
Illuminating Model-Based Seasonal Adjustment with the First
Order Seasonal Autoregressive and Airline Models

David F. Findley, Demetra P. Lytras and Agustin Maravall
U.S. Census Bureau (Consultant), U.S. Census Bureau, Bank of Spain (Retired)
david.findley@ieee.org, demetra.p.lytras@census.gov, amaravall@telefonica.net

July 9, 2015

Abstract

Stationary first order seasonal autoregressive series are shown to have a canonical model-based de-
composition whose estimates have simple formulas from linear regression. The formulas are used to
reveal many features of ARMA and ARIMA model-based seasonal adjustment. Our tutorial focus also
yields new results, including relative smoothness results based on autocorrelation comparisons of same-
calendar-month subseries before and after seasonal adjustment. For a deeper analysis of the SAR(1)
decomposition and for generalizations to ARIMA model-based decompositions, the Wiener-Kolmogorov
signal extraction filter formulas are developed. These formulas and their ARIMA generalizations by Bell
(1984) are applied in several ways. For example, Bell’s formulas easily reveal how the seasonal moving
average coeffi cient controls the responsiveness or resistance of ARIMA model-based seasonal adjustments
to short term movements in the time series.
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1 Overview

The reader is assumed to be familiar with ARMA and ARIMA models. To encounter the most funda-
mental ideas on a first reading: Read this overview through the two paragraphs below (4). Then peruse
each of the ten sections or subsections whose title has * at the end, also shown in the Contents table above. In
each, examine any Figures and their captions. Then scan the formulas of the section or subsection. Make
a guess about which are the most important It is not necessary to follow the details of their derivations.
The gist of a derivation is often worth noting. Footnotes can be ignored.
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Much of this document revolves around the stationary first order seasonal autoregressive model, or
SAR(1). This defines a zero mean process Zt satisfying

Zt = ΦZt−q + at,−1 < Φ < 1, (1)

with a zero-mean, uncorrelated (i.e. white noise or w.n.) at, whose variance Ea2
t is denoted σ2

a. The
autocovariances of Zt are

γj = EZt+jZt = σ2
a

{ (
1− Φ2

)−1
Φk, |j| = kq, k = 0, 1, . . .

0, otherwise.
(2)

See Chapter 9 of Box and Jenkins (1976) for example. Hence the autocorrelations are

ρj =

{
Φk, |j| = qk, k = 0, 1, . . .
0, otherwise.

(3)

We only consider 0 < Φ < 1 in order to have positive correlation at the seasonal lags q, 2q, . . . . For
large enough1 Φ, (3) shows that Zt has the fundamental characteristics of a strongly seasonal time series,
namely a strong tendency for year-to-year movements in the same direction, with magnitudes (relative to
the underlying level, e.g. its mean zero) that evolve mostly slowly. For the monthly case q = 12, Figure 1
shows that when Φ = 0.95, then even after 12 years the correlation is greater than 0.5. By contrast, when
Φ = 0.70, after five years the correlation is negligible. Such a Zt would be less recognizably seasonal.

Figure 3 in Subsection 3.2 shows a simulated Φ = 0.95 monthly SAR(1) series Zt of length 144 with
quite seasonal features. It also shows the adjusted series N̂t = Zt− Ŝt resulting from removal of the estimate
Ŝt of the unobserved signal component St of a signal plus noise decomposition Zt = St + Nt. The
signal St is specified to have the smallest variance γS0 < γ0 compatible with having the same nonzero-lag
autocovariances as Zt, γSj = γj , j 6= 0. This specification will be shown to implicitly specify Nt = Zt − St
as white noise with variance γ0 − γS0 . The associated variance reduction γ0 − γS0 is given by the minimum
value of the spectral density (s.d.) of Zt. This minimum value has a simple formula in the SAR(1) case, as
does the s.d., see (9) and (10) in Subsection 3.2.
The graph of N̂t in Figure 3 appears less smooth than Zt, and this will be established in a formal

way in Subsection 12.2. The signal estimate Ŝt is graphed by calendar month in Figure 4. The Ŝt visibly
smooth each of the 12 annual calendar month series of Zt, a property connected to the fact that the lag 12
autocorrelations of Ŝt are larger than those of Zt, see Section 12.
For any stationary Zt with known autocovariances γj from an ARMA model for Zt, the first step toward

obtaining linear estimates of a two-unobserved-component decomposition Zt = St +Nt is the determination
of an appropriate autocovariance decomposition, γj = γSj +γNj , j = 0, 1, . . . . The decomposition for the
SAR(1) indicated above (with γN0 = γ0 − γS0 , γNj = 0, j 6= 0) is formally derived in Subsection 3.1. For any
finite sample Zt, 1 ≤ t ≤ n, the autocovariances at lags 0 to n− 1, furnish a corresponding n× n covariance
matrix decomposition,

ΣZZ = ΣSS + ΣNN (4)

[γ|j−k|] = [γS|j−k|] + [γN|j−k|].

This decomposition provides for simplified linear regression formulas (reviewed in Section 4) to yield a
decomposition Zt = Ŝt + N̂t, t = 1, . . . , n with minimum mean square error linear estimates (estimators)

1There is no general agreement on how large Φ should be for an SAR(1) Zt to be a candidate for seasonal adjustment. This
issue is not relevant for our tutorial purposes, so graphical results for component estimates will be presented only for Φ = 0.95,
whose Z t have very visible seasonality.
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Figure 1: The monthly (q = 12) SAR(1)’s nonzero autocorrelations at seasonal lags 12, 24, ..., 144 for two
values of Φ. For Φ = 0.95, the autocorrelations are still greater than 0.5 at a lag of twelve years, indicative
of well defined and similar seasonal movements for a number of years, as Figure 3 confirms. For Φ = 0.70,
they are negligible, after four years, indicating substantially weaker, less consistent "seasonality".

Ŝt and N̂t of the unobserved components. We refer to such estimates as MMSE estimates (Textbooks
sometimes call them minimum variance estimates.).Another standard formula provides the variance matrix
of their estimation errors.
The two-component SAR(1) decomposition outlined above is important because of the exceptional sim-

plicity of its formulas, derived in Section 5. It can be interpreted as a seasonal plus irregular decomposition
of Zt if the trend/level component of Zt is taken to be zero, the mean of Zt. But observe that the graph of Zt
in Figure 3 shows slow up and down movements. This suggests specifying a non-constant level/trend compo-
nent and estimating a three-component seasonal, trend, irregular decomposition for SAR(1) series. In
Section 6, SEATS’SAR(1) decomposition is introduced, which is a seasonal-trend-irregular decomposition,
Zt = st + pt +ut. Only the irregular component estimate ût has a simple formula, one which shows that it is
a downscaled version of N̂t. The additional algebra required to derive the seasonal and trend components of
this decomposition is the starting place for the transition to ARIMA model-based seasonal decompositions.
In Section 7, we introduce theWiener-Kolmogorov (W-K) filter formulas for uncorrelated compo-

nent estimates from bi-infinite stationary data Zt,−∞ < t <∞. These immediately reproduce the SAR(1)
regression formula estimates of Subsection 5.1 for the intermediate times between the first and last years,
q + 1 ≤ t ≤ n − q. Also they easily yield the estimates’ARMA models. Appendix A has quick derivations
of the relevant W-K formulas.
In Section 8, after defining the pseudo-spectral density (pseudo-s.d.) of an ARIMA model, we illustrate

the kinds of non-stationary W-K calculations done with pseudo-s.d.’s in SEATS and its implementations
in other software. This is done by deriving the simple formulas of all of the filters associated with the
three-component decomposition of the simplest biannual (q = 2) seasonal ARIMA model (82), the model
obtained when Φ = 1 in (1), the (0,1,0)2 model. We proceed a little more directly than the tutorial article
Maravall and Pierce (1987), which develops fundamental properties of this model’s decomposition estimates
with somewhat different goals. (In Subsection 12.4, we provide a corrected and extended version of the
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article’s Table 1, which we need for smoothness results.)
In Section 11, W-K formulas are applied to the Box-Jenkins airline model. The focus is on the

responsiveness or resistance of the seasonal adjustment filters to unusual short term movements in the time
series, and how these properties are determined by the seasonal moving average coeffi cient Θ, much more
than by the nonseasonal moving average coeffi cient θ. Most seasonal ARIMA models contain a seasonal
moving average factor (1−ΘBq), and the conclusions obtained for the airline model are broadly applicable.
Section 12, the final presentation section, has the most novel material, perhaps more of interest to ex-

perienced or technically inclined readers. In an autocorrelation-based way, it shows where smoothness
is enhanced and where it is reduced among the seasonal decomposition components. Same-calender-month
subseries are the main setting. Complete results are presented, first for the two-component SAR(1) decompo-
sition, and then for the irregular component of the nonstationary seasonal (0,1,0)2 model’s three-component
decomposition. Results are presented for airline model series over an illustrative set of coeffi cient pairs. For
the usual monthly time scale, a few results on the smoothness of trend estimates are described and results
on the nonsmoothness of the irregular component are shown.
Bell and Hillmer (1984) provides an excellent historical overview of seasonal adjustment.

2 Some Conventions and Terminology*

A generic primary time series Xt, stationary or not, will be assumed to have q ≥ 2 observations per year,
with the j-th observation for the k-th year having the time index t = j+ (k − 1) q, 1 ≤ j ≤ q. For simplicity,
the series of j-th values from all available years of is called the j-th calendar month subseries of Xt

even when q 6= 12. When q = 12, these are the series of January values, the series of February values, etc.,
12 series in all. Some seasonal adjustment properties, especially those of seasonal component estimates, are
best revealed by the calendar month subseries. When Xt is stationary, the lag k autocorrelation of a calendar
month subseries is the lag kq, or k-th seasonal autocorrelation, of Xt. Because some formulas simplify when
q/2 is an integer, we only consider even q. In our examples q = 2, 12. (In practice, q = 3, 4, 6 also occur.)
Some basic features of canonical ARIMA-model-based seasonal adjustment (AMBSA for short) will be
related to smoothing the calendar month subseries or detrended versions thereof, see Section 10.2. The
definition of canonical is given in Subsection 3.2.
Features of SEATS referred to are not only features of the model-based seasonal decomposition method

and associated auxiliary calculations of TRAMO-SEATS and TSW (Caporello and Maravall, 2004) but are
also features of most of the implementations of SEATS in X-13ARIMA-SEATS (U.S. Census Bureau, 2014)
and JDemetra+ (Seasonal Adjustment Centre of Competence, 2015).

3 The General Stationary Setting

Seasonal adjustment is an important example of a time series signal extraction procedure. In the simplest
setting, the observed series Zt is treated as the sum of two not directly observable components, the "signal"
St of interest and an obscuring component, the "noise" Nt,

Zt = St +Nt. (5)

In the case of stationary Zt with known autocovariances, γj , j = 0,±1, . . ., typically from an ARMA model,
estimates of both components can be obtained from an autocovariance decomposition

γj = γSj + γNj , j = 0,±1, . . . , (6)

when γSj and γ
N
j have properties expected of St and Nt. Effectively, the additive decomposition (6) implies

uncorrelatedness of the signal and noise,

ESt+jNt = 0, j = 0,±1, . . . , (7)
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see Findley (2012), which we assume. As a consequence, for a given finite sample Zt, 1 ≤ t ≤ n, standard
linear regression formulas (21) summarized in Section 4 provide a decomposition Zt = Ŝt + N̂t, 1 ≤ t ≤ n
with MMSE estimates.

3.1 Autocovariance and Spectral Density Decompositions

The information in an autocovariance sequence γj , j = 0,±1, . . . can be re-expressed, often succinctly and
insightfully, by its spectral density function (s.d.),

g (λ) =

∞∑
j=−∞

γje
i2πjλ = γ0 +

∞∑
j=1

γj
(
ei2πjλ + e−i2πjλ

)
= γ0 + 2

∞∑
j=1

γj cos 2πjλ,−1/2 ≤ λ ≤ 1/2.

The second and third formulas arise from γ−j = γj and cos 2πjλ = 1
2

(
ei2πjλ + e−i2πjλ

)
, the last from Euler’s

formula eix = cosx+ i sinx for real x.
White noise is characterized by having a constant s.d. equal to the variance. An s.d. is nonnegative,

g (λ) ≥ 0 always, see (64) for the ARMA formula. It is an even function, g (−λ) = g (λ), so it is graphed only
for 0 ≤ λ ≤ 1/2. See the SAR(1) example in Figure 2. For any j, the autocovariance γj can be recovered
from g (λ) as

γj =

∫ 1/2

−1/2

e−i2πjλg (λ) dλ = 2

∫ 1/2

0

cos 2πjλg (λ) dλ, j = 0,±1,±2, . . . .

In particular, the integral of g (λ) over −1/2 ≤ λ ≤ 1/2 is finite with value γ0, so the area under a graph of
g (λ) is γ0/2, half the variance (in the units defined by the axes).
An autocovariance decomposition (6) is equivalent to the s.d. decomposition

g (λ) = gS (λ) + gN (λ) ,−1/2 ≤ λ ≤ 1/2, (8)

with gS (λ) = γS0 + 2
∑∞
j=1 γ

S
j cos 2πjλ and gN (λ) = γN0 + 2

∑∞
j=1 γ

N
j cos 2πjλ, a key fact.

3.2 The SAR(1) Canonical Signal + Noise Autocovariance Decomposition*

Conceptually attractive and unique decompositions result from the following restriction, introduced by Tiao
and Hillmer (1978). An s.d. decomposition with two or more component s.d.’s is called canonical if at most
one of the components, often a constant (white noise) s.d., has a non-zero minimum. A nonconstant s.d.
(or pseudo-s.d. as defined in Section 8) is called canonical if its minimum value is zero. The two-component
SAR(1) case provides the simplest seasonal example.
By direct calculation from (2) or from the general ARMA formula (64) below, for a series Zt with model

(1), the s.d. g (λ) = σ2
a

(
1− Φ2

)−1∑∞
j=−∞Φ|j|ei2πjqλ has the formula2

g (λ) = σ2
a

∣∣1− Φei2πqλ
∣∣−2

= σ2
a

(
1 + Φ2 − 2Φ cos 2πqλ

)−1
,−1/2 ≤ λ ≤ 1/2. (9)

For q = 12, Figure 2 shows an overlay plot of g (λ) for the cases Φ = 0.70 and 0.95, each with σ2
a =(

1− Φ2
)
, which results in γ0 = 1 for both SAR(1) processes.

A canonical two-component decomposition of (9) is achieved by separating g (λ) from its minimum value,

min
−1/2≤λ≤1/2

g (λ) = σ2
a (1 + Φ)

−2
, (10)

which occurs at frequencies in −1/2 ≤ λ ≤ 1/2 where ei2πqλ = cos 2πqλ = −1, such as λ = ± (2q)
−1.

2Recall that for a complex number a+ ib , the squared magnitude is |a+ ib|2 = (a+ ib) (a− ib) = a2 + b2.
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Figure 2: The q = 12 SAR(1) spectral densities for Φ = 0.95, and Φ = 0.70 (darker line) with σ2
a =

(
1− Φ2

)
,

which results in γ0 = 1. So the area under each graph is 1/2 (in the units of the graph). The peaks are
at λ = 0 and at each seasonal frequency, λ = k/12 cycles per year, 1 ≤ k ≤ 6, always with amplitude
σ2
a (1− Φ)

−2
= (1 + Φ) (1− Φ)

−1. The peaks for Φ = 0.70 are broader and much lower. The miminum value
σ2
a (1 + Φ)

−2
= (1− Φ) (1 + Φ)

−1 occurs midway between each pair of peaks.

The resulting decomposition

g (λ) =
(
g (λ)− σ2

a (1 + Φ)
−2
)

+ σ2
a (1 + Φ)

−2
= gS (λ) + gN (λ) (11)

prescribes a matrix decomposition (4) for any sample size n ≥ 1: With ΣZZ =
(
1− Φ2

)−1
σ2
a

[
Φ|j−k|

]
j,k=1,...,n

and I the identity matrix of order n,

ΣZZ =
(

ΣZZ − σ2
a (1 + Φ)

−2
I
)

+ σ2
a (1 + Φ)

−2
I (12)

= ΣSS + ΣNN ,

where ΣSS and ΣNN have the formulas indicated. Substitution into the regression formulas (21) yields
estimated signal factors Ŝt and noise factors N̂t exemplified in Figures 3 and 4 from the simulated SAR(1)
Z1, . . . , Z144 shown. A more informative interpretation of the estimates is developed in Subsections 12.2 and
12.3.
The function gS (λ) = g (λ)−σ2

a (1 + Φ)
−2, being nonnegative and even, is the s.d. of a stationary process

St, an SARMA(1,1)q it will be shown. We get more insight into the properties of the Ŝt by having a formula
for gS (λ) that displays the autocovariances of St explicitly:

gS (λ) = g (λ)− σ2
a (1 + Φ)

−2
= σ2

a

{(
1− Φ2

)−1 − (1 + Φ)
−2
}

+ 2

∞∑
j=1

γj cos 2πjλ

= σ2
a

{
2Φ
(
1− Φ2

)−1
(1 + Φ)

−1
}

+ 2
(
1− Φ2

)−1
σ2
a

∞∑
j=1

Φk cos 2πjλ. (13)
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Thus

γSj = Φ
(
1− Φ2

)−1
σ2
a

 2 (1 + Φ)
−1
, j = 0

Φk−1, |j| = kq, k ≥ 1
0, |j| 6= 0, kq.

, (14)

A key feature of St with s.d. gS (λ) is that γS0 < γ0 =
(
1− Φ2

)−1
σ2
a, because 2Φ (1 + Φ)

−1
< 1, but

γSj = γj , j 6= 0, so St has autocorrelations γSkq/γ
S
0 proportionately greater than Zt at all seasonal lags,

ρSj =

{
1
2 (1 + Φ) Φk−1, |j| = kq, k ≥ 1

0, |j| 6= 0, kq.
(15)

Such an St has the smallest variance compatible with these properties.
The s.d. of Nt is constant,

gN (λ) = σ2
N = (1 + Φ)

−2
σ2
a, (16)

so the noise component Nt is specified as white noise. Its autocovariances are

γNj =

{
σ2
N , j = 0
0, |j| > 0,

(17)

and its order n autocovariance matrix is

ΣNN = σ2
NI = (1 + Φ)

−2
σ2
aI. (18)

The s.d.’s gS (λ) and gN (λ) from (11) prescribe a signal+noise decomposition of g (λ). Because gS (λ)
has minimum value zero, St is said to be white noise free. This decomposition has filter formulas for the
MMSE linear estimates of St and Nt that are especially simple and revealing3 , as will be seen in Subsection
5.1.
Figure 3 shows the graph of a series Zt of length 144 simulated from (1) with q = 12 and Φ = 0.95, along

with its noise component estimates N̂t from (12) and (21). (All simulations use σ2
a = 1.) The earliest values

are assigned the date January, 2002.

Finally, we derive a compact formula for gS (λ) to show a type of calculation that is regularly needed for
nonconstant canonical spectral densities. It will be used to identify the component’s model.

gS (λ) =
{∣∣1− Φei2πqλ

∣∣−2 − (1 + Φ)
−2
}
σ2
a = σ2

a

1− (1 + Φ)
−2 ∣∣1− Φei2πqλ

∣∣2
|1− Φei2πqλ|2

= (1 + Φ)
−2
σ2
a

(1 + Φ)
2 −

∣∣1− Φei2πqλ
∣∣2

|1− Φei2πqλ|2

= Φ (1 + Φ)
−2
σ2
a

∣∣1 + ei2πqλ
∣∣2

|1− Φei2πqλ|2
. (19)

It follows from the general formula (64) that St has a noninvertible SARMA(1,1)q model (1− ΦBq)St =

(1 +Bq) bt whose white noise bt has variance σ2
b = Φ (1 + Φ)

−2
σ2
a.

3Reasonably simple formulas would result if σ2a (1 + Φ)−2 in (11) were replaced by a smaller positive number. The canonical
decomposition with white-noise-free St is not the only possibility. But estimated St from such an alternative would be less
smooth in the sense of Section 12. (And subtracting a larger number would yield a function with negative values, and thus not
an s.d.)
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Figure 3: A length 144 simulated monthly Φ = 0.95 SAR(1) series and its estimated noise component N̂t
(darker line) from (21). The series Zt shows the consistent prominent variations by calendar month seen
with quite seasonal time series. The oscillations of N̂t are considerably smaller yet N̂t can be considered
somewhat less smooth than Zt after the difference of scale is taken into account, see Subsection 12.2.

Figure 4: The 12 calendar month subseries of Figure 3 overlaid with their estimated signal component Ŝt
values (darker line) from (21). For each month, the horizontal line shows the calendar month average of the
Ŝt. The Ŝt closely follow all but the most rapid movements of the series, but with fewer changes of direction
over the 12 years. Autocorrelation properties help to explain why they evolve somewhat more smoothly than
Zt subseries. Their slightly reduced standard deviations explain why they have slightly reduced extremes,
see Subsection 12.3.
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4 Regression Formulas for Two-Component Decompositions

Given a column vector of data Z = (Z1, . . . , Zn)
′, where ′ denotes transpose, let S = (S1, . . . , Sn)

′ and
N = (N1, . . . , Nn)

′ denote the unobserved uncorrelated components of a decomposition Z = S + N . From
the decomposition of the covariance matrix ΣZZ = EZZ ′,

ΣZZ = ΣSS + ΣNN , (20)

standard linear regression formulas provide MMSE linear estimates Ŝ of S and N̂ of N .

4.1 The Estimated Decomposition*

Because ΣSN = 0, with 0 denoting the zero matrix of order n, we have ΣSZ = ESZ ′ = ΣSS . Similarly
ΣNZ = ΣNN . Thus the usual regression coeffi cient formulas βS = ΣSZΣ−1

ZZ (with ΣSZ = ESZ ′) and
βN = ΣNZΣ−1

ZZ simplify. We have

Ŝ = βSZ, βS = ΣSSΣ−1
ZZ , N̂ = βNZ, βN = ΣNNΣ−1

ZZ , βS + βN = I. (21)

The coeffi cient formulas result from the fundamental MMSE linear estimation property, the uncorrelatedness
of the errors with the data regressor Z,

E
(
S − Ŝ

)
Z ′ = E

(
N − N̂

)
Z ′ = 0. (22)

The final formula in (21) shows that the estimates yield a decomposition,

Z = Ŝ + N̂ . (23)

For 1 ≤ t ≤ n, the t-th row of βS provides the filter coeffi cients for the estimate Ŝt and correspondingly
with βN for N̂t, as will be illustrated in Section 5.
In summary, regression based on (20) provides an observable decomposition of Z in terms of MMSE

linear estimates consistent with (20).

4.2 Variance Matrix Formulas

We have S +N = Z = Ŝ + N̂ , so if we define ε = S − Ŝ, then

N − N̂ = −ε, (24)

Thus both estimates have the same error covariance matrix,

Σεε = E
(
S − Ŝ

)(
S − Ŝ

)′
= E

(
N − N̂

)(
N − N̂

)′
. (25)

(which ignores any specification/estimation error in the model for Zt). There are the usual variance decom-
positions,

ΣSS = ΣŜŜ + Σεε, ΣNN = ΣN̂N̂ + Σεε, (26)

the first following from the decomposition S = Ŝ +
(
S − Ŝ

)
, whose components are uncorrelated by (22),

and analogously for the second. Following regression terminology, ΣSS can be called the total variance of S,
ΣŜŜ the variance of S explained by Z, and Σεε the residual variance. Similarly for N with the same residual
variance, from (26), which also shows that

ΣSS − ΣŜŜ = Σεε = ΣNN − ΣN̂N̂ , (27)
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where, from (21),

ΣŜŜ = ΣSSΣ−1
ZZΣSS , ΣN̂N̂ = ΣNNΣ−1

ZZΣNN , (28)

Σεε = ΣŜN̂ = ΣSSΣ−1
ZZΣNN = ΣNNΣ−1

ZZΣSS = ΣN̂Ŝ . (29)

The formulas (29) show that the estimates Ŝ and N̂ are positively correlated in the sense that their cross-
covariance matrix ΣŜN̂ = Σεε is positive definite. (As a product of three such matrices, Σεε is invertible,
hence positive definite.) The estimates are correlated even though S and N are not. In particular EŜtN̂t >
0 for each t. (Subsection 12.4 shows that this result does not generalize to the stationary transforms
of nonstationary estimates in the ARIMA case.) From (27), the estimates are less variable than their
components, precisely due to estimation error.

5 SAR(1) Signal + Noise Decomposition Formulas*

For the SAR(1) model, the entries of the inverse matrix Σ−1
ZZ have known, relatively simple formulas, see

Wise (1955) and Zinde-Walsh (1988). For example, when q = 2, n = 7,

Σ−1
ZZ = σ−2

a



1
1−Φ2 0 Φ

1−Φ2 0 Φ2

1−Φ2 0 Φ3

1−Φ2

0 1
1−Φ2 0 Φ

1−Φ2 0 Φ2

1−Φ2 0
Φ

1−Φ2 0 1
1−Φ2 0 Φ

1−Φ2 0 Φ2

1−Φ2

0 Φ
1−Φ2 0 1

1−Φ2 0 Φ
1−Φ2 0

Φ2

1−Φ2 0 Φ
1−Φ2 0 1

1−Φ2 0 Φ
1−Φ2

0 Φ2

1−Φ2 0 Φ
1−Φ2 0 1

1−Φ2 0
Φ3

1−Φ2 0 Φ2

1−Φ2 0 Φ
1−Φ2 0 1

1−Φ2



−1

= σ−2
a



1 0 −Φ 0 0 0 0
0 1 0 −Φ 0 0 0
−Φ 0 1 + Φ2 0 −Φ 0 0
0 −Φ 0 1 + Φ2 0 −Φ 0
0 0 −Φ 0 1 + Φ2 0 −Φ
0 0 0 −Φ 0 1 0
0 0 0 0 −Φ 0 1


. (30)

For all q and n ≥ q, as (30) indicates, Σ−1
ZZ has a tridiagonal symmetric form, with nonzero values only

on the main diagonal and the q-th diagonals above and below. The sub- and superdiagonals have the entries
−Φσ−2

a . The first and last q entries of the main diagonal are σ−2
a and the rest are σ−2

a

(
1 + Φ2

)
.

For βN = σ2
NΣ−1

ZZ = (1 + Φ)
−2
σ2
aΣ−1

ZZ , one has, when q = 2, n = 7,

βN = (1 + Φ)
−2



1 0 −Φ 0 0 0 0
0 1 0 −Φ 0 0 0
−Φ 0 1 + Φ2 0 −Φ 0 0
0 −Φ 0 1 + Φ2 0 −Φ 0
0 0 −Φ 0 1 + Φ2 0 −Φ
0 0 0 −Φ 0 1 0
0 0 0 0 −Φ 0 1


. (31)
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Further, from βS = I − βN ,

βS = Φ (1 + Φ)
−2



(2 + Φ) 0 1 0 0 0 0
0 (2 + Φ) 0 1 0 0 0
1 0 2 0 1 0 0
0 1 0 2 0 1 0
0 0 1 0 2 0 1
0 0 0 1 0 (2 + Φ) 0
0 0 0 0 1 0 (2 + Φ)


. (32)

5.1 The General Filter Formulas

For general q and n ≥ 2q+1, the Σ−1
ZZ formula of Wise (1955) yields the filter formulas for N̂ and Ŝ = Z− N̂

shown in (33)—(37) and (38)—(40). For the intermediate times q+1 ≤ t ≤ n−q, the noise component estimate
N̂t is given by a symmetric filter with equal negative initial and final coeffi cients smaller in magnitude than
the positive central coeffi cient.

N̂t =
1

(1 + Φ)
2

(
−ΦZt−q +

(
1 + Φ2

)
Zt − ΦZt+q

)
(33)

The filters for the initial and final years are asymmetric. For the initial year 1 ≤ t ≤ q,

N̂t =
1

(1 + Φ)
2 (Zt − ΦZt+q) (34)

=
1

(1 + Φ)
2

(
−Φ {ΦZt}+

(
1 + Φ2

)
Zt − ΦZt+q

)
. (35)

The filter for the final year n− q + 1 ≤ t ≤ n is the time-reverse of the initial year filter,

N̂t = (1 + Φ)
−2

(−ΦZt−q + Zt) (36)

=
1

(1 + Φ)
2

(
−ΦZt−q +

(
1 + Φ2

)
Zt − Φ {ΦZt}

)
. (37)

In comparison with (33) the value {ΦZt} in the re-expression (35) appears as the MMSE SAR(1) backcast
of the missing Zt−q and, in (37), as the MMSE SAR(1) forecast of the missing Zt+q.
For the signal component estimates Ŝt, at intermediate times q + 1 ≤ t ≤ n − q the filter formula is

symmetric,

Ŝt =
Φ

(1 + Φ)
2 (Zt−q + 2Zt + Zt+q) =

4Φ

(1 + Φ)
2

(
1

4
Zt−q +

1

2
Zt +

1

4
Zt+q

)
, (38)

a downweighted 2× 2 seasonal moving average, with weight 4Φ (1 + Φ)
−2 tending to 1 when Φ does.

As with N̂t, for the initial and final years, the Ŝt filters are asymmetric4 . For 1 ≤ t ≤ q,

Ŝt =
Φ

(1 + Φ)
2 ((Φ + 2)Zt + Zt+q) =

4Φ

(1 + Φ)
2

(
1

4
{ΦZt}+

1

2
Zt +

1

4
Zt+q

)
, (39)

and for n− q + 1 ≤ t ≤ n, the time reverse of the initial year filter,

Ŝt =
Φ

(1 + Φ)
2 (Zt−q + (Φ + 2)Zt) =

4Φ

(1 + Φ)
2

(
1

4
Zt−q +

1

2
Zt +

1

4
{ΦZt}

)
. (40)

4An alternative perspective, applicable to any component’s estimates from a finite-sample Zt, 1 ≤ t ≤ n, is that there is just
one filter, with coeffi cients changing over time. Here Ŝt = Σnj=1cj (t)Zt, with cj (t) defined by (38)—(40). Such time-varying
filters form a class of nonlinear filters.

12



The role of {ΦZt} in (39) and (40) is as in (35) and (37). Because the coeffi cients in (38)—(40) are
positive, as are also the autocovariances of Zt at lags that are multiples of q, it follows that Ŝt and Ŝt±kq
are positively correlated, more strongly than Zt and Zt±kq it will be shown.

5.1.1 Filters Expressed via Backshift Operator Powers and Some Terminology

The coeffi cient sets in the formulas above all apply for more than one value of t when n ≥ 2q + 2 (Recall
that q ≥ 2.) To reveal this better, let B denote the backshift operator defined as follows: for any time series
Xt and integer j ≥ 0, define BjXt = Xt−j and B−jXt = Xt+j (a forward shift if j 6= 0) . Since B0Xt = Xt,
one sets B0 = 1. Constant coeffi cient functions ΣjcjB

j express (linear, time-invariant) filters. For example,
for intermediate-times q + 1 ≤ t ≤ n− q, we can rewrite (33) as

N̂t =
1

(1 + Φ)
2

(
−ΦBq +

(
1 + Φ2

)
− ΦB−q

)
Zt.

The intermediate-time filter is now expressed simply as −ΦBq+
(
1 + Φ2

)
−ΦB−q. Its symmetry is established

by the fact that for any j 6= 0, B−j occurs if and only if Bj does and then both have the same coeffi cient.
It can be applied to Zt for all t such that q + 1 ≤ t ≤ n − q and to all t when the case of bi-infinite data
Zτ ,−∞ < τ <∞ is considered.

The one-sided filter that produces the desired estimate for time t without use of later data Zτ , τ > t, is
called the concurrent filter. In our finite-sample case, this filter, (1 + Φ)

−2
(−ΦBq + 1), can be applied to

Zt for q + 1 ≤ t ≤ n.

5.2 The Error Covariances of the SAR(1) Estimates

For the SAR(1) model, the formulas (27), (18) and (21) yield

Σεε = ΣNN − ΣN̂N̂
= σ2

N

(
I − σ2

NΣ−1
ZZ

)
= σ2

N (I − βN ) = σ2
NβS . (41)

Hence, for q = 2 and n = 7, from (18) and (32),

Σεε = σ2
a

Φ

(1 + Φ)
4



2 + Φ 0 Φ 0 0 0 0
0 2 + Φ 0 Φ 0 0 0
Φ 0 2 0 Φ 0 0
0 Φ 0 2 0 Φ 0
0 0 Φ 0 2 0 Φ
0 0 0 Φ 0 2 + Φ 0
0 0 0 0 Φ 0 2 + Φ


, (42)

which reveals the general pattern. The error variances of the initial and final years are larger than the error
variance 2σ2

a (1 + Φ)
−4

Φ at intermediate times by the amount σ2
aΦ2 (1 + Φ)

−4. This is the mean square
error5 of using Φ (1 + Φ)

−2 {ΦZt} to forecast/backcast Φ (1 + Φ)
−2
Zt±q in (34) and (37), since from (2) we

have
E (Zt±q − ΦZt)

2
=
(
1 + Φ2

)
γ0 − 2ΦγZq =

(
1− Φ2

)
γ0 = σ2

a. (43)

The intermediate-time mean square error is γε0 = E
(
St − Ŝt

)2

= E
(
Nt − N̂t

)2

= 2σ2
NΦ (1 + Φ)

−2
=

2Φ (1 + Φ)
−4
σ2
a. On the scale of the variance σ

2
N ofNt, this is γ

ε
0/σ

2
N = 2Φ (1 + Φ)

−2, which is approximately

5With model-based estimates from more general models for Zt, more forecasts and backcasts are needed, and their error
covariances occur in the mean square error formulas, which are less simple.
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0.4997 for Φ = 0.95 and therefore quite substantial, but the ratio decreases to 0 as Φ does. By contrast, for
St we have γε0/γ

S
0 = (1− Φ) (1 + Φ)

−2 from (14). This is approximately 0.013 for Φ = 0.95, but this ratio
approaches 1.0 as Φ gets small. The fact that the intermediate-time mean square error has the same positive
value for all n ≥ 5 reminds that the error does not become negligible with large n.

6 Three-Component Canonical Decompositions

For seasonal, trend, white noise irregular decompositions,

Zt = st + pt + ut, (44)

a matrix decomposition
ΣZZ = Σss + Σpp + σ2

uI (45)

is needed to obtain the estimated decomposition (46) from (47),

Z = ŝ+ p̂+ û, (46)

ŝ = ΣssΣ
−1
ZZZ, p̂ = ΣppΣ

−1
ZZZ, û = σ2

uΣ−1
ZZZ. (47)

For (45), we need a canonical s.d. decomposition (53).
We will use the SAR(1) to illustrate the kind of additional calculations required. A relatively simple

exposition is possible only for the biannual case q = 2, for which we give the main details. These demonstrate
the typical spectral density decomposition calculations done by SEATS. Only the q = 2 irregular estimate’s
filter formulas are as simple as those for the two-component decomposition. A reward for the reader who
devotes a bit of attention to the canonical s.d. derivation of the next subsection will come in Section 8, when
setting Φ = 1 yields the simple three-component filter formulas of the simplest seasonal ARIMA model.

6.1 SAR(1) with Seasonal Period q = 2*

In backshift operator notation, the q = 2 model is(
1− ΦB2

)
Zt = at, 0 < Φ < 1. (48)

The autocovariance specifications of SEATS’ stationary seasonal and trend components, pt and st, arise

from the factorization 1− ΦB2 =
(

1 +
√

ΦB
)(

1−
√

ΦB
)
. This factorization leads to the spectral density

factorization (53) in which
(

1 +
√

ΦB
)
is associated with the seasonal st and

(
1−
√

ΦB
)
with the trend

pt. This parallels the ARIMA differencing operator factorization 1 − B2 = (1 +B) (1−B), where the role
of the year-length sum operator 1 +B is to stationarize the seasonal component, and the role of 1−B is to
stationarize the trend.
The q = 2 version of g (λ) in (9) can be correspondingly factored as the product (49) below with φ =

√
Φ.

The subsequent calculations will be described.

g (λ) =
σ2
a∣∣1− φ2ei2π2λ

∣∣2 =
σ2
a

|1 + φei2πλ|2 |1− φei2πλ|2
(49)

=
1

2
(1 + φ2)−1σ2

a

∣∣1 + φei2πλ
∣∣−2

+
1

2
(1 + φ2)−1σ2

a

∣∣1− φei2πλ∣∣−2
(50)

= g∗s (λ) + g∗p (λ) (51)

= {g∗s (λ)−m∗}+
{
g∗p (λ)−m∗

}
+ 2m∗ (52)

= gs (λ) + gp (λ) + gu (λ) . (53)
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Expansion of each denominator factor on the right in (49), e.g.
∣∣1 + φei2πλ

∣∣2 =
(
1 + φei2πλ

) (
1 + e−i2πλ

)
=

e−i2πλ +
(
1 + φ2

)
+ ei2πλ, followed by partial fraction decomposition (Wikipedia Contributors, 2011), yields

that g (λ) is the sum (50) of AR(1) spectral densities g∗s (λ) and g∗p (λ) with coeffi cients −φ and φ respectively
and with the same white noise variance 1

2 (1 + φ2)−1σ2
a and the same non-zero minimum value,

m∗ = κ (φ)σ2
a, (54)

with

κ (φ) =
1

2
(1 + φ)

−2
(1 + φ2)−1 =

1

2

(
1 +
√

Φ
)−2

(1 + Φ)−1. (55)

The reader can directly verify (50). For the canonical decomposition, m∗ is subtracted from each s.d. to
provide gs (λ) and gp (λ) having minimum value zero as indicated. The remainder 2m∗ defines

gu (λ) = σ2
u = 2κ (φ)σ2

a (56)

in (53), completing g (λ)’s canonical decomposition.
From (52), for given Z = (Z1, . . . , Zn)

′, the covariance matrices of the canonical decomposition are

Σss = Σ∗ss −m∗I, Σpp = Σ∗pp −m∗I, Σuu = σ2
uI,

where Σ∗ss and Σ∗pp are the AR(1) autocovariance matrices determined by g
∗
s (λ) and g∗p (λ).

For ût = σ2
uΣ−1

ZZ , at intermediate times, 3 ≤ t ≤ n− 2,

ût = 2κ (φ)
{
−ΦZt−2 +

(
1 + Φ2

)
Zt − ΦZt+2

}
=
(

1 +
√

Φ
)−2

(1 + Φ)
−1
N̂t, (57)

with ΦZt replacing the missing Zt−2 and Zt+2 at initial and final times, respectively, as in (33)—(37). ût is

a downweighting of N̂t because
(

1 +
√

Φ
)2

> 1 + Φ.

The finite-sample formulas for ŝt and p̂t in (46) involve left multiplying Σ−1
ZZ by covariance matrices of

AR(1) processes with coeffi cients −
√

Φ and
√

Φ, respectively, and thus are algebraically less simple than the
two-component formulas. Instead of using (47), we will show a more general approach to deriving their filters
in Subsection 7.2.2.

6.2 SAR(1) with q>2

For q > 2, with φ = Φ1/q, the factored form of (9) is

g (λ) = σ2
a

∣∣∣1 + φei2πλ + · · ·+ φq−1ei2π(q−1)λ
∣∣∣−2 ∣∣1− φei2πλ∣∣−2

.

The computations parallel those for the q = 2 but are more complex and also more typical of computa-
tions done by the SEATS with less simple ARMA or ARIMA models. After computing its partial fraction
expansion of the form

g (λ) =
b0 +

∑q−2
j=1 bj

(
ei2πjλ + e−i2πjλ

)∣∣1 + φei2πλ + · · ·+ φq−1ei2π(q−1)λ
∣∣2 +

c0

|1− φei2πλ|2
, (58)

the software subtracts the numerically estimated minimum of each component function in order to obtain
gs (λ) and gp (λ). Then it sums the two minima. If the sum is negative the decomposition is inadmissible.
Otherwise, the admissible case, its value defines the white noise s.d. gu (λ) of an s.d. decomposition of the
form (52). From this, there are algorithms to compute the entries of the matrices in (45).
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Figure 5: The series of Figure 3, now with the seasonal adjustment ŝa = Z − ŝ (semi-dark line) and trend p̂
(darkest line) from its canonical three-component decomposition. p̂ can be regarded as having been extracted
optimally from ŝa, see Section 10.2.

For the case q = 12 and Φ = 0.95, Figure 5 shows the series of Figure 3 together with the canonical
seasonal adjustment

ŝa = Z − ŝ = p̂+ û (59)

in light bold and the visually smoother canonical trend p̂ in thick bold. Section 10.2 establishes that p̂ is an
optimal estimate of p from ŝa.

7 Wiener-Kolmogorov Formulas and Applications to SAR(1) De-
compositions

We return to the two component case (5) with bi-infinite data to show a fundamental and relatively simple
approach to obtaining, from a spectral density decomposition, a filter formula for the estimate Ŝt such that
for each time t, the error St − Ŝt is uncorrelated with Zτ ,−∞ < τ <∞. Similarly for N̂t = Zt − Ŝt. These
are the famous Wiener-Kolmogorov signal extraction transfer function formulas.

7.1 Filter Transfer Functions and the Input-Output Spectral Density Formula*

Using the backshift operator B, filter formulas like those above and more general bi-infinite filter expressions
Yt =

∑∞
j=−∞ βjXt−j can be written as Yt = β (B)Xt with filter β (B) =

∑∞
j=−∞ βjB

j . The s.d. of the
filter output series Yt is related to the input series s.d. gX (λ) by the fundamental formula,

gY (λ) =
∣∣β (ei2πλ)∣∣2 gX (λ) , (60)

see (4.4.3) of Brockwell and Davis (1991). The function β
(
ei2πλ

)
is called the transfer function of the filter

β (B) and
∣∣β (ei2πλ)∣∣2 is its squared gain. When a filter’s transfer function β (ei2πλ) is known, then the filter

16



coeffi cients can be obtained from it, in general by integration

βj =

∫ 1/2

−1/2

e−i2πjλβ
(
ei2πλ

)
dλ, j = 0,±1, . . . ,

but in practice, for ARMA or ARIMA related transfer functions, by algebraic/numerical algorithms encoded
in SEATS.
For example, the transfer function of Ŝt in (38) is

βS
(
ei2πλ

)
= Φ (1 + Φ)

−2 (
ei2πqλ + 2 + e−i2πλ

)
= Φ (1 + Φ)

−2 ∣∣1 + ei2πqλ
∣∣2 .

From (60), the spectral density of Ŝt is

gŜ (λ) = Φ (1 + Φ)
−2 ∣∣1 + ei2πqλ

∣∣4 g (λ) = Φ2 (1 + Φ)
−4
σ2
a

∣∣1 + ei2πqλ
∣∣4

|1− Φei2πqλ|2
. (61)

A stationary ARMA series Zt has a representation

ϕ (B)Zt = ϑ (B) at, (62)

with AR and MA polynomials ϕ (B) = 1− φ1B − · · · − φrBr and ϑ (B) = 1− θ1B − · · · − θmBm satisfying6

ϑ (0) = ϕ (0) = 1, ϕ (z) 6= 0 for |z| ≤ 1, ϑ (z) 6= 0 for |z| < 1, (63)

where at is white noise with variance denoted σ2
a. (ϑ is script θ.) The general ARMA s.d. formula,

g (λ) = σ2
a

∣∣ϑ (ei2πλ)∣∣2
|ϕ (ei2πλ)|2

, (64)

follows from two applications of (60), see Brockwell and Davis (1991, p.123). Conversely, if (64) and (63)
hold, then so does (62) for some white noise process at with variance σ2

a.
This fact can be used to identify ARMA models for bi-infinite data component estimates. For example,

from (61) and (64), Ŝt has the noninvertible SARMA(1,2)q model

(1− ΦBq) Ŝt = (1 +Bq)
2
bt, (65)

with σ2
b = Φ2 (1 + Φ)

−4
σ2
a. (Note from (64) that an ARMA model is noninvertible, i.e. ϑ

(
ei2πλ

)
= 0 for

some λ, if and only if its spectral density is zero at some λ.)
The next Section shows a versatile way to obtain models and formulas for the bi-infinite data estimates

from a decomposition of g (λ).

6The condition on ϑ (z) causes no loss of generality in our context and it enables at to be identified as the innovations or
one-step forecast error process of Zt given by

at = Zt +

∞∑
j=1

πjZt−j = Zt −

− ∞∑
j=1

πjZt−j


with

∑∞
j=0 πjz

j = ϑ (z)−1 ϕ (z) for |z| < 1 (π0 = 1), see Proposition 4.4.2 for Brockwell and Davis (1991). A nonstandard
form of convergence holds in the noninvertible case when ϑ (z) has a zero with |z| = 1, see Findley (2012).
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7.2 The W-K Formulas*

For a stationary series Zt with a spectral density decomposition (8) specifying a two-uncorrelated-component
decomposition Zt = St +Nt, Kolmogorov (1939) and Wiener (1949) independently derived the formulas

βS
(
ei2πλ

)
=
gS (λ)

g (λ)
, βN

(
ei2πλ

)
=
gN (λ)

g (λ)
, (66)

of the transfer functions of each component’s MMSE linear estimate

Ŝt =

∞∑
j=−∞

βSj Zt−j =

 ∞∑
j=−∞

βSj B
j

Zt, N̂t =

∞∑
j=−∞

βNj Zt−j =

 ∞∑
j=−∞

βNj B
j

Zt, (67)

from bi-infinite data, Zτ ,−∞ < τ <∞. A derivation of (66) is provided in Appendix A. For decompositions
with more components, the same ratio form applies: each component estimate’s transfer function is the ratio
of its spectral density to g (λ). Ratios of spectral densities are even functions, so such bi-infinite filters are
always symmetric, βS−j = βSj , β

N
−j = βNj .

7.2.1 Re-deriving the SAR(1) Intermediate-time Noise Filter

For the SAR(1), from (9) and (16),

gN (λ)

g (λ)
=
σ2
N

σ2
a

∣∣1− Φei2πqλ
∣∣2 = (1 + Φ)

−2 {−Φei2πqλ +
(
1 + Φ2

)
− Φe−i2πqλ

}
. (68)

Substituting Bj for ei2πjλ and B−j for e−i2πjλ yields

N̂t = (1 + Φ)
−2 {−ΦBq +

(
1 + Φ2

)
− ΦB−q

}
Zt, (69)

the backshift-operator version of intermediate-time filter (33). For such calculations, Maravall and Pierce
(1987) introduced a useful convention that permits replacement of e±i2πqλ in transfer functions of the form∣∣Σjαjei2πqλ∣∣2 to immediately obtain the backshift and forward-shift operator product formula,∣∣ΣjαjBj∣∣2 =

(
ΣjαjB

j
) (

ΣjαjB
−j) . (70)

For example, |1− ΦBq|2 = (1− ΦBq) (1− ΦB−q) = −ΦBq +
(
1 + Φ2

)
−ΦB−q, as in (69). We next use (70)

to complete the derivation of intermediate time and bi-infinite-data filter formulas of (44) when q = 2.

7.2.2 The Estimated Three-Component SAR(1) Decomposition for q = 2

This subsection further illustrates the versatility of the W-K formulas as well as the greater algebraic com-
plexity of the trend and seasonal filter formulas of three-component decompositions. The ût formula (57)
initially derived using the formula for Σ−1

ZZ can now be obtained from the simpler formula (64) by substituting
gu (λ) defined by (56) for gN (λ) in (68).
For the estimated trend p̂t, we note from (53) that

gp (λ) =
{∣∣1− φei2πλ∣∣−2 − (1 + φ)

−2
}
σ2 = σ2 1− (1 + φ)

−2 ∣∣1− φei2πλ∣∣2
|1− φei2πλ|2

= (1 + φ)
−2
σ2 (1 + φ)

2 −
∣∣1− φei2πλ∣∣2

|1− φei2πλ|2

= φκ (φ)σ2
a

∣∣1 + ei2πλ
∣∣2

|1− φei2πλ|2
, (71)
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with κ (φ) as in (55). Therefore

gp (λ)

g (λ)
= κ (φ)

∣∣1 + ei2πλ
∣∣2 ∣∣1 + φei2πλ

∣∣2 = κ (φ)
∣∣1 + (1 + φ) ei2πλ + φei2π2λ

∣∣2 .
Now (70) yields

βp (B) = κ (φ)
(
1 + (1 + φ)B + φB2

) (
1 + (1 + φ)B−1 + φB−2

)
= κ (φ)

{
φB2 + (1 + φ)

2
B + 2

(
1 + φ+ φ2

)
+ (1 + φ)

2
B−1 + φB−2

}
.

Similarly, one can obtain βs (B) by modifying the derivation of βp (B) appropriately. From

gs (λ) = κ (φ)σ2
a

∣∣1− ei2πλ∣∣2
|1 + φei2πλ|2

, (72)

gs (λ)

g (λ)
= κ (φ)

∣∣1− ei2πλ∣∣2 ∣∣1− φei2πλ∣∣2 = κ (φ)
∣∣1− (1 + φ) ei2πλ + φei2π2λ

∣∣2 , (73)

one obtains

βs (B) = κ (φ)
{
φB2 − (1 + φ)

2
B + 2

(
1 + φ+ φ2

)
− (1 + φ)

2
B−1 + φB−2

}
,

etc. These formulas simplify in the nonstationary case with φ = 1, see Subsection 8.1.2.

7.3 Spectral Density Formulas and Models for the Estimates and Errors

Generalizing the way the Ŝt’s model (65) was obtained, we can go from a spectral density decomposition
g (λ) = gS (λ) + gN (λ) directly to the W-K estimates’spectral densities and models. It follows from (66)
and (60) that

gŜ (λ) =

(
gS (λ)

g (λ)

)2

g (λ) =
g2
S (λ)

g (λ)
, gN̂ (λ) =

(
gN (λ)

g (λ)

)2

g (λ) =
g2
N (λ)

g (λ)
. (74)

Thus, from (74), (68), and (16), the s.d. of N̂t is

gN̂ (λ) =
σ4
N

σ2
a

∣∣1− Φei2πqλ
∣∣2 = σ2

a (1 + Φ)
−4 ∣∣1− Φei2πqλ

∣∣2 . (75)

So, from (64), N̂t has an SMA(1)q model of the form

N̂t = (1− ΦBq) ct, σ2
c = σ2

a (1 + Φ)
−4
, (76)

where ct is white noise7 .
7 In the model formulas for W-K estimates obtained in this way, the model’s white noise (innovations) process is different

from at in (1). At time t it is correlated with future values at+j for some j ≥ 1. With (76), where ct = (1− ΦBq)−1 N̂t, this is
an easily seen consequence of the future value Zt+q in the formula (33) for the estimate at time t , where replacing Zt+q with
ΦZt + at+q and Zt −ΦZt−q with at yields N̂t = at −Φat+q =

(
1− ΦB−q

)
at, a seasonal MA(1)q formula involving the future

variate at+q . Thus ct = (1− ΦBq)−1
(
1− ΦB−q

)
at. In more detail,

ct = −Φat+q +
(
1− Φ2

) ∞∑
j=0

Φjat+2+j .

Forward-in-time models like that for N̂t play a role in modeling revisions from future data of seasonal adjustment and trend
esimates, as demonstrated in Maravall and Pierce (1987).
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It is shown in Appendix A that, with decompositions of stationary series, the bi-infinite error processes
εt = St − Ŝt and −εt = Nt − N̂t have the spectral density formula8

gε (λ) =
gS (λ) gN (λ)

g (λ)
. (77)

This can be used to obtain their shared SMA(2)q model εt =
(
1− (Φ− 1)Bq − ΦB2q

)
νt with σ2

ν =

Φ (1 + Φ)
−4
σ2
a.

For estimation, it is not necessary to have the models of the components or their estimates or errors, but
it is convenient. The models enable the application of standard algorithms to obtain the autocovariances
that are needed for estimation, diagnostics, and deeper analyses, such as those related to smoothness and
nonsmoothness of estimates presented in Section 12.

Remark on SEATS’Calculation of Ŝt and N̂t. The bi-infinite data filter formulas (67) yielded finite
filters for Ŝt and N̂t above because Zt has an AR model. A moving average component in (64) would yield a
non-constant denominator in (66) and consequently infinite sums, see Subsection 11.1. Such bi-infinite filters
might be thought to be impractical, but in SEATS they provide very fast computation of the MMSE seasonal
decomposition estimated for finite data9 . This is made possible by an algorithm of Tunnicliffe-Wilson given
in the Appendix of Burman (1980). For any ARMA (or ARIMA) Zt, using a moderate number of forecasts
and backcasts (typically less than 30) it calculates the result of applying the bi-infinite filter with the model’s
forecasts and backcasts replacing the bi-infinitely many missing past and future values of Zt.

7.4 Models for the Three-Component SAR(1) Estimates

7.4.1 Case q = 2

For the three-component decomposition (44), the model for ût is (76) with the smaller innovation variance
of (56), so

ρûj = ρN̂j =

{
−Φ

(
1 + Φ2

)−1
, j = q

0, 0 < j 6= q
. (78)

From (71) and (72),

gŝ (λ) =
gs (λ)

2

g (λ)
= Φ

σ4
u

4σ2
a

∣∣1− ei2πλ∣∣4 ∣∣1− φei2πλ∣∣2
|1 + φei2πλ|2

,

gp̂ (λ) = Φ
σ4
u

4σ2
a

∣∣1 + ei2πλ
∣∣4 ∣∣1 + φei2πλ

∣∣2
|1− φei2πλ|2

.

8Note how the formulas for gŜ (λ), gN̂ (λ) and gε (λ) parallel the finite-sample autocovariance matrix formulas for Ŝt, N̂t
and εt in (28). For pseudo-spectral density functions of ARIMA models, defined in Subsection 8, the same is true, including
the analog of (27). It follows from (64) that W-K estimates Ŝt and N̂t and their errors ±εt have ARMA models when Zt does,
a result that generalizes to ARIMA decompositions.

9However, the error variances in SEATS output usually underestimate the finite-sample error variance because the output
variances are theoretical variances from infinite data cases. In the output, the estimates assuming bi-infinite data are called
the historical or final estimators. A concurrent estimator in the output is an estimate from data Zτ ,∞ < τ ≤ t. Of special
interest is the difference between the concurrent estimator and the final estimator, which is called a revision estimator. SEATS
calculates its variance and standard error from its ARMA model. For Zt with the simplest nonstationary seasonal model (82),
Section 7 of Maravall and Pierce (1987) illustrates these calculations. See Gómez and Maravall (2001) for additional details
and more examples. (Optional output of X-13ARIMA-SEATS provides the finite-sample component error variance matrices,
calculated from the regression formulas of McElroy, 2008.)
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Hence the models for their estimates are

(1 + φB) ŝt = (1−B)
2

(1− φB) et, σ2
e = Φ

σ4
u

4σ2
a

(1− φB) p̂t = (1 +B)
2

(1 + φB) εt, σ2
ε = σ2

e,

Not surprisingly, the model for ŝt differs significantly from the model (65) for Ŝt.
The model for p̂t has an infinite moving average expansion,

p̂t = (1− φB)
−1

(1 +B)
2

(1 + φB) εt

=
(
Σ∞j=0φ

jBj
)

(1 +B)
2

(1 + φB) εt = Σ∞l=0ψlεt−l,

in which ψl > 0 for all l ≥ 0. It follows that all autocovariances γp̂j = σ2
ε

∑∞
l=0 ψlψl+j and autocorrelations

ρp̂j of p̂t are positive, ρ
p̂
j > 0, j ≥ 0. This shows that the estimated trend p̂t is smooth in the sense of Section

12 below.

8 ARIMA Component Filters from Pseudo-Spectral Density De-
compositions

For an ARIMA Zt with differencing operator δ (B) of degree d ≥ 1,

ϕ (B) δ (B)Zt = ϑ (B) at, (79)

the pseudo-spectral density (pseudo-s.d.) is defined by

g (λ) = σ2
a

∣∣ϑ (ei2πλ)∣∣2
|δ (ei2πλ)ϕ (ei2πλ)|2

= σ2
a

∣∣ϑ (ei2πλ)∣∣2
|δ (ei2πλ)|2 |ϕ (ei2πλ)|2

. (80)

Its integral is infinite because of the λ for which δ
(
ei2πλ

)
= 0. In the nonstationary signal plus nonstationary

noise case, δ (B) = δS (B) δN (B), and δS
(
ei2πλ

)
and δN

(
ei2πλ

)
have no common zero. In the seasonal

plus nonseasonal case, δS
(
ei2πλ

)
has zeroes only at seasonal frequencies λ = k/q, k = ±1, . . . , q/2, and

δN
(
ei2πλ

)
= 0 only for λ = 0, as with δS (B) = 1 + B + · · · + Bq−1 and δN (B) = (1−B)

2 for δ (B) =
(1−B) (1−Bq) of the airline model. The pseudo-s.d. g (λ) must be decomposed into sum of seasonal and
nonseasonal pseudo-s.d.’s associated with δS (B) and δN (B), respectively.
Under mild assumptions10 , Bell (1984) established the MMSE optimality of the pseudo-spectral general-

ization of the W-K transfer functions formulas for ARIMA component signal extraction. Tiao and Hillmer
(1978), Burman (1980) and Hillmer and Tiao (1982) developed the canonical approach used with extensions
and refinements in SEATS and its implementations. The last reference provides a number of examples of
canonical seasonal-trend-irregular pseudo-s.d. decompositions11

g (λ) = gs (λ) + gp (λ) + gu (λ) . (81)

Generalizing the stationary case definition, a pseudo-s.d. decomposition is canonical if, with at most one
exception, its component pseudo- s.d.’s have minimum value zero.
10Bell (1984) also requires that the series δS (B)St and δN (B)Nt be uncorrelated (which can obtained from the more natural

s.d. decomposition gδ(B)Z (λ) = gδ(B)S (λ) + gδ(B)N (λ) in practice, see Findley (2012), and Bell’s Assumption A: For δ(B) of
degree d, the initial values, say Z1, . . . , Zd, which generate the bi-infinite Zt from the ARIMA model equation, are uncorrelated
with all δ (B)Zt.This results in correlation (of no practical consequence) between the initial values for the differencing operators
of the unobserved St and Nt. Formal inference about the initial values is impossible because they are nonstationary and there
is one observation of each.
11The three-component case, can have stationary ut that are not white noise but instead an autoregressive "transitory"

component, often a cyclical component, see Gómez, V. and A. Maravall (1996) and Kaiser and Maravall (2001). We do not
consider these.
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8.1 The Simplest Seasonal ARIMA Case*

We derive the canonical decomposition (81) and associated intermediate-time/bi-infinite filters of the simplest
SARIMA model, the (0,1,0)2 or lag 2 random walk model,(

1−B2
)
Zt = at. (82)

Thus δ (B) =
(
1−B2

)
= (1 +B) (1−B) and the pseudo-s.d. is

g (λ) = σ2
a

∣∣δ (ei2πλ)∣∣−2
= σ2

a

∣∣1 + ei2πλ
∣∣−2 ∣∣1− ei2πλ∣∣−2

. (83)

The three-component decomposition of (83) is obtained by setting φ = 1 in (49)—(52), (54) and (56)
of Subsection 6.1. The equal minimum values are now m∗ = σ2

a/16, whence gs (λ) = g∗s (λ) − m∗ =
1
4σ

2
a

{∣∣1 + ei2πλ
∣∣−2 − 1

4

}
and gp (λ) = 1

4σ
2
a

{∣∣1− ei2πλ∣∣−2 − 1
4

}
. It is useful to reexpress s.d.’s as in (80).

Here this fundamental calculation takes its simplest form, e.g.

∣∣1 + ei2πλ
∣∣−2 − 1

4
=

4−
∣∣1 + ei2πλ

∣∣2
4 |1 + ei2πλ|2

=
2−

{
ei2πλ + ei2πλ

}
4 |1 + ei2πλ|2

=
1

4

∣∣1− ei2πλ∣∣2
|1 + ei2πλ|2

.

From the analogous calculation for gp (λ), we attain the canonical decomposition (81) with

gs (λ) =
σ2
a

16

∣∣1− ei2πλ∣∣2
|1 + ei2πλ|2

, gp (λ) =
σ2
a

16

∣∣1 + ei2πλ
∣∣2

|1− ei2πλ|2
, gu (λ) =

1

8
σ2
a. (84)

This decomposition has already been exposited in Maravall and Pierce (1987) but with some emphases
different from ours.

8.1.1 Models, Variances and Autocorrelations of the Components

The formulas (84) reveal the models specified for the components,

(1 +B) st = (1−B) ãt, (1−B) pt = (1 +B) b̃t, ut ∼ w.n., σ2
u =

1

8
σ2
a, (85)

with mutually uncorrelated white noise series ãt, b̃t and ut having the respective variances σ2
a/16, σ2

a/16 and
σ2
a/8 indicated in (84). For later use, we now record the variances (with σ

2
a = 1) and lag one autocorrelations

of the MA(1) processes
(1 +B) st = ãt − ãt−1, (1−B) pt = b̃t + b̃t−1 and (1−B) sat = (1−B) (pt + ut) = b̃t + b̃t−1 + ut − ut−1.

γ
(1+B)s
0 = 2σ2

ã = 2σ2
b̃

= γ
(1−B)p
0 =

1

8
, ρ

(1+B)s
1 = −1

2
, ρ

(1−B)p
1 =

1

2
,

γ
(1−B)sa
0 = 2σ2

b̃
+ 2σ2

u =
3

8
, γ

(1−B)sa
1 = σ2

b̃
− σ2

u = − 1

16
,

ρsa1 = γ
(1−B)sa
1 /γ

(1−B)sa
0 = −1

6
.

8.1.2 W-K Filters for Estimating the Components

Using the W-K formulas as before, e.g. βs
(
ei2πλ

)
= gs (λ) /g (λ), we obtain the filter transfer function

formulas
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βs
(
ei2πλ

)
=

1

16

∣∣1− ei2πλ∣∣4 , βp
(
ei2πλ

)
=

1

16

∣∣1 + ei2πλ
∣∣4 , βu

(
ei2πλ

)
=

1

8

∣∣1− ei2π2λ
∣∣2 . (86)

For the seasonal adjustment estimate, we have βsa
(
ei2πλ

)
= 1− βs

(
ei2πλ

)
= βp

(
ei2πλ

)
+ βu

(
ei2πλ

)
. Using

(70), we obtain from (86) that the symmetric filters are

βs (B) =
1

16
(1−B)

2 (
1−B−1

)2
=

1

16
B2 − 4

16
B +

6

16
− 4

16
B−1 +

1

16
B−2, (87)

βp (B) =
1

16
(1 +B)

2 (
1 +B−1

)2
=

1

16
B2 +

4

16
B +

6

16
+

4

16
B−1 +

1

16
B−2, (88)

βu (B) =
1

8

(
1−B2

) (
1−B−2

)
= −1

8
B2 +

2

8
− 1

8
B−2, (89)

βsa (B) = βp (B) + βu (B) = − 1

16
B2 +

4

16
B +

10

16
+

4

16
B−1 − 1

16
B−2. (90)

These provide the estimates ŝt = βs (B)Zt, p̂t = βp (B)Zt, ût = βu (B)Zt and ŝat = p̂t + ût from bi-
infinite data, and also for intermediate times 3 ≤ t ≤ n − 2 from n observations. The preceding formulas,
although differently expressed, are equivalent to or are special cases of formulas in Maravall and Pierce
(1987). Subsection 12.4 below provides a corrected and expanded version of their Table I. We leave for
the interested reader the analogous simpler filter calculations for the two-component decomposition g (λ) =
(g (λ)−m∗∗) +m∗∗ = gS (λ) + gN (λ), with m∗∗ = minλ g (λ) = 1/4.
Figure 6 shows the similar but more elaborate coeffi cient pattern of the q = 12 version of βsa (B) for the

monthly random walk model Zt = Zt−12 + at. Also shown is the concurrent filter for estimating sat from
data Zτ , τ ≤ t. Both are very localized, ignoring data more than a year way from the time point of the
estimate, and therefore extremely adaptive in a way that is appropriate for series with such erratic trend
and seasonal movements.

9 A Inadmissible Seasonal ARIMA Model*

We briefly consider the more general model(
1−B2

)
Zt =

(
1−ΘB2

)
at (91)

in order to show a model whose canonical s.d. decomposition is inadmissible when Θ = −0.5. We take
σ2
a = 1. Partial fraction decomposition of the pseudo-s.d. on the left yields∣∣1 + 0.5ei2π2λ

∣∣2
|1− ei2π2λ|2

=

∣∣1 + 0.5ei2π2λ
∣∣2

|1 + ei2πλ|2 |1− ei2πλ|2
=

7/16

|1 + ei2πλ|2
+

7/16

|1− ei2πλ|2
− 1

4
,

not a pseudo-s.d. decomposition because −1/4 is not an s.d. Since minλ
∣∣1 + ei2πλ

∣∣−2
= minλ

∣∣1− ei2πλ∣∣2 =
1/4, the canonical decomposition is∣∣1 + 0.5ei2π2λ

∣∣2
|1− ei2π2λ|2

=
7

16

{
1

|1 + ei2πλ|2
− 1

4

}
+

7

16

{
1

|1 + ei2πλ|2
− 1

4

}
+

{
14

64
− 16

64

}
.

It is inadmissible because the final bracketed term has the negative value −2/64, not a possible white noise
variance. Hillmer and Tiao (1982) show (91) has an admissible decomposition for Θ ≥ −.1716.
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Figure 6: Concurrent and symmetric n = 97 seasonal adjustment filters of the monthly seasonal random
walk, the (0,1,0)12 model. The coeffi cients of this q = 12 symmetric filter, shown for the midpoint t = 48 of
the interval 0 ≤ τ ≤ 96, are, as with the q = 2 formula (90), positive at time t and decreasing to the negative
coeffi cients at times t ± q. The filters for intermediate times 12 ≤ t ≤ 84 have the same coeffi cients. The
symmetric filter and the concurrent filter respond only to data within a year of t, and so are very adaptive.
The coeffi cient sign change for the same calendar month a year away from t can result in large revisions.

10 Some General ARIMA Canonical Decomposition Results

10.1 What Seasonal Decomposition Filters Remove or Preserve*

Observe that, among the filters (87)—(90), the coeffi cients of the seasonal and irregular filters βs (B) and
βu (B) sum to zero. Therefore these filters will annihilate a constant level component, e.g. the sample mean.
By contrast, the coeffi cients of the trend and seasonal adjustment filters βp (B) and βsa (B) sum to one.
They will reproduce a constant level component. These are completely general results, applying to AMBSA
filters, finite or infinite, symmetric or asymmetric, from any ARIMA model whose differencing operator has
1− Bq = (1−B)U (B), q ≥ 2, with U (B) = 1 + B + · · ·Bq−1 as a factor. The tables of Bell (2012) cover
also several generations of symmetric and asymmetric X-11 filters. In many cases, linear functions, and in
exceptional cases covered in Bell (2015), even higher degree polynomials in t are eliminated by βs (B) and
βu (B) and preserved by βp (B) and βsa (B).

Here are some illustrative calculations, also for q = 2 fixed seasonal effects α (−1)
t. From (87) and(

1−B−1
)

= B−1 (B − 1) we obtain that βs (B) = B−2 (1−B)
4. Differencing lowers the degree of a

polynomial by one, e.g., (1−B) t3 = t3 − (t− 1)
3

= 3t2 − 3t + 1. Hence βs (B) will annihilate a cubic
component αt3, whereas βsa (B) = 1 − βs (B) will reproduce it. The filter βs (B) will reproduce a stable
seasonal component α (−1)

t,{
1

16
B2 − 4

16
B +

6

16
− 4

16
B−1 +

1

16
B−2

}
(−1)

t
= (−1)

t

{
1

16
+

4

16
+

6

16
+

4

16
+

1

16

}
= (−1)

t
,

because B2 (−1)
t

= (−1)
t−2

= (−1)
t, whereas B (−1)

t
= (−1)

t−1
= − (−1)

t. Correspondingly, βsa (B) will
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annihilate α (−1)
t. The reader can verify that βp (B)α (−1)

t
= 0 and that the irregular filter βu (B) =

− 1
8B
−2 (1 +B)

2
(1−B)

2 will eliminate both a linear trend and a stable seasonal component.

10.2 Reciprocal Smoothing Properties of Seasonal and Trend Estimates

Consider the detrended series from (46) and (47),

Z − p̂ = ŝ+ û. (92)

The matrix formulas (47) easily yield ŝ = Σss (Σss + Σuu)
−1

(Z − p̂). It follows that ŝ, in addition to being
the MMSE linear estimate of s from Z, is also the MMSE linear function of Z − p̂ for estimating s from
Z − p̂, because its error s− ŝ, being uncorrelated with Z, is uncorrelated with Z − p̂, a linear function of Z.
Analogous reasoning yields that the estimated trend p̂ is an MMSE linear estimate of p from the seasonally
adjusted series Z − ŝ, as asserted in the discussion preceding Figure 5.

These stationary case results are special cases of the results of Theorem 1 and Remark 4 of McElroy
and Sutcliffe (2006) for ARIMA Zt. Further, under correct model assumptions, their paper also provides
convergence results to the MMSE estimates of trend and seasonal for iterations starting with a non-MMSE
estimate of trend (or seasonal).
For the canonical seasonal-trend-irregular decomposition of a series simulated from the Box-Jenkins airline

model12 ,
(1−B) (1−Bq)Zt = (1− θB) (1−ΘBq) at = at − θat−1 −Θat−q + θΘat−q−1, (93)

with θ = Θ = 0.60, Figure 7 shows how the ŝt visually smooth the detrended calendar month subseries.
The perspective that trend should be estimated from a deseasonalized series and the seasonal component
should be estimated from a detrended series is central to the iterative X-11 method for estimating these
components, see Ladiray and Quenneville (2001).

10.3 Two-Component Decompositions

When the trend is not of interest, the focus is the two-component seasonal-nonseasonal decomposition, Zt =
st +nt, with nt the non-seasonal component, whose estimate is the seasonal adjustment, n̂t = ŝat = Zt− ŝt.
With some nonseasonal Zt, trend plus cycle decompositions are of interest. Maravall and Planas (1999)
derive a variety of interesting properties of the canonical decomposition in such cases. For example, in the
bi-infinite case, the canonical decomposition estimates have the smallest error variances.
The results of Bell (1984) show for the ARIMA component W-K estimation case that error processes

are stationary. For example, applied to the seasonal st and nonseasonal nt case with δ (B) = δs (B) δn (B)

where δs (B) = U (B) = 1 +B + · · ·Bq−1 and δn (B) = (1−B)
2, the error processes st − ŝt and nt − n̂t are

stationary and have the spectral density of the estimation error process of the stationary decomposition

δ (B)Zt = δ (B) ŝt + δ (B) n̂t = (1−B)
2 {δn (B) ŝt}+ U (B) {δn (B) n̂} .

That is,

gε (λ) =
g
δn(B)s(λ)gδ(B)n(λ)

g
δ(B)Z

(λ)
.

It follows from Appendix A that δ (B) ŝt and δ (B) n̂t are always positively correlated. This is not true of
the minimally differenced stationary transforms, δs (B) ŝt and δn (B) n̂t, see Subsection 12.4.

12The airline model is the most commonly chosen model by TRAMO’s automatic model idenfication procedure (which is
implemented somewhat differently in different SEATS implementations). This model was developed by Box and Jenkins for
obviously seasonal series like the January, 1949 to December, 1960 International Airline Passenger series shown in the background
of Figure 16. Its values are given in Part V of Box and Jenkins (1976).
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Figure 7: The seasonal factors ŝt (darker lines) are the MMSE estimates of the detrended series Zt − p̂t
(lighter lines) from the simulated airline series Zt with θ = Θ = 0.6. The horizontal lines are the calendar
month means of the ŝt.

11 Airline Model Results

We continue with (93) and special cases thereof to demonstrate important aspects of AMBSA. Hillmer and
Tiao (1982) show that, when Θ ≥ 0, the airline model is admissible for all −1 ≤ θ ≤ 1. There are admissible
decompositions for some negative Θ ≥ −0.3 for a Θ -dependent interval of θ values. We only consider Θ ≥ 0.

11.1 How Adaptive or Resistant are Estimates to Data Changes: Effect of Θ

In practice, ARIMA models that are identified for seasonal time series usually have a seasonal moving average
factor 1 − ΘBq, and the influence of Θ conforms to the conclusions we obtain in this Subsection. When
the model for Zt, whether ARMA or ARIMA, has such a moving average factor, then the W-K filters are
bi-infinite rather than finite, as will be seen. Their coeffi cients at seasonal lags decay slowly if Θ is large, a
property that is replicated in the finite-sample filters. Then the seasonal adjustment adapts slowly to rapid
changes and resists the influence of changes that are not long lasting. The airline model filter coeffi cient
figures of this section illustrate this clearly, and also show that Θ has a much more dominant role than the
nonseasonal parameter θ in determining how adaptive or resistant the seasonal adjustment estimates are to
sudden changes in the time series. We start with an analytical example to make clear why this is so.
The transfer function of the irregular component filter for the monthly (q = 12) airline model,

βu
(
ei2πλ

)
=

σ2
u

g (λ)
=

σ2
u

∣∣δ (ei2πλ)∣∣2
|1− θei2πλ|2 |1−Θei2π12λ|2

,

leads to the filter βu (B) with the factored form

βu (B) = σ2
u

{
δ (B) δ

(
B−1

)}{
(1− θB)

−1 (
1− θB−1

)−1
}{(

1−ΘB12
)−1 (

1−ΘB−12
)−1
}
. (94)

From δ (B) = (1−B)
(
1−B12

)
, the first bracketed factor defines a finite symmetric filter (of length 27),

which contains δ (B), ensuring that ût = βu (B)Zt will be a stationary time series. The second and third
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factors make βu (B) bi-infinite. For example,(
1−ΘB12

)−1 (
1−ΘB−12

)−1
=
(
Σ∞j=0ΘjB12j

) (
Σ∞j=0ΘjB−12j

)
= Σ∞j=0Θ2j

(
1 + Σ∞j=1Θj

(
B12j +B−12j

))
=
(
1−Θ2

)−1
Σ∞j=−∞Θ|j|B12j . (95)

Similarly,
(1− θB)

−1 (
1− θB−1

)−1
=
(
1− θ2

)−1
Σ∞j=−∞θ

|j|Bj .

Thus the effect of Θ on the symmetric filter coeffi cients is largest at seasonal leads and lags k = ∓12j, with
the effect decaying at the rate Θ|j|/12. The effect of θ decays at the much faster rate θ|j|. The nonzero values
in Figure 1 illustrate the decay rate of Θk, k = 0, . . . , 12 for Θ = 0.70 and 0.95.
This decay rate difference leads to a frequently observed feature of seasonal adjustment filters that will

be displayed in graphs of airline model filters and associated seasonal factors. For the estimate at time t, the
observation Zt gets the largest coeffi cient and the next largest coeffi cients are usually for the nearest same-
calendar-month values Zt±12k in the observation interval 1 ≤ t ≤ n, with coeffi cient magnitudes decreasing
exponentially with k. The greater the value of Θ is, the less localized and adaptive but more stable the
estimate will be. When Θ is small, the filters are quite localized and adaptive but more likely to have large
revisions when data at time n+ 12, n+ 24, etc. are first adjusted.

11.2 Seasonal Filters from Various θ,Θ and Their Factors for the International
Airline Passenger Data*

For a fixed finite data size n, the dominating effect ofΘ is more clearly observed with finite-sample asymmetric
filters, especially with the one-sided concurrent seasonal adjustment filters for the most recent time t = n.
Figures 8—11 show the concurrent seasonal adjustment filter coeffi cients for n = 97 from airline models
with (θ,Θ) = (0.6, 0.0), (0.6, 0.3), (0.9, 0.6), (0.9, 0.9). In all cases, same-calendar-month values Zn−12k,
k = 0, 1, . . . receive much larger weight than values from other months, with greater positive weight for the
current month n for larger13 Θ . Seasonal factor and seasonal adjustment filters are related by βsa (B) =
1− βsa (B). Therefore, at non-zero lags, the magnitude effect of Θ on the coeffi cients is the same.
Figures 12—15 show the calendar month seasonal factor estimates from the International Airline Passenger

data from the filters determined by small, intermediate and large values of Θ always with θ = 0.6. The
coeffi cient values were specified as fixed in X-13ARIMA-SEATS and therefore not estimated. They are
not influenced by the data. The seasonal factors they produce reveal the strong influence of Θ. For the
factors from Θ = 0.0 and 0.3, there are frequent rapid changes. For the airline series, whose estimates are(
θ̂, Θ̂

)
= (0.4, 0.6), especially the imposed use of Θ = 0.0, results in excessive smoothing of the seasonal

adjustment, leading to excessively large revisions (not shown). For Θ = 0.9 the seasonal factors are effectively
fixed and not locally adaptive.

13Θ has influence on the trend estimate and θ has some on the seasonal estimate, see (6.9)—(6.11) of Hillmer and Tiao (1982).
The magnitude of the nonseasonal coeffi cient θ can be shown to strongly influence trend estimates.
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Figure 8: With θ = 0.6 and Θ = 0.0, the coeffi cients become negligible after one year, with largest-magnitude
values at the seasonal lag. Hence large SA revisions are possible when sat is re-estimated from an additonal
year of data.

12 Autocorrelation and Smoothness Properties of Estimates

12.1 Simplistic Autocorrelation Comparison Criteria for Smoothness and Non-
smoothness

We begin our autocorrelation-based consideration of the smoothing properties of estimates. Some simplistic
definitions will support the exposition. When comparing two stationary series Xt and Yt, we say that Xt is
smooth if ρX1 > 0. Further, Xt is smoother than Yt when differences of scale are accounted for (a qualification
we will omit for brevity after an illustrative example), when the autocorrelations satisfy ρX1 > ρY1 . The series
Yt is nonsmooth if ρY1 < 0. A smooth series is therefore smoother than all white noise series and all nonsmooth
series. If Yt is nonsmooth and ρY1 < ρX1 holds, then Yt is more nonsmooth than Xt. A nonsmooth series is
thus more nonsmooth than all white noise series and all smooth series.
We start with intermediate-time SAR(1) estimates. Similar results for differenced airline model decom-

positions with component estimates from bi-infinite data are obtained in Section 12.5. Most often, the series
considered are calendar month series, so these autocorrelations are seasonal autocorrelations in the time
scale of the observations Zt.

12.2 SAR(1): Autocorrelations of N̂t and Reduced Smoothness Relative to Zt
By direct calculation from (33) or from the seasonal MA(1) model (76) derived for intermediate-time N̂t in
Subsection 7.4, the autocorrelations of intermediate-time N̂t are

ρN̂j =

{
−Φ

(
1 + Φ2

)−1
, j = q,

0 j 6= q.
(96)

In particular, ρN̂q is smaller in magnitude than ρq = Φ and opposite in sign. Thus the calendar month

subseries of N̂t, yearly series for which ρN̂q is the lag one autocorrelation, are nonsmooth. A calendar month
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Figure 9: With θ = 0.6 and Θ = 0.3, the effective length of the filter is less than three years. It is quite
adaptive but less so than the filter of Figure 8 and therefore subject to smaller revisions.

subseries of Zt will have lag one autocorrelation ρq = Φ > 0 and is therefore smooth. Of course, the

calendar month subseries of N̂t are less variable in the sense that, from (76), γN̂0 = (1 + Φ)
−4 (

1 + Φ2
)
σ2
a =

(1− Φ)
(
1 + Φ2

)
(1 + Φ)

−3
γ0 is less than γ0. Consequently, the scale of the N̂t is related to that of the Zt

through √
γN̂0 =

√
(1− Φ) (1 + Φ2) (1 + Φ)

−3√
γ0. (97)

The scale reduction factor
√

(1− Φ) (1 + Φ2) (1 + Φ)
−3 is approximately 0.113 for Φ = 0.95. These factors

quantify the diminished scales of oscillations about the level value 0 seen for the intermediate years in Figure

3. (For the initial and final years, the smaller scale reduction factor
√

(1− Φ) (1 + Φ)
−3 yields 0.082 for

Φ = 0.95). Figure 17 below shows calendar month graphs of the nonsmooth component N̂t and the scale-
reduced Zt, the latter downscaled to have N̂t’s standard error. N̂t is visibly less smooth, as expected. The
next subsection shows that the calendar month series of Ŝt are smooth (and smoother than the corresponding
calendar month series of Zt). Thus the canonical (estimated) signal plus noise decomposition Zt = Ŝt+N̂t can
be renamed the canonical smooth plus nonsmooth decomposition, with N̂t being the nonsmooth component,
etc.

12.3 SAR(1): Autocorrelations of Ŝt and Increased Smoothness Relative to Zt
By direct calculation of the seasonal lag autocovariances of Zt−q + 2Zt +Zt+q and (3), we obtain from (38)
that the variance and the nonzero autocovariances of intermediate-time Ŝt, at lags kq, k = 1, 2, . . . are
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Figure 10: With θ = 0.9 and Θ = 0.6, the effective length of the filter is a year or so longer than in Figure
9 because of the moderately larger-magnitude coeffi cient values at lags 24 and 36. These could moderately
reduce revisions from use of Zn+12k, k = 1, 2, 3.

γŜ0 = EŜ2
t =

{
γ0

Φ2

(1 + Φ)
4

}
2 (Φ + 3) (1 + Φ) (98)

γŜq = EŜtŜt+q =

{
γ0

Φ2

(1 + Φ)
4

}(
4 + 3Φ + Φ2

)
(1 + Φ)

γŜ2q = EŜtŜt+2q =

{
γ0

Φ2

(1 + Φ)
4

}
(1 + Φ)

4

γŜkq = Φk−2γŜ2q, k ≥ 3.

Division by γŜ0 yields the intermediate-time autocorrelations (99).

ρŜj =


1
2 (4 + Φ (3 + Φ)) (Φ + 3)

−1
, |j| = q

1
2 (1 + Φ)

3
(Φ + 3)

−1 |j| = 2q,

Φk−2ρŜ2q, |j| = kq, k ≥ 3,
0, |j| 6= 0, kq.

(99)

Using (3 + Φ)
−1

> 1/4 and 1
2 (1 + Φ) > Φ for 0 < Φ < 1, one readily obtains from (99), (15) and (3) that

the nonzero intermediate-time autocorrelations of Ŝt dominate those of St, which dominate those of Zt,

ρŜkq > ρSkq > Φk > 0, k ≥ 1. (100)

Same-calendar-month values of Zt, St and Ŝt have positive autocorrelations at all lags, always greatest for
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Figure 11: When θ = 0.9 and Θ = 0.9, the effective length of the filter is the length of the data span (also for
somewhat larger n > 97, it can be shown), with same-calendar-month values persistently most influential.
Thus the filter resists domination by rapid changes in a year or two of Zt values, even close to time t = n.
On the other hand, revisions from use of Zn+12 , Z n=24, . . . will have little tendency to diminish in size over
time and could cumulatively be quite large.

Ŝt and least for Zt. By calendar month, the Ŝt will evolve more smoothly than Zt, as Figure 4 illustrates14 .
The largest difference, ρŜq − ρq = ρŜq − Φ = 2 (Φ + 3)

−1 − 1
2Φ, is approximately 0.031 when Φ = 0.95.

14 In constrast to the N̂t smoothness result of Subsection 12.2, we note that the scale of Ŝt is only slightly smaller than the

scale of Zt. From (98), we have
√
γŜ0 /γ0

.
= 0.981 for Φ = 0.95.
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Figure 12: Having Θ = 0.0 results in erratic movements in the seasonal factors estimated from the Airline
Passenger series data due to close tracking of detrended series movements, which leads to strong smoothing
and a potential for large revisions.

Figure 13: As the discussions of filters and graphs above suggest, when Θ = 0.3, the seasonal factor estimates
are very localized and therefore quite variable over the 12 years of the Airline Passenger series data.
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Figure 14: When Θ = 0.6, the seasonal factor estimates from the Airline Passenger series change somewhat
less over the 12 years than with Θ = 0.3.

12.4 Stationary Transforms of the Simple SARIMA’s Components

As indicated above, with three-component decompositions from an ARIMA Zt, the differencing operator of
Zt’s model is a product, δ (B) = δs (B) δn (B), in which δs (B) is the differencing operator of the seasonal
component st (from its model or pseudo-s.d.) and δn (B) is the differencing operator of pt and therefore also
of the nonseasonal component nt = pt + ut. Rewriting the decomposition (103) as

δ (B)Zt = δn (B) δs (B) ŝt + δs (B) δn (B) p̂t + δ (B) ût

makes clear how each estimate is being overdifferenced: δs (B) ŝt , δn (B) p̂t, δn (B) ŝat and ût are already
stationary. In SEATS’output, each of these correctly (minimally) differenced estimates is called the sta-
tionary transformation of its estimate. The stationary transform of each unobserved component st, pt,
etc. is defined analogously. SEATS has diagnostics, illustrated in Maravall and Pérez (2012), that test
whether or not the theoretical correlations and cross-correlations of these stationary transforms differ in a
statistically significant way from simple sample-moment correlation or cross-correlation estimates calculated
from the software’s numerical decomposition component estimates.
This subsection illustrates calculations of the theoretical autocorrelations and cross-correlations for the

stationary transforms of decomposition estimates of the simple ARIMA model (82). For this model, δs (B) =
1 +B and δn (B) = 1−B.

Smoothness results for the stationary transforms are obtained from the theoretical autocorrelation values.
For the canonical irregular’s intermediate time estimate ût = βu (B)Zt of the model (82) with seasonal period
q = 2 observations per year, it follows from (89) and (82) that

ût =
1

8
(−Zt−2 + 2Zt − Zt+2) =

1

8
(− (Zt+2 − Zt) + (Zt − Zt−2)) =

1

8
(−at+2 + at) . (101)

Thus the only nonzero autocorrelation is ρû2 = −1/2.
A conceptually important result is the demonstration that, in the ARIMA case, the analogue of (108)

fails for the stationary transforms. That is, δs (B) ŝt and δn (B) n̂t need not be positively correlated: for
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Figure 15: With Θ = 0.9, the calendar month seasonal factor estimates from the Airline Passenger series are
almost fixed across the 12 years.

(82), we will obtain (102) for lag zero. We also verify positive cross-correlations for some nonzero lags, and
negative cross-correlations for others.
Calculating as in (101), we have

(1 +B) ŝt =
1

16
B−2 (1−B)

3
at =

1

16
{at+2 − 3at+1 + 3at − at−1} ,

(1−B) p̂t =
1

16
B−2 (1 +B)

3
at =

1

16
{at+2 + 3at+1 + 3at + at−1} ,

ût =
1

8
{−at+2 + at} ,

(1−B) ût =
1

16
{−2at+2 + 2at+1 + 2at − 2at−1} ,

(1−B) ŝat = (1−B) (p̂t + ût) =
1

16
{−at+2 + 5at+1 + 5at − at−1} .

Following SEATS, we express auto- and cross-covariance results in units of σ2
a, so σ

2
a = 1. It is immediate

from the first and last formulas that the lag zero cross-covariance of the stationary transforms of the seasonal
and nonseasonal components is zero,

E ({(1 +B) ŝt} {(1−B) ŝat}) = 0, (102)

in contrast to positive value always obtained with stationary Zt. In addition, the cross-covariances
E ({(1 +B) ŝt} {(1−B) ŝat−j}) , j = ±1,±2,±3 are nonzero. For example, E({(1 +B) ŝt} {(1−B) ŝat−1})
= 13/162 and E ({(1 +B) ŝt} {(1−B) ŝat−2}) = −8/162. Some further lag 0 cross-covariance values are
E {(1 +B) ŝtût} = E (1−B) p̂tût = 4/162.

SEATS does not yet provide the theoretical model-based cross-correlations between the stationary trans-
forms of ŝt and ŝat, so it will not replicate (102). Its method for calculating cross-correlations is shown in
the Appendix of Maravall (1994). For components other than sat, Table I of Maravall and Pierce (1987)
provides lag 1—3 autocorrelation results for the stationary transforms of the components of the simple model
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Figure 16: Two extremes. The very smooth, trend-like seasonal adjustment of the Airline Passenger series
shown is obtained from division by the volatile Θ = 0.0 seasonal factors of Figure 8. The text of Figure 11
explains why initial revisions from future data are likely to be large. By contrast, the nearly stable Θ = 0.90
same-calendar-month factors of Figure 11 produce a much less smooth adjustment, with residual seasonality
visible in the later years.

(82) and their estimates. As typographic errors, the table omits the minus signs of the four autocorrelations
of stationary transforms of estimates that require them. Below is a corrected and expanded table, showing
the minus signs, corrections of two ρ1 values, and the autocorrelations of the stationary transforms of sat
and its estimator ŝat. The results for the components were obtained in Subsection 8.1.1. The rest follow
from the formulas of the stationary transforms of the estimates of this subsection.

Nonzero Autocorrelations of the Stationary Transforms of the Unobserved and Estimated Decompositions
Transforms Variance in units of σ2

a ρ1 ρ2 ρ3

(1 +B) st γ
(1+B)s
0 = 1

8 = 0.125 −0.50 − −
(1 +B) ŝt γ

(1+B)ŝ
0 = 20

162 ' 0.078 −0.75 0.30 −0.05

(1−B) pt γ
(1−B)p
0 = 1

8 = 0.125 0.50 − −
(1−B) p̂t γ

(1−B)p̂
0 = 20

162 ' 0.078 0.75 0.30 0.05

(1−B) sat γ
(1−B)sa
0 = 3

8 = 0.375 − 1
6 ' −0.167 − −

(1−B) ŝat γ
(1−B)ŝa
0 = 52

162 ' 0.203. 15
52 ' 0.288 − 10

52 ' −0.192 1
52 ' 0.019

ut γ0 = 1
8 = 0.125 − − −

ût γû0 = 1
32 ' 0.031 − −0.50 −

Applying the smoothness and nonsmoothness criteria of Section 12 to the stationary transforms, this table
shows that (i) for (1 +B) ŝt, the calendar month subseries are smooth, but the series itself is nonsmooth; (ii)
for (1−B) p̂t, both the series and its calendar month subseries are smooth; (iii) for (1−B) ŝat, the series is
smooth, but its calendar month series are nonsmooth, yet not as nonsmooth as the calendar month subseries
of ût.
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Figure 17: Calendar month plots of the intermediate-time nonsmooth factor estimates N̂t (darker line) and
the rescaled Zt, downscaled to have the same standard deviation as the N̂t, for Φ = 0.95. The horizontal
lines are the calendar month averages of the rescaled Zt. As the lag 12 autocorrelation analysis suggested,
the N̂t calendar month subseries are visually less smooth than the rescaled Zt calendar month subseries.

12.5 Airline Model Estimates: Relative Smoothness after Full Differencing

To indicate relative smoothness properties using autocorrelations and variances as above, we must have a
stationary decomposition. For monthly series from (93), which has δ (B) = (1−B)

(
1−B12

)
, we examine

the fully differenced decomposition

δ (B)Zt = δ (B) ŝt + δ (B) p̂t + δ (B) ût, (103)

whose components are the MMSE bi-infinite-data estimates for the components of δ (B)Zt = δ (B) st +
δ (B) pt + δ (B)ut. We have

ρ
δ(B)Z
12 (Θ, θ) = −Θ

(
1 + Θ2

)−1
, ρ

δ(B)Z
12k (Θ, θ) = 0, k > 1. (104)

The component estimates in (103) are overdifferenced, especially ût, which is already stationary. For any
choices of −1 < θ < 1 and 0 ≤ Θ < 1, SEATS outputs the coeffi cients of the ARIMA or ARMA models
of estimators ŝt, ŝat = Zt − ŝt, p̂t, and ût, with innovation variances given in units of σ2

a. With this
information, W-K formulas can be used to obtain models for δ (B) ŝt, δ (B) p̂t, and δ (B) ût From these
models, the autocorrelations needed for smoothness analysis like those presented below can be calculated.
The simplest model, that of δ (B) ût, is derived in Appendix B as an illustration.

12.5.1 Seasonal Autocorrelations of δ (B)Zt and Its Component Estimates for Various θ,Θ

Results are presented in the Tables 2a and beyond for comparison with the autocorrelations of δ (B)Zt =
at − θat−1 −Θat−12 + θΘat−13 in Table 1.
Here is a summary of the tabled seasonal lag results. Tables 2a − 2c show that, in contrast to δ (B)Zt,

the series δ (B) ŝt from the seasonal estimates ŝt is positively correlated at all seasonal lags considered, 12, 24
and 36, often strongly, indicating that the calendar month subseries of δ (B) ŝt will be often be substantially
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smoother than δ (B)Zt. Table 3 shows that the opposite is the case for the seasonally adjusted series
δ (B) ŝat = δ (B)Zt− δ (B) ŝt and for the residual series δ (B) ût. Both have more negative autocorrelations
at lag 12 than δ (B)Zt and positive autocorrelations at Lag 24 (and negligible autocorrelations at lag 36—not
shown). Their calendar month subseries will tend have more changes of direction than δ (B)Zt.

Table 1. Lag 12 Autocorrelations of δ (B)Zt = (1− θB)
(
1−ΘB12

)
at

Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 0 0 0 0 0
0.3 -0.275 -0.275 -0.275 -0.275 -0.275
0.6 -0.442 -0.442 -0.442 -0.442 -0.442
0.9 -0.497 -0.497 -0.497 -0.497 -0.497

From (104), ρδ(B)Z
12 < 0 for Θ > 0, so δ (B)Zt will have nonsmooth (calendar month) subseries.

Table 2a. Lag 12 Autocorrelations of δ (B) ŝ
Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 0.347 0.467 0.589 0.622 0.222
0.3 0.568 0.644 0.714 0.731 0.481
0.6 0.763 0.803 0.836 0.844 0.715
0.9 0.943 0.952 0.959 0.960 0.931

ρ
δ(B)ŝ
12 >

∣∣∣ρδ(B)Z
12

∣∣∣ always.
δ (B) ŝt has substantially smoother subseries than δ (B)Zt.

Table 2b. Lag 24 Autocorrelations of δ (B) ŝt
Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 0.035 0.072 0.121 0.131 0.013
0.3 0.197 0.244 0.294 0.305 0.154
0.6 0.474 0.510 0.545 0.552 0.435
0.9 0.852 0.864 0.873 0.875 0.840

ρ
δ(B)ŝ
24 > 0 = ρ

δ(B)Z
24 . The calendar-month smoothing indicated in Table 2a

is reinforced, moderately to strongly at two year’s remove.

Table 2c. Lag 36 Autocorrelations of δ (B) ŝt
Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 ' 0 ' 0 ' 0 ' 0 ' 0
0.3 0.059 0.073 0.088 0.092 0.046
0.6 0.284 0.306 0.327 0.331 0.261
0.9 0.767 0.777 0.786 0.788 0.756

ρ
δ(B)ŝ
36 > 0 = ρ

δ(B)Z
36 for Θ ≥ 0.3.

Calendar month smoothing is further reinforced at three years remove, but not as strongly at as two.
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Table 3. Lag 12 autocorrelations of δ (B) ŝat
Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 -0.297 -0.465 -0.590 -0.646 -0.659
0.3 -0.520 -0.548 -0.573 -0.586 -0.590
0.6 -0.520 -0.525 -0.529 -0.532 -0.533
0.9 -0.502 -0.502 -0.502 -0.502 -0.502

All ρδ(B)ŝa
12 < ρ

δ(B)Z
12 < 0.

δ (B) ŝat is more nonsmooth than δ (B)Zt.

Table 4. Lag 12 autocorrelations of δ (B) û
Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 -0.667 -0.667 -0.667 -0.667 -0.667
0.3 -0.591 -0.591 -0.591 -0.591 -0.591
0.6 -0.533 -0.533 -0.533 -0.533 -0.533
0.9 -0.502 -0.502 -0.502 -0.502 -0.502

ρ
δ(B)û
12 is more negative than ρδ(B)Z

12 .
The subseries of δ (B) ût have a greater tendency than δ (B)Zt to change direction. They are more

nonsmooth.

12.5.2 Monthly Smoothness Results

One expects the estimated trend to be smooth on the monthly time scale and the estimated irregulars to be
nonsmooth on this scale, due to trend removal. We examined the lag 1-12 autocorrelations of the differenced
trend estimates, δ (B) p̂t for the Θ, θ under consideration. At lag 12, all are negative: at yearly intervals,
the differenced trend is nonsmooth. At lags 1—6 all are positive. At the remaining lags 7-11, some or all can
be positive and some or all can be negative, depending on (Θ, θ). In summary, δ (B) p̂t will have a tendency
to move in the same direction for six months, sometimes more, i.e.. a tendency for half-year smoothness.
This is in strong contrast to δ (B)Zt, which, among lags 1—6, has a non-zero autocorrelation only at lag one,

ρ
δ(B)Z
1 (Θ, θ) = −θ

(
1 + θ2

)−1
. This is negative, indicating nonsmoothness (except when θ > 0). The tabled

results below for ût and δ (B) ût indicate nonsmoothness, with δ (B) ût being more nonsmooth than δ (B)Zt.

Table 5. Lag 1 Autocorrelations of ût
Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 -0.650 -0.500 -0.350 -0.200 -0.034
0.3 -0.650 -0.500 -0.350 -0.200 -0.040
0.6 -0.650 -0.500 -0.350 -0.200 -0.042
0.9 -0.650 -0.500 -0.350 -0.200 -0.048

ρ
δ(B)û
1 < 0 always: Monthly ût are nonsmooth.

Table 6. Lag 1 Autocorrelations ρδ(B)Z
1 (Θ, θ) = −θ

(
1 + θ2

)−1
of δ (B)Zt

Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 0.275 0.0 -0.275 -0.441 -0.497
0.3 0.275 0.0 -0.275 -0.441 -0.497
0.6 0.275 0.0 -0.275 -0.441 -0.497
0.9 0.275 0.0 -0.275 -0.441 -0.497

Monthly δ (B)Zt are nonsmooth for θ > 0, smooth for θ < 0.
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Table 7. Lag 1 Autocorrelations of δ (B) ût
Θ\θ -0.3 0.0 0.3 0.6 0.9
0.0 -0.756 -2/3 -0.591 -0.533 -0.502
0.3 -0.756 -2/3 -0.591 -0.533 -0.502
0.6 -0.756 -2/3 -0.591 -0.533 -0.502
0.9 -0.756 -2/3 -0.591 -0.533 -0.502

ρ
δ(B)û
1 < min

(
0, ρ

δ(B)Z
1

)
. δ (B) ût is always more nonsmooth than δ (B)Z.

Also ρδ(B)û
2 > 0 in all cases. (Not tabled.)

13 Concluding Remarks

The simple seasonal models focussed on have provided very informative and tractable formulas for two- and
three-component decompositions of seasonal time series. The estimates’auto- and cross-correlation formulas
have led to new insights and results. For example, the common finding of negative sample autocorrelations,
often at the first lag and almost always at the first seasonal lag of the estimated irregular component û (or
differenced û) can now be both anticipated and understood from the smoothing results, in combination with
the knowledge that û can be regarded both as the detrended version of the seasonally adjusted series Z − ŝ
and also as the deseasonalized version of the detrended series Z − p̂. Thus one expects û to be nonsmooth
at both the monthly scale where (differenced) p̂ is smooth and also at the yearly scale of calendar month
series where (differenced) ŝ is smooth. Similarly for the finding of negative sample autocorrelations at the
seasonal lag of the differenced seasonally adjusted series. This result now appears as an inevitable result
of removing a seasonal component whose calendar month subseries are smooth, and not as a defect of the
seasonal adjustment procedure, contrary to a view expressed in some of the literature motivating McElroy
(2012). Here it should be noted that because seasonal adjustment nonsmoothness occurs on the yearly time
scale of calendar month series, not on the monthly time scale of real-time economic analysis, it may have no
practical importance.
The capacity to provide illuminating precise answers to many questions is a valuable feature of ARIMA-

model-based seasonal adjustment. So too are the uncertainty measures (not accounting for sampling error)
that AMBSA can provide for additive direct seasonal adjustments and their period-to-period changes and
for growth rates from log-additive adjustments, information not available from current X-11 implementa-
tions. But AMBSA results depend completely upon the determination of an adequately fitting, admissible
regARIMA model, either by the software’s automatic modeling procedure or by the software user. This
can be a major challenge especially with a long data span, because of the time-varying and sampling-based
nature of economic indicators.
This situation, and the quite variable time series backgrounds of people tasked with seasonal adjustment,

underscore the value of software like X-13ARIMA-SEATS and JDemetra+ which offer both ARIMA model-
based and X-11-ARIMA method seasonal adjustments. The latter depend on the model only for a year or so
of forecasts and thus are less dependent on the model’s quality or on the user’s resourcefulness when faced
with poor diagnostics for an important series. Both methods produce similar seasonal adjustments quite
often. This is not so surprising because their filters can be quite close, see Depoutot and Planas (1998) and
Chu, Tiao and Bell (2012). Analysis of substantial differences, when they occur, can suggest that one is to be
preferred, or can suggest changes in software options that lead to a third more satisfactory adjustment. There
is no conceptual problem with adjusting some series in a given category with one of these well-established
methods and adjusting the category’s other series with the other method. This is already a practice in some
statistical agencies. The goal is to have adjustments (from plausible adjustment factors) with no detectable
residual seasonality and without an excessive number of large revisions when an additional year or so of
future data is added to the time series.
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14 Appendix A: Derivations of Wiener-Kolmogorov Formulas and
Cross-Covariances

An MMSE linear estimate is characterized by the property that its error at any time t is uncorrelated
with all of the estimation data Zτ , see Wikipedia (2013). For the regression formula (21), observe that
E
(
S − ΣSSΣ−1

ZZZ
)
Z

′
= ESZ ′ − ΣSS = ΣSS − ΣSS = 0, the n× n zero matrix. Thus, with bi-infinite data

Zτ , τ = 0,±1,±2, . . ., the filter βS (B) =
∑∞
j=−∞ βSj B

j with MMSE Ŝt = βS (B)Zt =
∑∞
j=−∞ βSj Zt−j is

characterized by

0 = E
(
St − Ŝt

)
Zt−k = ESt (St−k +Nt−k)−

∞∑
j=−∞

βSj EZt−jZt−k (105)

= γSk −
∞∑

j=−∞
βSj γ

Z
k−j , k = 0,±1,±2, . . . . (106)

Multiplying (106) by ei2πkλ = ei2πjλei2π(k−j)λ and summing over −∞ < k < ∞, one obtains from (105)—
(106), after interchanging the order of summation, that

gS (λ) =

∞∑
k=−∞

ei2πkλγSk =

∞∑
k=−∞

∞∑
j=−∞

βSj e
i2πkλγZk−j

=

∞∑
j=−∞

βSj e
i2πjλ

∞∑
k=−∞

γZk−je
i2π(k−j)λ = βS

(
ei2πλ

)
g (λ) . (107)

The W-K formula for Ŝt in (66) follows via division by g (λ). (The sum over k in (107) has the same value
g (λ) for every j, so set j = 0.) The formula for βN (B) follows from βN (B) = 1− βS (B).

This derivation is a simplification of the one given in Chapter 5 of Whittle (1963) of the more general
formulas for the case in which the signal and noise series, St and Nt, are stationarily cross-correlated. For
this case, McElroy and Maravall (2014) provides the ARIMA generalizations.

14.1 Cross-Covariance Properties of Stationary-Case Estimates

Among other results, we now verify (77) and show that stationary-case estimates are positively correlated
at lag zero,

EŜtN̂t > 0. (108)
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To obtain (77) and a useful alternative interpretation of gε (λ), we note from (105) that Ŝt and εt = St−Ŝt on
right hand side of St = Ŝt+(St− Ŝt) = Ŝt+εt are uncorrelated. From this, an autocovariance decomposition
and therefore also the spectral density decomposition of St follows, gS (λ) = gŜ (λ)+gε (λ). Thus, from (74),

gε (λ) = gS (λ)− gS (λ)
2

g (λ)
= gS (λ)

{
g (λ)− gS (λ)

g (λ)

}
=
gS (λ) gN (λ)

g (λ)
,

which is (77). Similarly, for any j, Nt−j = N̂t−j − εt−j , with which we can now verify the equality of the
cross-covariances γŜN̂j = EŜtN̂t−j and γεj = Eεtεt−j ,

γŜN̂j = γεj , j = 0,±1, . . . . (109)

This follows from 0 = EStNt−j = EŜtN̂t−j − Eεtεt−j − EŜtεt−j + EN̂t−jεt, whose last two terms are zero
by (105). Finally, because gε (λ) is positive except at the finitely many λ where gS (λ) or gN (λ) is zero,
its integral, which is equal to γε0, is positive. From this (108) follows. Further, (109) shows that the cross-
spectral density gŜN̂ (λ) =

∑∞
j=−∞ γŜN̂j ei2πjλ coincides with gε (λ). This shows that there are bi-infinite

estimation analogues of all of the matrix formulas (28)-(29).

15 Appendix B: W-K Derivation of the SARMA Model of δ (B) ût
for the Airline Model

The W-K estimate ût of the canonical airline model decomposition’s irregular component ut has the pseudo-
s.d.

gû (λ) =
g2
u (λ)

g (λ)
=
σ4
u

σ2
a

∣∣δ (ei2πλ)∣∣2
|ϑ (ei2πλ)|2

,

with gu (λ) = σ2
u. Thus, from (93), ût has the stationary noninvertible seasonal ARMA(1,1)(1,1)12 model

(1− θB)
(
1−ΘB12

)
ût = (1−B)

(
1−B12

)
ct,

with white noise ct having variance σ4
u/σ

2
a. Similarly, from (60), Ĵt = δ (B) ût, the fully differenced ût has

s.d.

gĴ (λ) =
∣∣δ (ei2πλ)∣∣2 gû (λ) =

σ4
u

σ2
a

∣∣δ (ei2πλ)∣∣4
|ϑ (ei2πλ)|2

.

So its model is the noninvertible seasonal ARMA(1,2)(1,2)12 model
(1− θB) (1−ΘBq) Ĵt = (1−B)

2 (
1−B12

)2
ct. Multiplied out, this model is(

1− θB −ΘB12 + θΘB13
)
Ĵt =

(
1− 2B +B2 − 2B12 + 4B13 − 2B14 +B24 − 2B25 +B26

)
ct. (110)

Expanded model formulas like this are what the algorithms for calculating autocovariances referenced in
Subsection 12.5.1 require and what SEATS outputs.
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