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1 Introduction

Linear filters used in seasonal adjustment contain various unit root factors. Seasonal unit root

factors are those of the seasonal summation operator Us(B) = 1 + B + · · ·+ Bs−1 where B is the

backshift operator (Byt = yt−1 for any time series yt) and s is the seasonal period. The presence

of Us(B) in a filter means it will annihilate fixed seasonal effects, a desirable property for seasonal

adjustment, trend, and irregular filters. The other unit root factors of interest are powers of the

differencing operator 1−B. The presence of (1−B)d for d > 0 in a filter means it will annihilate

polynomials in t up to degree d−1. This is generally the case for seasonal and irregular filters, and

it implies that the corresponding seasonal adjustment and trend filters will reproduce polynomials

of degree d− 1. This property has been of significant interest historically, as many empirical trend

filters were explicitly designed to reproduce polynomials of a certain degree. For example, the

symmetric Henderson trend filters will reproduce cubic polynomials (Kenny and Durbin 1982).

Bell (2012) gave general results on unit root factors contained in linear filters used in model-

based and X-11 seasonal adjustment. It was noted there that special cases could arise for model-

based adjustment where the filters contain more unit root factors than is obvious from the general

results. The present article focuses on this point, examining some special cases for canonical ARIMA

model-based adjustment (Hillmer and Tiao 1982, Burman 1980, Gomez and Maravall 1997) where

the symmetric seasonal filters include two extra differencing operators, written as (1−B)(1− F ),

where F = B−1 is the forward shift operator (Fyt = yt+1). In these cases the symmetric seasonal

adjustment filters will reproduce polynomials of two degrees higher than is indicated by the general

results given in Bell (2012).

Section 2 defines notation and the framework used for linear model-based seasonal adjust-

ment. Sections 3 and 4 provide results showing when the extra (1 − B)(1 − F ) factor occurs in

two models considered explicitly by Hillmer and Tiao (1982), which we hereafter cite as HT: the

ARIMA(0, 0, 1)(0, 1, 1)s model and the ARIMA(0, 1, 1)(0, 1, 1)s (airline) model. Values considered

for the seasonal period s are 2 (biannual), 4 (quarterly), and 12 (monthly). Section 5 discusses some

additional related results for canonical ARIMA model-based adjustment, while Section 6 briefly
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considers special cases for structural component models. Technical details of the derivations for

Sections 3 and 4 are reserved to two Appendices.

2 Notation and framework for model-based seasonal adjustment

The additive decomposition used in seasonal adjustment is

yt = St + Tt + It (1)

where yt is the observed time series (possibly after transformation, e.g., taking logarithms), and

St, Tt, and It are the seasonal, trend, and irregular components. We also let Nt = Tt + It = yt−St

denote the nonseasonal component, the estimate of which is known as the seasonally adjusted series.

Many of the models proposed for model-based seasonal adjustment use component models that can

be written in the following form:

Us(B)St = ut

(1−B)dTt = vt (2)

It ∼ i.i.d. N(0, σ2I )

where ut and vt are stationary time series that are independent of each other and of It. Often ut

and vt are assumed to follow stationary autoregressive-moving average models (Box and Jenkins

1970), in which case yt follows an ARIMA (autoregressive-integrated-moving average) model that

can be written

φ(B)(1−B)d−1(1−Bs)yt = θ(B)at (3)

where φ(B) = 1 − φ1B − · · · − φpB
p is the AR operator, θ(B) = 1 − θ1B − · · · − θqB

q is the

MA operator, and at is white noise, i.i.d. N(0, σ2a). The operators φ(B) and θ(B), which may be

products of nonseasonal and seasonal polynomials in B, are assumed to have all their zeros outside

the unit circle. The expression of the model as in (3) requires d ≥ 1, which is standard in seasonal
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adjustment practice. Note that 1−Bs = (1−B)Us(B) so (1−B)d−1(1−Bs) = (1−B)dUs(B).

This model framework covers the ARIMA model-based approach to seasonal adjustment as

developed in HT and Burman (1980), and implemented in the TRAMO-SEATS software of Gomez

and Maravall (1997) and in the X-13-ARIMA-SEATS program (Monsell 2007). It also covers the

structural components models of Harvey (1989), Durbin and Koopman (2001), and Kitagawa and

Gersch (1984). Though Harvey did not formulate all his component models in ARIMA form, they

can generally be written this way – see Bell (2004).

Let wt = (1−B)dUs(B)yt be the differenced observed series. From (1) and (2),

wt = (1−B)dut + Us(B)vt + (1−B)dUs(B)It. (4)

Let γw(k) = Cov(wt, wt+k) and let γw(B) be the autocovariance generating function (ACGF) of

wt, defined as γw(B) ≡
∑∞

k=−∞ γw(k)Bk, where we treat B for this purpose as a complex variable.

Given the ARMA model φ(B)wt = θ(B)at, and the orthogonality of the components in (4), it

follows that (Box and Jenkins 1970, p. 49)

γw(B) = σ2aθ(B)θ(F )/φ(B)φ(F ) (5)

= (1−B)d(1− F )dγu(B) + Us(B)Us(F )γv(B) + (1−B)d(1− F )dUs(B)Us(F )σ2I . (6)

Given ARMA models for ut and vt, analogous expressions to (5) can be given for their ACGFs,

γu(B) and γv(B). From wt = (1 − B)dUs(B)yt, the pseudo ACGF of yt is defined as γy(B) =

γw(B)/(1−B)d(1−F )dUs(B)Us(F ). We also define zt = (1−B)dNt = vt + (1−B)dIt with ACGF

γz(B) = γv(B) + (1−B)d(1− F )dσ2I .

Bell (1984 and 2012, p. 445) notes that the minimum mean squared error (MMSE) linear signal

extraction estimate of St given the full doubly infinite realization of the series {yt} is

Ŝt = ωS(B)yt where ωS(B) =
γu(B)

γw(B)
(1−B)d(1− F )d. (7)
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Analogous to (7), the linear filters for the MMSE estimates of Nt, Tt, and It are

ωN (B) =
γz(B)

γw(B)
Us(B)Us(F ) (8)

ωT (B) =
γv(B)

γw(B)
Us(B)Us(F ) (9)

ωI(B) =
σ2I

γw(B)
Us(B)Us(F )(1−B)d(1− F )d. (10)

Note also that since N̂t = yt − Ŝt and T̂t = N̂t − Ît, it follows that ωN (B) = 1 − ωS(B) and

ωT (B) = 1− ωS(B)− ωI(B).

Simple inspection of (7)–(10) led to the results reported in Bell (2012) for unit root factors

contained in these symmetric filters. The specific result of interest here is that ωS(B) contains

(1−B)d(1−F )d, implying that ωS(B) annihilates, and ωN (B) thus reproduces, polynomials up to

degree 2d− 1. The models most commonly used in seasonal adjustment have d = 2, in which case

the symmetric seasonal adjustment filter must reproduce cubic polynomials in t. Less commonly

used models have d = 1, in which case the symmetric seasonal adjustment filter must reproduce

linear polynomials in t. Values of d other than 1 or 2 are uncommon in practice.

Bell (2012, pp. 446–447) also noted that:

Something not clear from [(7)–(10)] is whether these filters contain additional unit

root factors beyond those obvious from inspection. Bell (2010) notes that ωI(B) will not

include additional unit root factors, while for ωS(B), ωN (B), and ωT (B), additional unit

root factors are possible if they appear in the MA polynomials of the ARIMA models

for St, Nt, or Tt. For example, Hillmer and Tiao (1982, p. 67) examine a model for

which the canonical trend component has a factor of (1 + B) in its MA polynomial.

While potential additional unit root factors in the filters considered can obviously be

examined for any particular model, general results are difficult to give.

The polynomial factors in the MA operator of any ARMA model, such as θ(B) in (3), correspond

to double factors in the numerator of the autocovariance generating function – note θ(B)θ(F ) in

equation (5). So 1 − B is a factor of the MA polynomial of the model for ut if and only if the
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numerator of γu(B) contains (1−B)(1− F ).

Sections 3 and 4 examine special cases that occur with canonical ARIMA model-based seasonal

adjustment where, for two commonly used models, and depending on the seasonal period s and

on the model parameter values, γu(B) indeed contains a factor of (1 − B)(1 − F ). From (7)

this implies that ωS(B) contains an extra (1 − B)(1 − F ) so it will annihilate, and ωN (B) will

reproduce, polynomials in t up to degree 2d+ 1, which is two degrees higher than would otherwise

be the case. For the common cases of d = 1 or 2, the extra (1 − B)(1 − F ) means that the

seasonal adjustment filter will reproduce cubic and quintic polynomials, respectively, instead of

just linear and cubic polynomials. This property will not be shared by the corresponding trend

filter ωT (B) = 1 − ωS(B) − ωI(B) because, as noted in the quotation above, the corresponding

canonical irregular filter will not include the extra (1−B)(1− F ) factor.

3 Results for the ARIMA(0, 0, 1)(0, 1, 1)s model

The ARIMA(0, 0, 1)(0, 1, 1)s model is

(1−Bs)yt = (1− θ1B)(1− θ2Bs)at. (11)

The nonseasonal and seasonal MA parameters θ1 and θ2 are both restricted to lie in the interval

(−1, 1), though for seasonal adjustment interest focuses on the case of θ2 ≥ 0, for which the

existence of the canonical decomposition is assured (HT, p. 68). Without loss of generality for the

derivations and results presented here, we assume that Var(at) = 1.

HT’s canonical decomposition starts with a partial fractions decomposition of the ACGF for yt.

For the model (11), HT (p. 68) observe that the seasonal part of this partial fractions decomposition

can be expressed as Q∗s(B)/Us(B)Us(F ), where

Q∗s(B) =
(1− θ2)2(1− θ1B)(1− θ1F )

(1−B)(1− F )

{
1− 1

s2
Us(B)Us(F )

}
. (12)

Appendix A observes that 1−1/s2Us(B)Us(F ) contains (1−B)(1−F ), and so can be expressed as
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(1−B)(1− F )αs(B), where αs(B) is a symmetric polynomial in B and F . Appendix A also gives

αs(B) for the cases of s = 2, 4, and 12. Cancelling the (1−B)(1−F ) factors in the numerator and

denominator, Q∗s(B) simplifies to (1−θ2)2(1−θ1B)(1−θ1F )αs(B). The spectrum of the canonical

seasonal is then (2π)−1 times fs(λ) = Q∗s(e
iλ)/|Us(eiλ)|2 − εs, where

εs ≡ min
λ∈[0,π]

Q∗s(e
iλ)

|Us(eiλ)|2
= min

λ∈[0,π]

(1− θ2)2[(1 + θ21)− 2θ1 cos(λ)]αs(e
iλ)

|Us(eiλ)|2
. (13)

The value εs becomes part of the canonical irregular variance. If the minimum value εs occurs at

λ = 0, then the resulting canonical seasonal spectrum (2π)−1fs(λ) will be zero at λ = 0, and the

pseudo-ACGF of St, which is γu(B)/Us(B)Us(F ), must include a 1 − B factor in γu(B) (so that

γu(ei0) = γu(1) = 0). By symmetry of γu(B), it must then also include a 1 − F factor, and so in

such cases the canonical seasonal filter ωS(B) given by (7) will include an extra (1−B)(1− F ) in

its numerator. In these cases the canonical ωS(B) for the (0, 0, 1)(0, 1, 1)s model includes in total

(1− B)2(1− F )2. Then ωS(B) will annihilate, and ωN (B) will reproduce, cubic polynomials in t,

not just linear polynomials (the standard result for this model which has d = 1).

For given values of the nonseasonal MA parameter θ1, the value of λ that minimizes fs(λ) was

determined through inspection by computing fs(λ) over a detailed grid of λ values (from 0 to π in

increments of .01) and picking off the minimizing value of λ. Examining the results for a detailed

set of θ1 values revealed those values of θ1 for which the minimum of fs(λ) occurs at λ = 0, so

that ωS(B) from the (0, 0, 1)(0, 1, 1)s model contains (1−B)2(1−F )2 and not just (1−B)(1−F ).

Table 1 gives the results. Note that, for s = 2, ωS(B) contains (1 − B)2(1 − F )2 for any value

of θ1, while for s = 4 and s = 12, ωS(B) contains (1 − B)2(1 − F )2 only for limited intervals of

θ1. In fact, the result for s = 2 can be established analytically since it is easy to show that f2(λ)

is increasing in λ over [0, π] for any value of θ1. Another point worth noting is that, for θ1 > 0,

the (1 + θ21)− 2θ1 cos(λ) factor in (13), which does not depend on s, is an increasing function of λ

on [0, π], while αs(e
iλ)/|Us(eiλ)|2, which does not depend on θ1, has a global minimum at λ = 0.

Hence, for each s and for all θ1 > 0, the minimum of fs(λ) occurs at λ = 0. Finally, note that the

results of Table 1 are not affected by the value of θ2.
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Table 1. Range of values of θ1 for which the canonical seasonal filter ωS(B) from (7)

for the ARIMA(0, 0, 1)(0, 1, 1)s model (11) includes (1 − B)2(1 − F )2, not just

(1−B)(1− F ).

seasonal period s 2 4 12

range of values of θ1 all θ1 ∈ (−1, 1) −.35 < θ1 < 1 −.28 < θ1 < 1

To provide further insight into the results of Table 1, Figure 1 shows plots of fs(λ) (but omitting

the (1−θ2)2 factor since it does not depend on λ) for both the quarterly and monthly cases, for three

values of θ1: −.2, −.3, and −.4. Features common to these plots, and to plots of fs(λ) for other

values of θ1, include: a local minimum at λ = 0; infinite peaks at the seasonal frequencies; and,

necessarily, dips between the seasonal frequencies. The plots also show, consistent with Table 1,

that (i) for θ1 = −.2, fs(λ) is minimized at λ = 0 for both the quarterly and monthly cases,

(ii) for θ1 = −.3, this occurs for the quarterly but not the monthly case, and (iii) for θ1 = −.4,

this occurs for neither the quarterly nor the monthly case. In fact, as θ1 decreases from 1 towards

−1, the dips in fs(λ) between the seasonal frequencies decrease relative to the local minimum at

λ = 0. Eventually a θ1 value is reached beyond which the global minimum of fs(λ) occurs at the

dip between the last two seasonal frequencies, rather than at λ = 0. These θ1 values define the

lower limits of the ranges given by Table 1.

4 Results for the ARIMA(0, 1, 1)(0, 1, 1)s (airline) model

The ARIMA(0, 1, 1)(0, 1, 1)s (airline) model is (Box and Jenkins 1970, sec. 9.2)

(1−B)(1−Bs)yt = (1− θ1B)(1− θ2Bs)at. (14)

As with the (0, 0, 1)(0, 1, 1)s model, the nonseasonal and seasonal MA parameters θ1 and θ2 are

restricted to lie in the interval (−1, 1), though again interest focuses on the case of θ2 ≥ 0, for which

existence of the canonical decomposition is assured. We again assume without loss of generality

that Var(at) = 1.
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Figure 1: Plots of the (rescaled) canonical seasonal component spectrum, fs(λ)/(1 − θ2)2, for the
ARIMA(0, 0, 1)(0, 1, 1)s model. Plots are given for both the quarterly (left) and monthly (right)
cases, for three values of θ1: −.2, −.3, and −.4. When the minimum of fs(λ) occurs at frequency
zero, the canonical symmetric seasonal filter includes (1−B)2(1−F )2. When the minimum occurs
at a nonzero frequency, the canonical symmetric seasonal filter includes only (1−B)(1− F ).
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HT (p. 67) observe that, for yt following the model (14) with θ2 ≥ 0, the seasonal part of the

partial fractions decomposition of γy(B) can be expressed as Q∗s(B)/Us(B)Us(F ), where now

Q∗s(B) =
(1− θ2)2

(1−B)2(1− F )2
×

{
(1− θ1)2

4
(1 +B)(1 + F )

[
1− 1

s2
Us(B)Us(F )− s2 − 1

12s2
(1−Bs)(1− F s)

]
(15)

+
(1 + θ1)

2

4
(1−B)(1− F )

[
1− 1

4s2
Us(B)Us(F )(1 +B)(1 + F )

]}
.

Appendix B simplifies the expression in braces in (15), showing that both of its terms contain

(1−B)2(1− F )2, so that after cancellation with the (1−B)2(1− F )2 of the denominator, Q∗s(B)

simplifies to

Q∗s(B) = (1− θ2)2
{

(1− θ1)2

4
(1 +B)(1 + F )ms1(B) +

(1 + θ1)
2

4
ms2(B)

}

where ms1(B) and ms2(B) are symmetric polynomials given in Appendix B. The spectrum of the

canonical seasonal is then (2π)−1 times fs(λ) = Q∗s(e
iλ)/|Us(eiλ)|2 − εs, where now

εs = min
λ∈[0,π]

(1− θ2)2

|Us(eiλ)|2

{
(1− θ1)2

4
2[1 + cos(λ)]ms1(e

iλ) +
(1 + θ1)

2

4
ms2(e

iλ)

}
.

For s = 2, 4, and 12, and for a detailed set of values of θ1, the minima εs were again determined

by inspection, noting cases when the minimum occurs at λ = 0, so γu(B) contains (1−B)(1− F ),

implying that ωS(B) contains (1 − B)3(1 − F )3 and not just (1 − B)2(1 − F )2. Table 2 gives the

results which, as for Table 1, are unaffected by the value of θ2. Analogously to Table 1, we see

that, for s = 2, ωS(B) contains (1 − B)3(1 − F )3 for any value of θ1, while for s = 4 and s = 12,

this occurs only for limited intervals of θ1. This is unsurprising since plots of fs(λ) (not shown)

reveal broadly similar patterns to the plots of Figure 1. However, the limited intervals for s = 4

and s = 12 given in Table 2 are much smaller than the corresponding intervals given in Table 1,
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and they exclude some positive values of θ1.

Table 2. Range of values of θ1 for which the canonical seasonal filter ωS(B) from (7)

for the ARIMA(0, 1, 1)(0, 1, 1)s (airline) model (14) includes (1−B)3(1− F )3, not just

(1−B)2(1− F )2.

seasonal period s 2 4 12

range of values of θ1 all θ1 ∈ (−1, 1) .11 < θ1 < 1 .58 < θ1 < 1

Figure 2 illustrates the result of Table 2 for the quarterly (s = 4) case. It shows plots of

what results when the symmetric seasonal filter from the canonical decomposition of various airline

models is applied to polynomials of degrees four and five, with the results plotted against the value

of the airline model parameter θ1, for values of θ1 covering the interval −.5 ≤ θ1 ≤ .5. The two

polynomials are of the form 100× (t− 1)k/30k for k = 4 or k = 5. They both take the values 0 at

t = 1 and 100 at t = 31, while at t = 61, the last time point used, they take the values 1, 600 (for

k = 4) and 3, 200 (for k = 5). The parameter θ2 was set to zero to minimize the effective length of

the filter ωS(B), so that its application at the mid-point of the series (t = 31) would be negligibly

affected by the absence of data prior to t = 1 and after t = 61. Computations were done with the

X-13-ARIMA-SEATS program.

Table 2 says that the values shown in Figure 2 should be zero for θ1 > .11, which is indeed the

case. For θ1 ≤ .11 the values are positive, and they increase as θ1 decreases further and further

below .11. However, considering that the series value is 100 at the midpoint, and increases as t

increases past 31, the seasonally filtered values seem quite small, and are smaller for the fourth

degree polynomial than for the fifth. Thus, even for θ1 ≤ .11, the symmetric canonical seasonal

filter comes close to reproducing the fourth and fifth degree polynomials.

10



−0.4 −0.2 0.0 0.2 0.4

0.
00

00
0.

00
10

0.
00

20

Symmetric seasonal filter applied to 4th degree polynomial

θ1

−0.4 −0.2 0.0 0.2 0.4

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Symmetric seasonal filter applied to 5th degree polynomial

θ1

Figure 2: Canonical decomposition of quarterly airline model for various values of θ1: Results from
applying the symmetric seasonal filter to fourth (top) and fifth (bottom) degree polynomials in t.
The dotted vertical lines are at θ1 = .11. See text for further details.
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5 Additional results for canonical ARIMA model-based seasonal

adjustment

For any particular seasonal ARIMA model for which the canonical decomposition exists one can

obviously check for the presence of additional unit root factors in the various filters by examining

the component models from the canonical decomposition. The computations can be done with

the original SEATS program (Gomez and Maravall 1997) or the X-13-ARIMA-SEATS program

(Monsell 2007), either of which will provide output tables giving the roots of the AR and MA

polynomials of the component models. This approach was used to check some results of the previous

two sections.

This approach was also applied to the (1, 1, 0)(0, 1, 1)12 model (1 − φB)(1 − B)(1 − B12)yt =

(1− θB12)at, to check for the presence of an extra (1−B)(1−F ) factor in the symmetric seasonal

filter. For this model the results turn out to depend on the value of the seasonal moving average

parameter θ, as well as on the value of φ. For θ = .7, the extra (1−B)(1− F ) factor was found to

be present for φ < −.6, while for θ = .8, it was found for φ ≤ −.5. This serves to illustrate that

the extra (1 − B)(1 − F ) factor in the seasonal filter can indeed occur for models other than the

two considered explicitly in Sections 3 and 4.

As noted earlier, for models of the form of (2) with σ2I > 0, extra unit root factors are not

present in the symmetric canonical irregular filter, and so the symmetric canonical trend filter

will reproduce only polynomials up to degree 2d − 1, not degree 2d + 1. For models with d = 2

and when ωS(B) does contain the extra (1 − B)(1 − F ), ωS(B) then contains (1 − B)3(1 − F )3

while ωI(B) contains only (1 − B)2(1 − F )2, so ωN (B) reproduces quintic polynomials in t while

ωT (B) reproduces only cubic polynomials. This matches analogous results for X-11 symmetric

filters reported in Bell (2012, p. 449).

The quotation in Section 2 noted that HT considered a model for which the canonical trend

model had a 1+B factor in its MA polynomial. This implies that γv(B) contains (1+B)(1+F ), so

that ωT (B) given by (9) has this extra (1+B)(1+F ). The quotation refers to HT’s treatment of the

(0, 0, 0)(0, 1, 1)s model, which is the (0, 0, 1)(0, 1, 1)s model with θ1 = 0. In fact, HT’s derivations
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for the (0, 0, 1)(0, 1, 1)s and the (0, 1, 1)(0, 1, 1)s models (the latter with θ2 ≥ 0) show that the

canonical trend spectrum is minimized at λ = π. Thus, for both these models γv(B) contains

(1 +B)(1 + F ), so that ωT (B), which always contains Us(B)Us(F ), has this extra (1 +B)(1 + F ),

and so includes (1 +B)2(1 + F )2.

Extra 1 − B factors will not be present in asymmetric seasonal filters because application of

such filters is equivalent to application of the corresponding symmetric seasonal filter ωS(B) after

forecast and backcast extension of the time series. Since the forecast and backcast extension will

reproduce polynomials only up to degree d − 1, this becomes the limiting factor in the degree

of polynomials reproduced by the asymmetric seasonal adjustment and trend filters (Bell 2012,

p. 447). The same argument applies to seasonal unit root factors contained in the asymmetric

seasonal adjustment, trend, and irregular filters. For example, though we just noted that ωT (B)

from the models examined by HT will include (1 + B)2(1 + F )2 instead of just the expected

(1 +B)(1 + F ), the asymmetric trend filters will include just the single 1 +B factor.

The symmetric finite filters (the filters applied at t = m+ 1 for a time series of length 2m+ 1)

provide some further exceptions to the results for model-based adjustment from both canonical

ARIMA and from structural component models. For the case of d = 1, all the finite seasonal and

irregular filters will include 1−B, so all will annihilate constants, which are then reproduced by the

corresponding finite seasonal adjustment and trend filters (Bell 2012, Table 1). However, the finite

symmetric seasonal and irregular filters must, by symmetry, then include (1− B)(1− F ), so they

will annihilate linear polynomials in t, which are then what is reproduced by the symmetric finite

seasonal adjustment and trend filters. The symmetry argument extends to odd values of d > 1.

Thus, for d = 3, the symmetric finite seasonal and irregular filters cannot include just (1−B)3, so

they must include (1−B)2(1−F )2. Hence, they will annihilate cubics, not just quadratics. Values

of d ≥ 3 are seldom used in practice, however. Finally, since all the finite trend filters include Us(B)

which includes the factor 1 + B, the symmetric finite trend filters must include (1 + B)(1 + F )

(Findley and Martin 2006, p. 29).
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6 Special cases for structural component models

Special case results for the structural models proposed by the references cited in Section 2 differ from

the special case results presented for canonical ARIMA seasonal adjustment. For the structural

models a zero in the spectrum of a component will, in most cases, arise only if model fitting

estimates zero for the variance of the component’s stationary part – ut, vt, or It in (2). If that

happens, the component becomes deterministic, not stochastic. If σ̂2I = 0, then It = 0, so it can

be dropped from the model, and Nt = Tt. Assuming no other components have zero variances, the

formulas (7)–(9) still apply (although (8) and (9) are now the same), and the results of Bell (2012)

still apply to signal extraction estimation of St and Nt = Tt.

If var(vt) is estimated to be zero, the fitted model then has (1−B)dTt = 0, implying that Tt is

a polynomial in t of degree d− 1. We cannot leave the component model as (1− B)dTt = vt with

var(vt) = 0 and apply (9) since, from (6), setting γv(B) = 0 will produce a factor of (1−B)d(1−F )d

in γw(B), violating an assumption that underlies the symmetric signal extraction formulas (7)–(10),

as well as the corresponding asymmetric infinite filter formulas. Instead we replace the stochastic

component Tt in the model by a polynomial regression function β0+β1t+ · · ·+βd−1t
d−1. The fitted

value of this function provides T̂t, and the signal extraction estimate of Nt is then T̂t+ωI(B)[yt−T̂t]

(assuming σ̂2I > 0). If this form of signal extraction estimation (including regression estimation of

the βjs) is applied to a time series yt that is exactly a polynomial in t of degree d− 1 or less, the

polynomial will be reproduced in T̂t, and thus also in N̂t. This contrasts with the symmetric infinite

filter estimates for seasonal adjustment and trend estimation that apply with var(vt) > 0, which

reproduce polynomials of degree 2d−1. For related discussion on treatment of trend constants, see

Bell (2010, pp. 5-6), including the proof given of Theorem 2.

Having var(vt) = 0 is acceptable for finite sample signal extraction, but will produce the same

results as modeling Tt as a d− 1 degree polynomial regression function. Analogous results to those

just described hold if ut is estimated to have zero variance so St becomes fixed seasonal effects. See

Harvey (1981) and Bell (1987) for discussion related to these two points.

Special case results are more involved for the local linear trend model of Harvey (1989, p. 37),
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which is

(1−B)Tt = βt + ε1t where (1−B)βt = ε2t

with ε1t and ε2t independent white noise series with variances σ2ε1 and σ2ε2 . This model can be

rewritten as ARIMA(0,2,1): (1 − B)2Tt = (1 − ηB)ct, with η ∈ [0, 1]. If σ2ε2 > 0 then η < 1

and the usual results of Bell (2012) apply: the symmetric infinite filters ωS(B) and ωI(B) contain

(1 − B)2(1 − F )2, and ωN (B) and ωT (B) reproduce cubics. If both σ2ε1 and σ2ε2 equal 0, then

(1 − B)2Tt = 0 and, from the previous discussion, Tt = β0 + β1t and estimation of Nt and Tt

reproduces only linear functions of t. If σ2ε1 > 0 but σ2ε2 = 0, then βt becomes a fixed trend

constant β, and the model becomes a random walk with a trend constant, for which estimation

of Nt and Tt again reproduces just linear polynomials. To summarize, if σ2ε2 > 0, then ωN (B)

and ωT (B) in (8) and (9) reproduce cubics, while if σ2ε2 = 0, then asymmetric and finite sample

signal extraction estimation of Nt and Tt reproduce only linear functions of t. Note that estimating

σ2ε2 = 0 but σ2ε1 > 0, which is equivalent to estimating η = 1 in the ARIMA(0,2,1) formulation,

occurs frequently in practice (Bell and Pugh 1990, Shephard 1993).
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Appendix A: Derivation details for the ARIMA (0, 0, 1)(0, 1, 1)s model

We consider (12):

Q∗s(B) =
(1− θ2)2(1− θ1B)(1− θ1F )

(1−B)(1− F )

{
1− 1

s2
Us(B)Us(F )

}
.

Applying Us(B) or Us(F ) to the constant 1 yields s, so that applying 1 − 1/s2Us(B)Us(F ) to 1

yields 0. This shows that 1− 1/s2Us(B)Us(F ) contains a factor (1−B). Since

1− 1

s2
Us(B)Us(F ) =

1

s2
[
s(s− 1)− (s− 1)(B + F )− (s− 2)(B2 + F 2)−

· · · − 2(Bs−2 + F s−2)− (Bs−1 + F s−1)
]

has symmetric coefficients, it must also contain (1 − F ), and so can be expressed as

(1 − B)(1 − F )αs(B), where the polynomial αs(B), which is of degree s − 2 in B and F , also

has symmetric coefficients. Cancelling the (1−B)(1− F ) factors in the numerator and denomina-

tor of Q∗s(B) then simplifies it to (1− θ2)2(1− θ1B)(1− θ1F )αs(B).

The coefficients of αs(B) can be obtained using the following Lemma on division of polynomials

in B by 1−B and 1− F .

Lemma: Let a(B) = a0 + a1B + · · ·+ akB
k be a polynomial in B of degree k > 0. Then

(i) a(B)
1−B = a0 + (a0 + a1)B + · · ·+ (a0 + · · ·+ ak−1)B

k−1 + (a0+···+ak)Bk

1−B , and

(ii) a(B)
1−F = akB

k + (ak + ak−1)B
k−1 + · · ·+ (ak + · · ·+ a1)B + (ak+···+a0)

1−F .

If a0 + · · ·+ ak = 0, then a(B) contains 1−B (equivalently, contains 1− F ) as a factor.

Proof : Results (i) and (ii) are easily verified by writing their right-hand side expressions as single

fractions and simplifying. The last statement follows since the remainder terms in (i) and (ii) are

zero if a0 + · · ·+ ak = 0.

Note from the Lemma that the coefficients of the k − 1 degree polynomial that results from

dividing a(B) by 1 − B can be obtained by cumulatively summing the coefficients of a(B) or, for

division by 1 − F , by cumulatively summing the coefficients of a(B) in reverse order. Also, note
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that the Lemma can be applied to a polynomial in B and F . Thus, if a(B) = a−jF
j + · · ·+a−1F +

a0 + a1B + · · · + akB
k, we pre-multiply a(B) by Bj , where j is the highest power of F in a(B),

then apply the Lemma, and then multiply the result from the division by 1−B or 1− F by F j .

Using the Lemma, we obtained the coefficients of αs(B) by cumulatively summing the coeffi-

cients of 1− 1/s2Us(B)Us(F ), and then cumulatively summing the resulting coefficients in reverse

order. The results of this are as follows for the three values of s that we consider:

s = 2: α2(B) =
1

4

s = 4: α4(B) =
1

16

[
10 + 4(B + F ) + (B2 + F 2)

]
s = 12: α12(B) =

1

144
[286 + 220(B + F ) + 165(B2 + F 2) + 120(B3 + F 3)

+84(B4 + F 4) + 56(B5 + F 5) + 35(B6 + F 6) + 20(B7 + F 7)

+10(B8 + F 8) + 4(B9 + F 9) + (B10 + F 10)].

Appendix B: Derivation details for the ARIMA (0, 1, 1)(0, 1, 1)s

(airline) model

For the airline model, we consider (15):

Q∗s(B) =
(1− θ2)2

(1−B)2(1− F )2
×{

(1− θ1)2

4
(1 +B)(1 + F )

[
1− 1

s2
Us(B)Us(F )− s2 − 1

12s2
(1−Bs)(1− F s)

]
+

(1 + θ1)
2

4
(1−B)(1− F )

[
1− 1

4s2
Us(B)Us(F )(1 +B)(1 + F )

]}
.

We know from Appendix A that 1 − 1/s2Us(B)Us(F ) = (1 − B)(1 − F )αs(B). Also,

(1 − Bs)(1 − F s) = (1 − B)(1 − F )Us(B)Us(F ). The first term in brackets on the right-hand

side above is thus (1 − B)(1 − F ) times αs(B) − s2−1
12s2

Us(B)Us(F ). If, for each of the cases s = 2,

4, and 12, we sum the coefficients of αs(B) − s2−1
12s2

Us(B)Us(F ), and then reverse sum the result-

17



ing sequence, we find that the first and last values in this twice summed sequence are both zero.

Thus, from the Lemma, αs(B) − s2−1
12s2

Us(B)Us(F ) = (1 − B)(1 − F )ms1(B), where ms1(B) is the

symmetric polynomial whose coefficients are the nonzero terms of the sequence produced by this

summing and reverse summing. For the second term in brackets on the right-hand side above, if we

sum the coefficients of 1−(1/4s2)Us(B)Us(F )(1+B)(1+F ), and reverse sum the result, we get zero

for the first and last coefficients, so that 1−(1/4s2)Us(B)Us(F )(1+B)(1+F ) = (1−B)(1−F )ms2(B)

for the symmetric polynomial ms2(B) whose coefficients we just produced. The terms in the

second and third lines of the expression (15) for Q∗s(B) thus both contain (1 − B)2(1 − F )2, and

cancelling this with the (1−B)2(1− F )2 in the denominator shows that

Q∗s(B) = (1− θ2)2
{

(1− θ1)2

4
(1 +B)(1 + F )ms1(B) +

(1 + θ1)
2

4
ms2(B)

}
.

The polynomials ms1(B) and ms2(B) for the cases of s = 2, 4, and 12 are given below.

s = 2: m2,1(B) =
1

4
and m2,2(B) =

1

16
(6 +B + F )

s = 4: m4,1(B) =
3

16

[
26 + 16(B + F ) + 5(B2 + F 2)

]
m4,2(B) =

1

64

[
44 + 19(B + F ) + 6(B2 + F 2) + (B3 + F 3)

]

s = 12: m12,1(B) =
1

1, 728
[16, 874 + 16, 016(B + F ) + 14, 091(B2 + F 2)

+11, 616(B3 + F 3) + 8, 988(B4 + F 4) + 6, 496(B5 + F 5)

+4, 333(B6 + F 6) + 2, 608(B7 + F 7) + 1, 358(B8 + F 8)

m12,2(B) =
1

576
[1, 156 + 891(B + F ) + 670(B2 + F 2) + 489(B3 + F 3)

+344(B4 + F 4) + 231(B5 + F 5) + 146(B6 + F 6)

+85(B7 + F 7) + 44(B8 + F 8) + 19(B9 + F 9)

+6(B10 + F 10) + (B11 + F 11)].
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