct_white_2010 Percent white.
log_pct_white = log(pct_white_2010 + 1)

pct_white_zero = I(pct_white_2010 = 0)

pct_black_2010 Percent black/african american.
log_pct_black = log(pct_black_2010 + 1)

pct_black_zero = I(pct_black_2010 = 0)

pct_aian_2010 Percent American indian and Alaska native,
log_pct_aian = log(pct_aian_2010 + 1)

pct_aian_zero = I(pct_aian_2010 = 0)

pct_asian_2010 Percent Asian
log_pct_asian = log(pct_asian_2010 + 1)

pct_asian_zero = I(pct_asian_2010 = 0)

pct_nhpi_2010 Percent native Hawaiian and pacific islander.
log_pct_nhpi = log(pct_nhpi_2010 + 1)

pct_nhpi_zero = I(pct_nhpi_2010 = 0)

pct_api_2010 Percent asian and pacific islander.
log_pct_api = log(pct_api_2010 + 1)

pct_api_zero = I(pct_api_2010 = 0)

pct_2p_race_2010 Percent two or more races.
log_pct_2p_race = log(pct_2p_race_2010 + 1)

pct_2p_race_zero = I(pct_2p_race_2010 = 0)

pct_sor_2010 Percent some other race.
log_pct_sor = log(pct_sor_2010 + 1)

pct_sor_zero = I(pct_sor_2010 = 0)
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pct_hsp_2010 Percent Hispanic origin (of any race).
log_pct_hsp = log(pct_hsp_2010 + 1)

pct_hsp_zero = I(pct_hsp_2010 = 0)

pct_non_hisp_white_2010 Percent non-Hispanic white.
log_pct_non_hisp_white = log(pct_non_hisp_white_2010 + 1)

pct_non_hisp_white_zero = I(pct_non_hisp_white_2010 = 0)

pct_gq_2010 Percent population in group quarters.
log_pct_gq = log(pct_gq_2010 + 1)

pct_gq_zero = I(pct_gq_2010 = 0)

pct_gq_inst_2010 Percent institutionalized population in group quarters.
log_pct_gq_inst = log(pct_gq_inst_2010 + 1)

pct_gq_inst_zero = I(pct_gq_inst_2010 = 0)

pct_gq_noninst_2010 Percent noninstitutionalized population in group quarters.
log_pct_gq_noninst = log(pct_gq_noninst_2010 + 1)

pct_gq_noninst_zero = I(pct_gq_noninst_2010 = 0)

pct_pop_0_17_2010 Percent population under age 18.
log_pct_pop_0_17 = log(pct_pop_0_17_2010 + 1)

pct_pop_0_17_zero = I(pct_pop_0_17_2010 = 0)

pct_pop_65_over_2010 Percent population aged 65 and over.
log_pct_pop_65_over = log(pct_pop_65_over_2010 + 1)

pct_pop_65_over_zero = I(pct_pop_65_over_2010 = 0)

Table A.3: Variables from Land Use data.

Variable Name Description

blk_mil_distance Distance from block (in meters) from a military area landmark feature.
mil_dist0 = I(blk_mil_distance = 0)

mil_dist1 = I(0 < blk_mil_distance >= 1000)

mil_dist2 = I(1000 < blk_mil_distance >= 2000)

mil_dist3 = I(2000 < blk_mil_distance >= 3000)

mil_dist4 = I(3000 < blk_mil_distance <= 4000)

mil_dist5 = I(4000 < blk_mil_distance < 5000)

mil_dist6 = I(blk_mil_distance = 5000)

blk_ua_distance Distance from block (in meters) from the nearest urban area.
ua_dist0 = I(blk_ua_distance = 0)

ua_dist1 = I(blk_ua_distance = 1000)

ua_dist2 = I(blk_ua_distance = 2000)

ua_dist3 = I(blk_ua_distance = 3000)

ua_dist4 = I(blk_ua_distance = 4000)

ua_dist5 = I(blk_ua_distance = 5000)

blk_uni_distance Distance from block (in meters) from the nearest university area landmark feature.
uni_dist0 = I(blk_uni_distance = 0)

uni_dist1 = I(0 < blk_uni_distance <= 1000)

uni_dist2 = I(1000 < blk_uni_distance <= 2000)

uni_dist3 = I(2000 < blk_uni_distance <= 3000)

uni_dist4 = I(3000 < blk_uni_distance <= 4000)

uni_dist5 = I(4000 < blk_uni_distance <= 5000)

uni_dist6 = I(blk_uni_distance = 5000)

blk_mil_adj Block is adjacent to a military area landmark feature.

blk_uni_adj Block is adjacent to a university area landmark feature.

blk_mil_part Block is partial within a military area landmark feature.

blk_uni_part Block is partial within a university area landmark feature.

blk_mil_full Block is completely within a military area landmark feature.

blk_uni_full Block is completely within a university area landmark feature.
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blk_mil_pct Percent of block covered by the nearest military area landmark feature.
log_mil_pct = log(blk_mil_pct + 1)

blk_np_pct Percent of block covered by a national park area landmark feature.
log_np_pct = log(blk_np_pct + 1)

blk_uni_pct Percent of block covered by a university area landmark feature.
log_uni_pct = log(blk_uni_pct + 1)

open_water_pct Percent of block covered by NLCD open water.
log_open_water_pct = log(open_water_pct + 1)

devel0_pct Percent of block covered by NLCD developed, open space.
log_devel0_pct = log(devel0_pct + 1)

devel1_pct Percent of block covered by NLCD developed, low intensity.
log_devel1_pct = log(devel1_pct + 1)

devel2_pct Percent of block covered by NLCD developed, medium intensity.
log_devel2_pct = log(devel2_pct + 1)

devel3_pct Percent of block covered by NLCD developed, high intensity.
log_devel3_pct = log(devel3_pct + 1)

barren_pct Percent of block covered by NLCD barren land.
log_barren_pct = log(barren_pct + 1)

forest1_pct Percent of block covered by NLCD deciduous forest.
log_forest1_pct = log(forest1_pct + 1)

forest2_pct Percent of block covered by NLCD evergreen forest.
log_forest2_pct = log(forest2_pct + 1)

forest3_pct Percent of block covered by NLCD mixed forest.
log_forest3_pct = log(forest3_pct + 1)

shrub_pct Percent of block covered by NLCD shrub/scrub.
log_shrub_pct = log(shrub_pct + 1)

grassland_pct Percent of block covered by NLCD grassland/herbaceous.
log_grassland_pct = log(grassland_pct + 1)

pasture_pct Percent of block covered by NLCD pasture/hay.
log_pasture_pct = log(pasture_pct + 1)

crops_pct Percent of block covered by NLCD cultivated crops.
log_crops_pct = log(crops_pct + 1)

wetlands1_pct Percent of block covered by NLCD woody wetlands.
log_wetlands1_pct = log(wetlands1_pct + 1)

wetlands2_pct Percent of block covered by NLCD emergent herbaceous wetlands.
log_wetlands2_pct = log(wetlands2_pct + 1)

public_pct Percent of block for public lands.
log_public_pct = log(public_pct + 1)
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Table A.4: Variables from DSF stability data.

Variable Name Description

dsf_si_* DSF Stability Indices for spring/fall 2009 DSF refreshes in 2000–2009.
log_dsf_si_spr09 = log(dsf_si_spr09 + 1)

log_dsf_si_fal08 = log(dsf_si_fal08 + 1)

log_dsf_si_spr08 = log(dsf_si_spr08 + 1)

log_dsf_si_fal07 = log(dsf_si_fal07 + 1)

log_dsf_si_spr07 = log(dsf_si_spr07 + 1)

log_dsf_si_fal06 = log(dsf_si_fal06 + 1)

log_dsf_si_spr06 = log(dsf_si_spr06 + 1)

log_dsf_si_fal05 = log(dsf_si_fal05 + 1)

log_dsf_si_spr05 = log(dsf_si_spr05 + 1)

log_dsf_si_fal04 = log(dsf_si_fal04 + 1)

log_dsf_si_spr04 = log(dsf_si_spr04 + 1)

log_dsf_si_fal03 = log(dsf_si_fal03 + 1)

log_dsf_si_spr03 = log(dsf_si_spr03 + 1)

log_dsf_si_fal02 = log(dsf_si_fal02 + 1)

log_dsf_si_spr02 = log(dsf_si_spr02 + 1)

log_dsf_si_fal01 = log(dsf_si_fal01 + 1)

log_dsf_si_spr01 = log(dsf_si_spr01 + 1)

log_dsf_si_fal00 = log(dsf_si_fal00 + 1)

log_dsf_si_spr00 = log(dsf_si_spr00 + 1)

stability_index Overall stability index.

Table A.5: Variables from LEHD Origin-Destination Employment Statistics (LODES) data.

Variable Name Description

grow_rac_c000 Annual growth of all jobs from 2007 to 2008 (residential tabulation).

grow_rac_ca01 Annual growth of < age 30 working from 2007 to 2008 (residential tabulation).

grow_rac_ca03 Annual growth of ≥ age 55 working from 2007 to 2008 (residential tabulation).

grow_rac_ce01 Annual growth of low earnings group from 2007 to 2008 (residential tabulation).

grow_rac_ce03 Annual growth of low earnings group from 2007 to 2008 (residential tabulation).

grow_wac_c000 Total job growth from 2007 to 2008 (workplace tabulation).

grow_wac_cns07 Annual growth of retail sector from 2007 to 2008 (workplace tabulation).

share_rac_ca01 Share of all jobs that were low earnings in 2008.

share_rac_ca03 Share of all jobs that were ≥ age 55 in 2008.

share_rac_ce01 Share of all jobs that were low earnings in 2008.

share_rac_ce03 Share of all jobs that were high earnings in 2008.

lodes_gini Gini coefficient for LODES earnings groups.

Table A.6: Variables from RealtyTrac data.

Variable Name Description

realtrac_sum_2005 Number of foreclosed homes within the block in 2005.
realtrac_0_2005 = I(realtrac_sum_2005 = 0)

realtrac_1_5_2005 = I(1 <= realtrac_sum_2005 <= 5)

realtrac_6_10_2005 = I(6 <= realtrac_sum_2005 <= 10)

realtrac_11plus_2005 = I(realtrac_sum_2005 >= 11)
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realtrac_sum_2006 Number of foreclosed homes within the block in 2006.
realtrac_0_2006 = I(realtrac_sum_2006 = 0)

realtrac_1_5_2006 = I(1 <= realtrac_sum_2006 <= 5)

realtrac_6_10_2006 = I(6 <= realtrac_sum_2006 <= 10)

realtrac_11plus_2006 = I(realtrac_sum_2006 >= 11)

realtrac_sum_2007 Number of foreclosed homes within the block in 2007.
realtrac_0_2007 = I(realtrac_sum_2007 = 0)

realtrac_1_5_2007 = I(1 <= realtrac_sum_2007 <= 5)

realtrac_6_10_2007 = I(6 <= realtrac_sum_2007 <= 10)

realtrac_11plus_2007 = I(realtrac_sum_2007 >= 11)

realtrac_sum_2008 Number of foreclosed homes within the block in 2008.
realtrac_0_2008 = I(realtrac_sum_2008 = 0)

realtrac_1_5_2008 = I(1 <= realtrac_sum_2008 <= 5)

realtrac_6_10_2008 = I(6 <= realtrac_sum_2008 <= 10)

realtrac_11plus_2008 = I(realtrac_sum_2008 >= 11)

Table A.7: Variables from IRS 1040 data.

Variable Name Description

irs1040nm Number of 1040 forms in a block that had no block ID.
log_irs1040nm = log(irs1040nm + 0.001)

irs1040nb Number of 1040 forms in a block that had no MAFID.
log_irs1040n = log(irs1040nb + 0.0005)

irs1040ng Number of 1040 forms in a block that had no block ID and no MAFID.
log_irs1040ng = log(irs1040ng + 0.005)
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Table A.8: Initial Bernoulli model, with LogLik = -43,815.61 and AIC = 87,663.22.

Estimate SE z-value p-value

Intercept 1.7590 0.0695 25.296 <2e-16

log dep list -0.2998 0.0346 -8.667 <2e-16

log landmeters2 -0.1254 0.0096 -13.021 <2e-16

log eds res sum -0.2051 0.0133 -15.394 <2e-16

log landmeters2 sq 0.0176 0.0019 9.346 <2e-16

log business sum -0.0171 0.0159 -1.075 0.2824

log acs hu ratio -0.0426 0.0783 -0.544 0.5863

urbanZERO -0.2929 0.0295 -9.938 <2e-16

teaMOM 0.2884 0.0247 11.670 <2e-16

teaUER -0.2748 0.0622 -4.419 9.93e-06

log gc sum -0.0377 0.0433 -0.869 0.3848

hasSeasonalY -0.3350 0.0782 -4.284 1.83e-05

log unitstat1 sum 0.1546 0.0375 4.121 3.77e-05

log delptypeBk sum -0.6691 0.0112 -55.783 <2e-16

log isVacantY sum -0.1393 0.0143 -9.706 <2e-16

log hu density ratio -0.0137 0.0074 -1.865 0.0622
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Table A.9: Selected Bernoulli model, with LogLik = -41,912.09 and AIC = 83,902.17.

Estimate SE z-value p-value

Intercept 0.8684 0.0940 9.236 <2e-16

log dep list -0.1708 0.0275 -6.215 5.13e-10

log landmeters2 0.0042 0.0119 0.358 0.7206

log eds res sum -0.1859 0.0145 -12.848 <2e-16

log landmeters2 sq 0.0228 0.0021 10.624 <2e-16

teaMOM 0.1582 0.0266 5.958 2.56e-09

hasSeasonalY -0.3073 0.0799 -3.848 0.0001

log unitstat1 sum 0.1384 0.0331 4.182 2.89e-05

log delptypeBk sum -0.8565 0.0307 -27.879 <2e-16

log isVacantY sum -0.1648 0.0151 -10.896 <2e-16

log mafsrc1 sum -0.1096 0.0106 -10.362 <2e-16

log compcity1 sum 0.0754 0.0263 2.870 0.0041

log forest1 pct -0.0333 0.0079 -4.208 2.57e-05

log forest2 pct -0.0446 0.0099 -4.519 6.22e-06

log forest3 pct -0.0568 0.0130 -4.368 1.26e-05

log irs1040ng -0.2191 0.0129 -16.991 <2e-16

log pct crowd occp u -0.3511 0.0210 -16.732 <2e-16

log crops pct 0.1069 0.0083 12.882 <2e-16

log dsf si spr09 -1.2184 0.0469 -25.953 <2e-16

log shrub pct -0.0801 0.0092 -8.685 <2e-16

log devel0 pct -0.0223 0.0071 -3.136 0.0017

log devel1 pct -0.0614 0.0133 -4.625 3.74e-06

log devel2 pct 0.1226 0.0162 7.588 3.26e-14

log devel3 pct 0.0105 0.0108 0.971 0.3317

stability index 0.5374 0.0397 13.539 <2e-16

hu block2tract ratio -1.6410 0.5177 -3.169 0.0015

log pct pop 0 17 0.2240 0.0177 12.663 <2e-16

log irs1040nb -0.0942 0.0071 -13.264 <2e-16

log irs1040nm -0.0057 0.0142 -0.401 0.6881

log htc -0.0638 0.0101 -6.290 3.18e-10

log pct mlt u 10p strc 0.1187 0.0160 7.432 1.07e-13

log pct not single u strc -0.1359 0.0221 -6.139 8.28e-10

log pct black 0.0807 0.0107 7.539 4.72e-14

log compcity1 sum:log devel1 pct 0.0488 0.0048 10.169 <2e-16

log dep list:log dsf si spr09 0.0869 0.0066 13.099 <2e-16

log landmeters2:log dsf si spr09 -0.0621 0.0039 -16.050 <2e-16

log delptypeBk sum:log dsf si spr09 0.1042 0.0089 11.665 <2e-16

log dsf si spr09:log irs1040nm -0.0714 0.0066 -10.786 <2e-16

log devel2 pct:log irs1040nb 0.0269 0.0031 8.653 <2e-16
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Table A.10: Initial negative binomial, with LogLik = -88,685.72 and AIC = 177,405.40. Theta parameter
represents 1/κ.

Estimate SE z-value p-value

Intercept -1.1624 0.0683 -17.026 <2e-16

log dep list 0.0973 0.0300 3.247 0.0012

log landmeters2 0.0435 0.0098 4.421 9.82e-06

log eds res sum 0.2051 0.0134 15.311 <2e-16

log landmeters2 sq -0.0208 0.0018 -11.297 <2e-16

log business sum 0.1102 0.0157 7.024 2.15e-12

log acs hu ratio -0.4374 0.0723 -6.052 1.43e-09

urbanZERO 0.1826 0.0300 6.095 1.09e-09

teaMOM -0.5804 0.0257 -22.625 <2e-16

teaUER 0.3695 0.0643 5.747 9.08e-09

log gc sum 0.6218 0.0408 15.245 <2e-16

hasSeasonalY 0.7288 0.0728 10.011 <2e-16

log unitstat1 sum -0.3775 0.0355 -10.645 <2e-16

has delptypeBk 0.8436 0.0200 42.281 <2e-16

log isVacantY sum 0.2474 0.0142 17.486 <2e-16

log hu density ratio -0.0754 0.0075 -10.103 <2e-16

Theta 0.2093 0.0022 --- ---
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Table A.11: Selected negative binomial model, with LogLik = -85,970.86 and AIC = 172,031.7. Theta
parameter represents 1/κ.

Estimate SE z-value p-value

Intercept 0.4500 0.0899 5.003 5.64e-07

log dep list 0.5199 0.0317 16.377 <2e-16

log landmeters2 -0.0356 0.0118 -3.016 0.002559

log eds res sum -0.2224 0.0285 -7.792 6.61e-15

log landmeters2 sq -0.0239 0.0020 -11.930 <2e-16

log business sum 0.0521 0.0162 3.208 0.0013

teaMOM -0.1676 0.0269 -6.239 4.40e-10

teaUER 0.3175 0.0611 5.201 1.99e-07

log gc sum 0.2122 0.0388 5.472 4.44e-08

hasSeasonalY 0.4885 0.0679 7.191 6.41e-13

log unitstat1 sum -0.2137 0.0307 -6.949 3.67e-12

has delptypeBk 0.4839 0.0206 23.545 <2e-16

log isVacantY sum 0.1919 0.0138 13.895 <2e-16

log hu density ratio -0.2365 0.0132 -17.930 <2e-16

stability index -0.7996 0.0384 -20.815 <2e-16

log irs1040ng 0.2644 0.0126 20.998 <2e-16

log irs1040nb 0.0878 0.0056 15.543 <2e-16

log devel0 pct 0.0492 0.0067 7.291 3.08e-13

log devel1 pct 0.1526 0.0118 12.979 <2e-16

log devel2 pct 0.0702 0.0071 9.894 <2e-16

log devel3 pct 0.0196 0.0105 1.870 0.0615

log crops pct -0.1031 0.0082 -12.595 <2e-16

log pct crowd occp u 0.3097 0.0200 15.489 <2e-16

log pct pop 0 17 -0.3540 0.0202 -17.493 <2e-16

log pct not single u strc 0.2156 0.0188 11.479 <2e-16

log forest1 pct 0.0277 0.0077 3.599 0.0003

log forest2 pct 0.0181 0.0097 1.867 0.0618

log forest3 pct 0.0511 0.0128 3.999 6.36e-05

log dsf si spr00 -0.1136 0.0145 -7.854 4.03e-15

log shrub pct 0.0777 0.0092 8.484 <2e-16

log dsf si spr09 0.2290 0.0177 12.962 <2e-16

pct unemploy zero -0.3620 0.0456 -7.936 2.08e-15

log pct li hh indo europe 0.3034 0.0321 9.460 <2e-16

log irs1040nm 0.0916 0.0098 9.338 <2e-16

log pct mlt u 2p strc -0.1537 0.0161 -9.557 <2e-16

realtrac 1 5 2007 -0.2445 0.0325 -7.534 4.91e-14

realtrac 11plus 2007 0.3688 0.0828 4.453 8.45e-06

log pct api 0.1499 0.0212 7.069 1.56e-12

uni dist0 0.5695 0.0990 5.752 8.81e-09

uni dist2 0.1318 0.0392 3.366 0.0008

log dep list:log devel1 pct -0.0798 0.0041 -19.247 <2e-16

log landmeters2:log dsf si spr00 0.0554 0.0033 16.615 <2e-16

log unitstat1 sum:log hu density ratio 0.0632 0.0048 13.284 <2e-16

log eds res sum:stability index 0.4239 0.0359 11.815 <2e-16

Theta 0.2580 0.0028 --- ---
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(a) Negative binomial. (b) Negative binomial.

(c) Poisson. (d) Poisson.

Figure A.1: Randomized quantile residuals computed on the training set using negative binomial and Poisson
regressions.
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Figure A.2: 2010 Address Canvassing adds.
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Figure A.3: Predicted adds based on ZINB model.
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Figure A.4: “Bad” quantile residuals.
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