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Model Estimation, Prediction, and Signal Extraction
for Nonstationary Stock and Flow Time Series

Observed at Mixed Frequencies
Tucker MCELROY and Brian MONSELL

An important practical problem for statistical agencies and central banks that publish economic data is the seasonal adjustment of mixed
frequency stock and flow time series. This may arise in practice due to changes in funding of a particular survey. Mathematically, the problem
can be reduced to the need to compute imputations, forecasts, and backcasts from a given model of the highest available frequency data.
The nonstationarity of the economic time series coupled with the alteration of sampling frequency makes the problem of model estimation
and imputation challenging. For flow data the analysis cannot be recast as a missing value problem, so that time series imputation methods
are ineffective. We provide explicit formulas and algorithms that allow one to compute the log Gaussian likelihood of the mixed sample, as
well as any imputations and forecasts. Formulas for the relevant mean squared error are also derived. We evaluate the methodology through
simulations, and illustrate the techniques on some economic time series.

KEY WORDS: Imputation; Missing data; Sampling frequency; Seasonal adjustment

1. INTRODUCTION

The seasonal adjustment of economic time series is a vast
undertaking (involving tens of thousands of time series) at sta-
tistical agencies and central banks—such as the U.S. Census
Bureau, the Bureau of Labor Statistics, Statistics Canada, the
Bank of Spain, the Bank of England, the Bundesbank, the Inter-
national Labour Office, and many others—and most of produc-
tion operates on univariate time series observed over a constant
sampling frequency, typically either monthly or quarterly. The
statistical methods have developed accordingly: X-11-ARIMA
(Dagum 1980) works with a single sampling frequency, apply-
ing the fixed X-11 filters to a forecast-extended time series.
(This is an approximate view of the procedure—exact details
can be found in Ladiray and Quenneville (2001).) Model-based
approaches, such as in SEATS (Maravall and Caparello 2004),
also proceed by considering a single frequency. However, modi-
fications in survey construction often change fundamental char-
acteristics of an observed time series, even altering the sampling
frequency—from higher to lower or lower to higher. How are the
seasonal adjustment techniques to be modified in this situation?

The problem of seasonally adjusting mixed frequency
data is not an isolated concern. Motivation for the work
of this article stemmed from mixed frequency series being
processed at the Bank of England, brought to our attention
by Fida Hussain. The problem is mentioned as an explicit
concern—related to the question of comparability between
successive surveys—by Eurostat; see point number 2 of
http://circa.europa.eu/irc/dsis/employment/info/data/eu lfs/lfs
main/lfs/lfs comparability.htm. For developing countries
(e.g., South Africa), many of which are now transition-
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ing to more frequent measurement, the problem of mixed
frequency data is acute; see Pasteels (2012). The Interna-
tional Labour Office has many mixed frequency series; see
http://laborsta.ilo.org/sti/sti_E.html for an example of South
African unemployment rate, which transitioned from bi-annual
to quarterly frequency in 2008.

The topic is somewhat related to the literature on benchmark-
ing and reconciliation, which however has tended to follow
a nonparametric approach, with some noteworthy exceptions
(such as Durbin and Quenneville 1997). There is also a sub-
stantial literature on time series analysis of mixed frequency
data (including Zadrozny 1990 and Chen and Zadrozny 1998).
However, this latter literature focuses on stationary data. What
seems to be missing is a treatment of nonstationary time series
observed as stock or flow across two or more sampling fre-
quencies, with regard to the following questions: how does one
identify a model? How is the model fitted? How does one do
forecasting, imputation, and signal extraction? How does one
quantify the uncertainty attending these estimates?

Perhaps the most obvious approach is to use the Kalman
filtering methodology to address parameter estimation and pro-
jection calculations. One simply formulates the underlying pro-
cess as corresponding to the highest observed frequency, writing
down the observation equations accordingly; the mathematics
of model fitting and state–space smoothing then become equiv-
alent to a missing value problem when the process is a stock.
See Durbin and Quenneville (1997) and Durbin and Koopman
(2001) for related material.

There are some challenges associated with this approach.
First, state–space methods require a substantial programming
effort, although one may use off-the-shelf routines such as those
offered through Ox (Doornik 1998), which is not inexpensive.
Second, the correct quantification of uncertainty associated with
estimation of fixed signals (e.g., seasonally adjusted compo-
nents defined via the X-11 filters) requires a full knowledge
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of the projection error covariance matrix. Some expertise and
care is needed to produce these quantities from the state–space
method, which typically will just output the projection error
variances, or diagonal entries of the error covariance matrix (see
Koopman, Shephard, and Doornik 1999; Durbin and Koopman
2001). Third, numerical devices are typically used to evaluate
the likelihood, such as setting the variance of a certain initial
distribution to be a numerical infinity (i.e., a large float)—this is
called the diffuse initialization. Of course, the exact diffuse ini-
tialization can be used instead, or better yet the “optimal” initial-
ization of Bell and Hillmer (1991). With any of these state-space
approaches, there is no explicit formula for the likelihood (let
alone forecasts and imputations), this being produced instead
as the end product of a series of recursive formulas. Fourth,
the missing value approach alluded to above cannot be used
for flows, since a low-frequency flow does not correspond to
a systematic subsample of the high-frequency flow; a different
state-space approach is needed instead, which requires some
care to implement.

However, the advantages of state-space methods are numer-
ous, and are generally felt to outweigh any weaknesses: com-
putational efficiency is foremost, as well as flexibility and the
power to handle many types of applications (Durbin and Koop-
man 2001). Broadly speaking, these applications mainly fall in
the category of calculating Gaussian conditional expectations,
or equivalently, minimum mean square error linear estimates
of unknown stochastic quantities. Following the language of
Brockwell and Davis (1991), we refer to such conditional ex-
pectations as projections. Examples of projections include fore-
casts, missing value imputations, and signal extractions.

The main contribution of this article is the deriva-
tion of certain mathematical results regarding the Gaussian
likelihood—facilitating model estimation for mixed frequency
data—as well as the derivation of projection matrix formulas
for the mixed frequency situation described above. Depending
on one’s perspective on state–space methods, the formulas may
be viewed as a precise mathematical foundation for smoothing
methods (they correspond to the state–space estimates generated
under Bell and Hillmer’s (1991) optimal initialization), or as a
straightforward matrix-based method for computing projections
when recourse to the Kalman filter is infeasible (e.g., when a
long memory model is being used) or impractical.

Our results demonstrate the key importance of initial value
conditions of the nonstationary stochastic process; without these
assumptions, all projection calculations will depend upon nui-
sance parameters that lie beyond the scope of typical time se-
ries models. This observation pertains to both the log Gaussian
likelihood—and hence to model fitting—and to projection re-
sults proper, as delineated in Sections 2 and 3, respectively.
Hence, our formulas provide additional insight into projections
in time series analysis. Section 4 of the article explores model fit-
ting and seasonal adjustment through a simulation study, while
in Section 5 we proceed with a motivating case study, an in-
ventory series of food products, available as a mixed sample of
quarterly and monthly frequencies. We demonstrate the modi-
fied X-11 seasonal adjustment procedure on this case, as well
as on an industrial production series, producing estimates at the
full data span at the highest sampling frequency. We also analyze
mixed frequency time series from both the Bank of England and

the Bundesbank, and summarize our findings. Section 6 presents
our conclusions, and mathematical proofs are in the Appendix.

2. MODELING MIXED FREQUENCY DATA

2.1 Time Series Data Observed at Multiple Sampling
Frequencies

We now discuss our basic working assumptions. We assume
that the available data consists of either stock or flow time series
observations available at two or more frequencies. These data
have the following characteristics by assumption:

• The data occur with multiple sampling frequencies.
• The data at each sampling frequency are difference-

stationary (with known differencing polynomial).
• The observed data are either a stock or a flow.
• It is possible—in the flow case—that some time points may

have several observations, one at each sampling frequency.

The fourth point above is rather trivial for stocks, since when
passing to different sampling frequencies for a particular epoch,
the identical numerical value is obtained. For example, the third
monthly and the first quarterly observations for a given year are
identical quantities if the series is a stock. But if the series is a
flow, it is the aggregation of the first three monthly values that
equals the first quarterly number.

For a stock, the given data may be viewed as belonging to
any one of a number of sampling frequencies—to pass to lower
frequencies, one simply applies systematic temporal sampling
to the higher frequency data. For this reason too, one can view
any lower frequency series as really a higher frequency series
that has systematic missing values. This is not true for flows.
For example, a quarterly flow series does not correspond to
a subsampled monthly flow series. The first quarterly value
equals the sum of the January, February, and March values;
hence knowing the quarterly value does not allow us to deduce
any of the three monthly values, and therefore quarterly flow
series cannot be rewritten as a monthly flow series (with missing
values). For a stock series, in contrast, the first quarterly value
equals the March value, so that the quarterly stock series can be
reexpressed as a monthly stock series (with missing values).

The observed data can generally be written as a column vec-
tor. The exact sequencing of observations is not unique for flows,
since there may be overlapping observations, but for stocks it is
possible to order the data chronologically by intermingling dif-
ferent frequencies as needed. But the ordering of the data vector
is not really important, so long as the analyst knows how the
data are related to the various frequencies. The key assumption
of our method is that all the observations arise as a linear combi-
nation of a (potentially partially unobserved) highest frequency
data vector, which we will callX = (X1, X2, . . . , Xn)′. This is a
feasible assumption, because we assume that our mixed sample
consists exclusively of stock data or exclusively of flow data.
Lower frequency stock values are obtained from the highest
frequency stock value by regular subsampling (i.e., sampling
by skipping a certain number of observations). But for flows,
the lower frequency values are obtained by aggregation of the
highest frequency. Hence, the observed data take the form J X,
where J is a selection matrix that is described below.
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Letting {Xt } denote the sequence of values for the highest
frequency time series (as either stock or flow), we suppose that
it is difference stationary such that Wt = δ(B)Xt is mean zero
and covariance stationary, where B is the backshift operator
and δ(z) = ∑d

j=0 δj z
j is a degree d unit-root polynomial. Let

the autocovariance function (ACF) of {Wt } be denoted by {γh}.
We can conveniently represent {Xt } in terms of {Wt } and d so-
called initial values, using results from Bell (1984). Actually,
we extend this representation below to consider both backward
differencing and forward differencing at the same time.

The highest frequency process {Xt } will also include fixed
effects, such as calendar and trading day effects. We proceed
by specifying a model for {Xt }, noting that models for all other
sampling frequencies are implied via the sampling relations,
although the resulting models may no longer belong to recog-
nizable model classes.

2.2 Initial Values for Mixed Frequency Time Series

In the basic framework, suppose that we can write the ob-
served data as Y = J X with J typically having entries of ones
and zeroes, where {Xt } is described above. The high-frequency
vector X has length n, but the vector of observed data has length
m, so that J is m× n. Assuming for now that X has mean
zero—the case of nonzero mean is treated later—the log Gaus-
sian likelihood multiplied by −2 is given by

Y ′ (J �X J ′)−1
Y + log |J �X J ′| (1)

up to irrelevant constants. Note that this objective function is
derived from the Gaussian joint probability density for the undif-
ferenced data Y = J X. This contrasts with the single frequency
case where one works with differenced data. Actually, the valid-
ity of using the likelihood of differenced data is contingent on a
factorization of the likelihood function, which in turn depends
on the orthogonality of initial values with {Wt }. But in the mul-
tiple frequency case things are not so simple. First, it may not
be clear how to do differencing at all—since differencing typi-
cally requires d contiguous values in J X of the same frequency.
There is no reason to suppose this contiguity in J X exists. Sec-
ond, the factorization of the likelihood is far from obvious, and
need not always occur (see below for a counter-example).

We now proceed to investigate the general case for a
difference stationary process, with initial values uncorrelated
with {Wt }. Under what conditions does the likelihood factor in
the way needed? The desired factorization has the following
properties:

Y ′�−1
Y Y = Q1(X∗, �∗) +Q2(W,�W ), (2)

where X∗ consists of some d components of X that are admissi-
ble (see below) initial values (in analogy with the treatment of
Bell 1984 and McElroy 2008), and �∗ is the covariance matrix
of X∗. Also W = [Wd+1, . . . ,Wn]′ is the differenced sample,
with n− d-dimensional covariance matrix �W . The functions
Q1 and Q2 must be quadratic in their first arguments, but we
leave their exact form unspecified for the definition. Note that the
initial valuesX∗ need not be the first d (or last d) values of X, as
is typical in the single frequency literature; see Bell and Hillmer
(1991, sec. 4) on different initial values. The term “admissible”
means that the vector X can be reconstructed from X∗ and W;
not all choices of X∗ have this property (see Proposition 1).

To factorize the Gaussian likelihood in a convenient way, it
is necessary that a certain algebraic property holds for (2). To
this end, we may think of Y , X∗, and W as fixed nonrandom
vectors, or as realizations of the respective random vectors. We
say that the Gaussian likelihood factorizes iff (2) holds, such
that Q1 does not depend on W or �W , and Q2 does not depend
on X∗ or �∗. Again, this is purely a property of linear algebra.
From this definition, it follows that the gradient with respect to
W of Q1(X∗, �∗) is zero, and the gradient with respect to X∗
of Q2(W,�W ) is zero as well. (While there is a connection to
the factorization problem discussed in Cochran’s Theorem (see
Cochran 1934; Scheffé 1959), that result does not apply here; let-
ting Z = [X′

∗,W
′]′, Theorem 1 of Scheffé (1959) is concerned

with decomposing Z′Z into Q1(X∗, �∗) and Q2(W,�W ), the
right-hand side of (2). However, the left-hand side of (2) is the
more complicated form Y ′�−1

Y Y , rather than just Z′Z.)
We first establish a preliminary result about initial values

of the process. Since X is the highest frequency (unobserved)
data vector, it is differenced to stationarity by an n− d × n-
dimensional matrix �:⎡⎢⎣ δd . . . δ1 δ0 0 . . .

. . .
. . .

. . .
. . .

. . . 0
. . . 0 δd . . . δ1 δ0

⎤⎥⎦ .
Then W = �X is mean zero and has a Toeplitz covariance

matrix�W . Suppose that we consider any d values of X (denoted
X∗) as initial values, and seek to know whether they are admis-
sible. These values are equal to the first d components of some
n-dimensional permutation matrix P applied to X. Augment �
with the first d rows of this P such that

�̃(P ) =
[

[1d 0]P
�

]
. (3)

(We denote an �-dimensional identity matrix by 1�, whereas
0 is a rectangular matrix of zeroes of dimension dictated by
context.) Then applying �̃(P ) to X yields a vector with the
first d components given byX∗, followed by W. Therefore, X is
equal to the inverse of �̃(P ), when it exists, applied to [X′

∗,W
′]′;

hence X∗ is admissible if and only if �̃(P ) is invertible—this
can be considered as the definition of admissibility. We now
state our first result about initial values.

Proposition 1. Any difference stationary process {Xt } with
differencing polynomial δ(B) of degree d can be written as

Xt = Ã′
tX∗ +

t∑
j=d+1

bjWj

for d admissible initial values X∗ = [Xt1 , Xt2 , . . . , Xtd ]
′. Here,

Wt = δ(B)Xt is stationary, Ãt is a d-vector of time-varying
functions, and {bj } are real coefficients. Moreover, there is an
invertible mapping between X∗ and any other d admissible ini-
tial values.

For example, consider δ(B) = 1 − B2 and n = 3, with X′
∗ =

[X1, X3]; then

P =
⎡⎣1 0 0

0 0 1
0 1 0

⎤⎦ �̃(P ) =
⎡⎣1 0 0

0 0 1
−1 0 1

⎤⎦ ,
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and the latter matrix has null vector [0, 1, 0]. So this is inadmis-
sible (there is no way to obtainX2 fromX1,X3, andW3), but in
contrastX′

∗ = [X1, X2] andX∗ = [X2, X3] are both admissible.
So we are free to choose admissible initial values at our

convenience; as our results below demonstrate, it is advanta-
geous to choose them from among the available observed high-
est frequency observations in Y , because then the likelihood
is guaranteed to factor. First, we establish necessary and suffi-
cient conditions for this factorization, given a particular choice
of admissible initial values; the following proposition shows
that the likelihood factorizes iff there exists some invertible ma-
trix that makes J �̃−1(P ) appropriately block diagonal. Note
that admissible initial values, wherever they are chosen to lie
within an actual time series, are typically assumed to be uncor-
related with the differenced process (see Bell 1984); this is a
fundamental—and unverifiable—condition used for all sorts of
projection results in time series analysis.

Proposition 2. Assume there is a permutation matrix P such
that admissible initial values X∗ = [1d 0]PX are uncorrelated
with the differenced process {Wt }. Then the Gaussian likelihood
factorizes (i.e., Equation (2) holds) iff there exists an invertible
m-dimensional matrix R such that

RJ�̃−1(P ) =
[
A 0
0 B

]
,

for matrices A and B that are d × d and m− d × n− d-
dimensional, respectively, with �̃(P ) defined as in (3).

Since J �̃−1(P ) can be readily computed for each choice of
admissible initial values, we can verify the condition of Propo-
sition 2 at once by doing row reduction (Golub and Van Loan
1996, p. 102). The choice of admissible initial values may seem
to be a conundrum (Proposition 2 makes its assertion for any
single given set of admissible initial values, but does not re-
quire the orthogonality condition simultaneously for all such
choices, which is typically impossible). However, whenever d
initial values are contiguous (i.e., the elements of X∗ have in-
dices t1, . . . , td ∈ {t∗ + 1, . . . , t∗ + d} for some integer t∗), then
they are admissible, as the following result describes.

Lemma 1. Initial values are contiguous if and only if there ex-
ists a d × d permutation matrix� such that [1d 0]P = [0 � 0],
where the first t∗ columns of this matrix are zero. Furthermore,
contiguous initial values are admissible.

Note that admissible values need not be contiguous, but conti-
guity is often a convenient sufficient condition for admissibility;
in many practical situations, at least d contiguous values of the
high-frequency data X are observed—then any d-length block
of such can be used as admissible initial values.

2.3 Maximum Likelihood Estimation of Mixed Frequency
Time Series

We now assume that d contiguous values of X are ob-
served (i.e., appear in Y), and choose these to be the initial
values—Lemma 1 guarantees that they are admissible. We also
suppose—row-permuting Y if necessary—that these d initial
values actually occur as the first d values of Y . This assumption

enforces a structure on J, which can be stated mathematically
as [1d 0]J = [1d 0]P .

Theorem 1. Let the mixed sample Y of size m be written as
Y = J X for a high-frequency vector X that is a sample of size n
from a difference stationary process with degree d differencing
polynomial δ(B). Suppose that the initial valuesX∗ = [1d 0]PX
are contiguous and uncorrelated with W = �X, and are ob-
served as the first d values of Y , that is, [1d 0]J = [1d 0]P .
Then the Gaussian likelihood factorizes (see Proposition 2),
with

R =
[

1d 0
−A 1m−d

]
RJ�̃−1(P ) =

[
1d 0
0 B

]
,

where A and B are, respectively, m− d × d-dimensional and
m− d × n− d-dimensional matrices, and are the bottom rows
of J �̃−1(P ), that is,

[A B] = [0 1m−d ] J �̃−1(P ). (4)

Moreover, D = [0 1m−d ]R = [−A 1m−d ] differences Y in the
sense that

DY = BW (5)

is a linear combination of stationary random variables. Fi-
nally, −2 times the log Gaussian likelihood can be written as
X′

∗�
−1
∗ X∗ + log |�∗| plus

(DY )′
(
B�WB

′)−1
DY + log |B�WB ′|, (6)

up to irrelevant constants.

The exact expression (6) for the factorized Gaussian likeli-
hood can be compared to the state–space (SS) approach to the
problem. In Durbin and Koopman (2001), a description is given
of exact diffuse initialization, which amounts to letting the vari-
ances of the initial values tend to infinity in the calculations
of conditional variances (but log |�∗| is handled differently).
It is evident from Theorem 1 that this strategy is unnecessary,
because no model parameters are featured in the initial value
terms and one can work with (6) alone. Since Result 2 of Bell
and Hillmer (1991)—when applied to the problem of comput-
ing time series residuals (or innovations) optimally—indicates
that their initialization of the Kalman filter produces conditional
expectations (for Gaussian data), it follows that their likelihood
and our expression in Theorem 1 are identical. Bell and Hillmer
(1991) demonstrated that their “optimal” initialization of the
Kalman filter (based on the transformation approach of Ansley
and Kohn 1985) can produce different results from a diffuse ini-
tialization. However, while the Bell and Hillmer (1991) result
furnishes the optimal Gaussian likelihood using an SS approach,
our Theorem 1 produces an analytic formula that is easily com-
putable, allowing for treatment of time series models that cannot
be embedded in an SS framework with finite-length state vector.

For example, although long memory models can be em-
bedded in an SS framework with infinite-length state vector
(Chan and Palma 1998), for applications a truncation is needed,
which can substantially degrade the model’s description of
long-range dependence when persistence is high; see McEl-
roy and Holan (2012) for computational challenges associated
with long-range-dependent processes. Another example is fur-
nished by the exponential models of Bloomfield (1973), which
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are convenient for Bayesian modeling (Holan, McElroy, and
Chakraborty 2009). These models have an infinite moving av-
erage representation, and cannot be embedded in a finite SS
framework. Both these examples—as well as any process with
a well-defined autocovariance function computable from model
parameters—serve as applications of Theorem 1: to evaluate
the Gaussian likelihood of a long memory, exponential, or gen-
eral time series model, it is required to compute γh and form
�W . McElroy and Holan (2012) provided such algorithms for
the case of long memory and exponential models, whereas con-
ventional models (such as ARMA) are handled in classic texts
(Brockwell and Davis 1991). For auto regressive moving aver-
age (ARMA) models, one may indeed embed them in an SS
framework and use the Kalman filter to evaluate the Gaussian
likelihood—this is generally speaking more computationally ad-
vantageous over a direct application of Theorem 1, so long as the
initialization associated with nonstationary effects is correctly
handled.

In summary, our expression for the likelihood (6)—which is
contingent on having at least d of the highest frequency values
contiguously observed—is the same as that arising from the
Kalman filter with an optimal initialization. Whether it agrees
with nonoptimal initializations—such as the diffuse—is an em-
pirical matter; these alternative initializations may be approx-
imately correct in many cases. However, for short time series
there is no real disadvantage in using the explicit likelihood of
Theorem 1; moreover, for certain cases (e.g., long-range depen-
dence) the use of SS methods involves approximations. To use
our expression for the likelihood, note that—since no parameters
enter into �∗, it can be ignored—we may focus on minimizing
the quadratic form in DY . To summarize, our procedure is:

1. Identify any d contiguous observed high-frequency values
of {Xt } and rewrite Y so that these occur in the first d time
points.

2. Write down J such that Y = J X, with X∗ the d initial
values (and the first d values of Y).

3. Determine P corresponding to these initial values, and
compute �̃(P ) via Equation (3).

4. Compute �̃−1(P ).
5. Compute A and B from J �̃−1(P ) via (4).
6. Compute D and DY as in (5).
7. Compute �W from the model for {Wt } and compute(

B�WB
′)−1

.
8. Evaluate (6).

Only the last two steps need to be repeated over different
parameter values—all else can be calculated once. Combined
with a numerical optimization algorithm, the maximum like-
lihood estimates (MLEs) can then be obtained. If a Bayesian
analysis is desired instead, the same algorithm can be used for
likelihood evaluation, finally taking the exponential of −1/2
times the computed expression. (The portions involving initial
values will be integrated out in any computation of posterior
densities.)

2.4 Fitting Models With Regression Effects

We now provide a more nuanced discussion of model fitting
for mixed frequency data. Let us here suppose that the aggre-

gation relations between different frequencies hold exactly, as
described in Section 2.2. In other words, Y = J X describes an
exact linear relationship between observations and the highest
frequency time series. Then it is clear that all covariance struc-
ture for lower frequencies is generated by a specified covariance
structure at the higher frequencies. In other words, we may con-
sider specifying a model for the highest frequency data, and
this automatically determines an implied model for all lower
frequencies. Now if the high-frequency data follow an ARMA
model, the lower frequencies need not follow this same speci-
fication. They may not even be ARMA. But we still know how
to compute their covariances, and in this sense their model is
determined.

Fitting of the model proceeds via MLE, as described above.
We provide a bit more detail below. The fit can be checked by
examining the time series residuals—also defined below—for
serial correlation. One could also use Akaike information crite-
rion (AIC) values based on the likelihoods of competing models,
to choose between them.

Now a reasonable model will often include regression effects.
It is easiest to specify these at the highest frequency, knowing
that some of them may not even manifest at lower frequencies.
So suppose that the high-frequency unobserved data vector is
X = Xβ +X, with parameter vector β and design matrix X.
Then our observed data follow

Y = J X = J Xβ + J X.

So the new design matrix for the observed mixed data is J X. If a
higher frequency effect is not at all present at lower frequencies
(e.g., a monthly trading day effect has no impact on annual
data), then this absence will be automatically accounted for—the
corresponding rows and columns of J X will then just be zeroed
out. It follows from the results above that the Gaussian log-
likelihood is equal to −1/2 times

(Y − J Xβ)′�−1
Y (Y − J Xβ) + log |�−1

Y |
= (X∗ − [1d 0]PXβ)′�−1

∗ (X∗ − [1d 0]PXβ) − log |�∗|
+(
DY − B�Xβ

)′(
B�WB

′)−1 (
DY − B�Xβ

)
− log |B�WB ′|.

This uses (A.2) from the Appendix. Consider the final ex-
pression above. The first term is not constant with respect to the
model parameters, sinceβ occurs there. Optimizing with respect
to β, for any value of the other model parameters, produces the
MLE

β̂ =
[
X′

∗�
−1
∗ X∗ + X′�′B ′(B�WB ′)−1

B�X
]−1

[
X′�′B ′(B�WB ′)−1

BW + X′
∗�

−1
∗ X∗

]
.

Here X∗ = [1d 0]PX. It is problematic that this MLE depends
upon the nuisance parameters in �∗. This problem afflicts the
single frequency case as well, and is typically resolved by ig-
noring the unknown portions (which is conceptually effected
by letting �∗ diverge to infinity in the formula). Plugging the
resulting β̂ into the log-likelihood produces a concentrated like-
lihood, which only depends on the parameters for the model of
{Wt }. Or one may directly optimize the likelihood over both the
regression and time series model parameters, either jointly or
via an iterative algorithm. In this case, one must work with just
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McElroy and Monsell: Model Estimation, Prediction, and Signal Extraction 1289

the final two summands, which together correspond to (6) with
DY replaced by DY − B�Xβ.

Note that an alternative approach to the treatment of missing
values (say for a stock series) is to replace all of them with
some large fictitious number, and then insert an additive outlier
(AO) regressor at each such time point. (This method is imple-
mented in the X-12-ARIMA seasonal adjustment program; see
Section 7.14 of U. S. Census Bureau (2011) for more details.)
This procedure introduces additional parameters, and so is not
recommended for handling mixed frequency stock data (where
the number of missing values is potentially large).

Once the MLEs are determined, we can heuristically assess
model fit via the time series residuals defined as

ε = (
B�̂WB

′)−1/2 (
DY − B�Xβ̂

)
,

where the MLEs for parameters are used—hence the notation
�̂W and β̂. If the model is correctly specified, and all MLEs
were to converge to their asymptotic values, the above vector
would be iid standard normal. Plotting these residuals, along
with their sample ACFs, can allow one to assess model fit. If
a problem is found, we can try a new model and repeat the
whole procedure. An asymptotic theory for such diagnostics is
difficult to formulate, since assumptions about future changes
in sampling frequency must be accounted for somehow. Two
conventional approaches, used for single frequency time series,
were described by Brockwell and Davis (1991): sums of squared
residual autocorrelations can be compared to the χ2 distribution
(i.e., either a Box–Pierce or Ljung–Box statistic). One can also
use nonparametric methods, such as the “runs” test and the
“difference-sign” test. In our simulation and empirical work,
we use both the Ljung–Box statistic and the difference-sign
test.

2.5 Treatment of Logged Flows and Approximation Error

When considering mixed frequency flow time series, it is not
possible to embed changing frequency as a missing value prob-
lem. This is because any lower frequency flow is not identical
with a (regular) subsampling of a higher frequency flow. Put an-
other way, there is more than one nonzero entry in each row of J.
Hence, an SS approach with missing values cannot be used for
flows; instead one must consider a more nuanced observation
equation, which amounts to transforming underlying states of
the highest frequency time series by a matrix. The theory of Sec-
tions 2.2 and 2.3 provides the general necessary and sufficient
conditions for factorization.

However, if the data first undergo a Box–Cox transformation,
then flow aggregation relations are no longer linear, and Y =
J X no longer holds as an exact relation. We illustrate this
first with monthly (x1, x2, and x3) and quarterly (y1) data. In
the original scale, the flow property states that y1 = x1 + x2 +
x3, when y1 corresponds to the quarter comprising the months
described by x1, x2, x3. Suppose that we wish to model the
data in logarithms, this being a sensible variance-stabilizing
transform. Denote the log-transformed variables with capital
letters. Then Y1 �= X1 +X2 +X3, which is a nuisance. Note
that this problem does not arise for stocks (where y1 = x3 maps
to Y1 = X3 without hindrance).

By Jensen’s inequality, we always have Y1 ≥ log 3 + (X1 +
X2 +X3)/3. More precisely, we can write

log y1 = log x1 + log x2 + log x3

3

+ log

[(
x2

1

x2x3

)1/3

+
(
x2

2

x1x3

)1/3

+
(
x2

3

x1x2

)1/3
]
. (7)

This latter term is bounded below by log(3), and in practice is
close to the lower bound when x1, x2, x3 have values reasonably
close to one another. This analysis indicates that we might write
Y ≈ J X + μι, where the rows of J that do flow aggregation
have values of 1/3 (instead of one in the original data scale),
and μ = log(3) and ι is a vector of zeroes and ones. The ap-
proximation error may be small in certain cases, such that one
proceeds with the algorithm as if it were exact; we explore this
issue further through simulations in Section 4. Furthermore, if
any quarter is observed together with all its constituent months,
we may strike out that quarter’s row since it really imparts no
additional information over the three months. Then each quar-
ter that appears contains at most two months that are available
elsewhere in the sample, so that at least 1 month that makes up
the quarter is opaque (i.e., unobserved).

As for μι, this can be subtracted directly from the relevant
components of Y , so that Y − μι ≈ J X. Then Y − μι is mod-
eled in lieu of the original Y . More generally, suppose that
several lower frequencies are available, such that each is the
aggregation of mk highest frequency values, for various k in-
dexing the lower frequency portions; fk denotes the sampling
period relative to the highest frequency. The matrix J for the
logged data should have each unit value replaced by 1/fk , if that
particular row corresponds to data at the kth lowest frequency.
(Above, we had f1 = 3.) The compensating mean vector is now
written μι for a vector of known values μ and ι consisting of
the corresponding zeroes and ones. These μ values are equal
to log(fk) in a row corresponding to the kth lowest frequency
data. Then Y − μι ≈ J X, and we treat the approximation as an
exact equality.

Thus Y − μι is the observed data, which approximately
equals J X. It is more convenient to make any adjustments
μι needed to the data, and call the result Y; then Y = J X + E,
where E measures the approximation error between Y and J X.
This error is unobserved, and might be considered to be stochas-
tic, say with mean zero and covariance matrix �E . We assume
here that the error E is uncorrelated with X, mainly for simplic-
ity. We next derive an expression for the likelihood that involves
�E , and we discuss the ramifications of ignoring the presence
of �E .

First, consider the assumptions of Theorem 1 on J and X,
with the same notation, and let C be the block diagonal ma-
trix consisting of the blocks �∗ and B�WB ′. Also let ε = RE

(the matrix R is given in Theorem 1), with conformable decom-
position ε′ = [ε′

∗, ε
′], say. Thus �ε = R�ER

′. Finally, define
U ′ = [U ′

∗, U
′], withU∗ = X∗ + ε∗ andU = BW + ε. Then we

can state the following result.

Theorem 2. Let the mixed sample Y of size m be written as
Y = J X + E for a high-frequency vector X that is a sample of
size n from a difference stationary process with degree d dif-
ferencing polynomial δ(B), and with E mean zero, uncorrelated
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with X, and having covariance matrix �E . Suppose that the
initial values X∗ = [1d 0]PY are contiguous and uncorrelated
with W = �X, and appear as the first d values of Y − E, that
is, [1d 0]J = [1d 0]P . Let

R =
[

1d 0
−A 1m−d

]
RJ�̃−1(P ) =

[
1d 0
0 B

]
,

where A and B are, respectively, m− d × d-dimensional and
m− d × n− d-dimensional matrices, and are the bottom rows
of J �̃−1(P )—see (4). Then −2 times the log Gaussian likeli-
hood can be written as

U ′C−1U + log |C| − U ′C−1�E[1m + C−1�ε]
−1
C−1U

− log |1m + C−1�ε|,
where the first two terms correspond to the likelihood in The-
orem 1, and together factorize. But the latter two terms do not
factorize in general.

Note that if �E = 0, we recover the likelihood of Theorem
1. Because �ε need not have a block structure, the Gaussian
likelihood will not factorize when �E is nonzero. Omitting the
log determinantal terms, the scaled log-likelihood is lowered by
nontrivial �ε; when the noise-to-signal ratio matrix C−1�ε is
sufficiently close to the zero matrix, there is little change from
the likelihood of Theorem 1. Likewise, for the determinantal
terms we have log |�Y | = log |1m + C−1�ε| + log |C|, which
is approximately log |C| when the noise-to-signal ratio is small.
This suggests that we can measure the noise-to-signal ratio via
log |1m + C−1�ε|, with values close to zero indicating that �E
is relatively negligible.

The difficulty with the more general likelihood given in The-
orem 2 is that the additional terms (due to nonzero �ε) pre-
vent factorization, which is inconvenient for applications. So in
practice we might wish to use the likelihood (6) of Theorem 1
instead—where DY = BW + ε—whenever it is believed that
the signal-to-noise ratio is high. Otherwise, the approximation
of Y by J X will be poor and other techniques (such as a non-
linear method) should be used instead.

3. PROJECTION: FORECASTING AND SIGNAL
EXTRACTION

Many applications can also be handled using the results of
Section 2. If we are interested in optimal estimates of past or
future values, that is, backcasts and forecasts, then this can be
solved through the theory of projections. Missing data, that is,
omissions in the observed data J X at any frequency, are han-
dled with the same theory. More generally, any linear function
of the high-frequency vector X can be optimally estimated. The
general theory is well known, going back to Parzen (1961); its
application to the particular case of mixed frequency nonsta-
tionary time series data is given below.

Consider a vector of “target” quantities Z, written as a column
vector of length r, which can be expressed as a linear combi-
nation of the highest frequency data series {Xt }. This means
that there is an r × n matrix I such that Z = I X represents
the target. This target is a linear combination of high-frequency
variables that we wish to optimally estimate. Different choices
of I allow for backcasting, forecasting, imputation (missing val-
ues), and signal extraction. Moreover, this can be considered at

any frequency or combination of frequencies (so long as they
are lower frequency than the {Xt } process). When we speak of
signal extraction, here we refer to a signal defined as a fixed fil-
ter of the data rather than a stochastic component. For example,
the X-11 filter (i.e., the final X-11 filter applied to the extreme-
value-adjusted series, as described in Ladiray and Quenneville
2001) defines a target signal with I given by a matrix with rows
given by the coefficients of the moving average filter, appropri-
ately shifted.

We give further illustrations of projections—forecasting, im-
putation, signal extraction, etc.—following our main theorem.
All these problems have in common that one seeks to estimate
I X optimally from J X. Parzen (1961) provided a general for-
mula for this problem, and we can get a particular solution in
our context that is computable without knowledge of nuisance
values. In particular, suppose the same two assumptions used
for Theorem 1 hold, namely, that at least d of the highest fre-
quency values are contiguously observed and are uncorrelated
with {Wt }. We also assume that X has mean zero—if the data
have mean regression effects Xβ, we just apply the following
Theorem to X − Xβ instead of X, and then add back IXβ to
the estimator of Î X.

Theorem 3. Let the mixed sample Y of size m be written as
Y = J X for a high-frequency vector X that is a sample of size n
from a difference stationary process with degree d differencing
polynomial δ(B). Suppose that the initial valuesX∗ = [1d 0]PX
are contiguous and uncorrelated with W = �X, and are ob-
served as the first d values of Y , that is, [1d 0]J = [1d 0]P .
Then the formula for the optimal estimate of I X from J X is

Î X = I �X J
′�−1

Y Y = I �̃−1(P )

[
Y∗
�WB

′(B�WB ′)−1
DY

]
, (8)

where Y∗ = [1d 0]Y is the first d values of Y . The covariance
matrix of the error is

I �̃−1(P )

[
0 0

0 �W −�WB
′(B�WB ′)−1

B�W

]
�̃†(P ) I ′,

where † denotes inverse transpose.

Remark 1. The first formula in (8) is the general expression
from Parzen (1961), but the second formula is practicable for
implementation. The estimate Î X is computable from quantities
appearing in the algorithm of Section 2, and hence are readily
available. Since the error covariance matrix contains no nuisance
values, it is readily computed given the matrix I. Its diagonal
gives the mean squared error, and 1 − α prediction intervals are
given by

ÎX ± q1−α/2 σ,

where σ is the vector of square roots of the mean squared errors.
Also q1−α/2 is the upper right quantile of the high-frequency
marginal distribution; it is common to set q1−α/2 = 2 for ap-
proximately Gaussian 95% prediction intervals. To guarantee
that �W −�WB

′(B�WB ′)−1
B�W is positive definite (this can

fail due to numerical rounding errors), it may be useful to use the

numerical approximation (�−1
W + κB ′B)

−1
for large κ , which is

more likely to be positive definite. This approximation follows
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from the Sherman–Morrison–Woodbury formula:(
�−1
W + κB ′B

)−1 = �W −�WB
′(κ−11m−d + B�WB

′)−1
B�W.

Remark 2. In the case that I has the structure [1 0], we obtain
a vector of forecasts, backcasts, and imputations for X from Y .
Also in the special case that I = J , we immediately recover Y ,
as is seen from the first formula of (8).

Note that in producing estimates of I X, we do not treat the
classical signal extraction problem of estimating a latent process
S when X = S +N and N is noise (see Bell 1984). The nature
of the signals S and I X are quite different, as the latter is a
linear function of the data, while the former is not. Extending
classical signal extraction results to the mixed frequency case
requires different formulas and assumptions, and is not treated
here.

We now proceed to work through some applications. The
first thing to note is that in practice I is determined first—which
determines the exact length needed for X—which in turn will
determine J. We construct I and J such that the same vector X
is featured in both Z and Y . That is, if I is r × n and requires a
certain span of the {Xt } series for its definition, some of these
Xt variables may not be featured anywhere in the available data
matrix Y . In that case, the corresponding column of J will have
all zeroes. For example, suppose we have only a single frequency
and the data are Y = [X1, X2]′, but our target is Z = X0. Then
X = [X0, X1, X2]′ and I = [1, 0, 0], whereas

J =
[

0 1 0
0 0 1

]
.

This is a backcasting problem, which is only solvable when d ≤
1. More generally, I and J will be constructed by first building
the X vector out of the collection of all {Xt } variables featured
in the definitions of Z and Y .

The main application we have interest in occurs where we
wish to compute a signal of the form

∑
j ψjXt−j for a finite

string of filter coefficients {ψj }. Suppose that these form a two-
sided symmetric filter of total length 2q + 1. This occurs, for
example, with X-11 seasonal adjustment filters (applied as a
single linear filter with full forecast extension). If we desire
a total of r time points of the seasonally adjusted series, we
construct an r × r + 2q-dimensional matrix with row entries
given by the filter coefficients:

� =

⎡⎢⎣ψ−q . . . ψ0 . . . ψq . . . 0

0
. . .

. . .
. . .

. . .
. . . 0

0 . . . ψ−q . . . ψ0 . . . ψq

⎤⎥⎦ .
Then we have Z = � X, where n = r + 2q. In terms of The-
orem 3, I = �, and we obtain our estimate and its MSE by
plugging into the stated formulas.

More precisely, suppose that our target is to produce filtered
values of the highest available frequency, for every such time
point that occurs in our sample Y . Since Y = J X and J is
m× n, this means that r = n, and � has n rows and n+ 2q
columns. We must extend X to apply the Theorem 3. So let
X̃ = [X−q+1, . . . , X0, X

′, Xn+1, . . . , Xn+q]′, where the middle
portion is just our originalX = [X1, . . . , Xn]′. We must modify
J accordingly, by appending columns of zeroes to its front and

back:

J̃ = [0 J 0],

where the number of zero columns is q fore and aft. Then
Y = J̃ X̃, and we run the method on this new J and extended
X. This will change some of the formulas (n gets updated to
n+ 2q, etc.). Then the application of Theorem 3 is immediate.

This approach produces filtered values at the highest fre-
quency. It might also be desirable to produce filtered estimates
of some lower frequency. That is, suppose the target is now
� K X, where we have used K X to denote an entire sweep of
some lower frequency series. For example, if X were monthly
and we wanted quarterly values, we could write down K by
selecting or aggregating (for stock and flow cases, respectively)
components of X. Then with � designed appropriately for that
particular frequency (one must avoid using a monthly filter on
quarterly data!), our target is � K X.

Say one has n high-frequency values and the number of lower
frequency values produced is r, which is less than n in general. In
fact, r = pn for a fraction p that is the ratio of the, respectively,
sampling frequencies, that is, the reciprocal of the number of
time units of the highest frequency featured in one time unit of
the lower frequency. For example, p = 1/3 for the relation of
monthly to quarterly frequency. Then K is r × n, with entries
depending on the stock or flow cases, respectively:

K =
[

0 0 1 0 0 0 0 . . .
0 0 0 0 0 1 0 . . .

]
K =

[
1 1 1 0 0 0 0 . . .
0 0 0 1 1 1 0 . . .

]
.

Now the number of rows of� is r, so it has r + 2q columns, and
hence K and X need to be extended. In fact, we need to extend
Y to X̃ by adding q/p backcast values and q/p forecast values,
fore and aft. Then K is modified to K̃ in the obvious fashion,
such that K̃ X̃ has q low-frequency values appended fore and
aft to K X. Once we have determined all these things, we have
I = � K̃ in Theorem 3, and obtain J̃ as described above such
that Y = J̃ X̃.

In this manner, one might obtain estimates of filtered quan-
tities at all frequencies desired. For example, we might have
seasonal adjustments at quarterly (using a quarterly �) and
monthly (using a monthly �) frequencies. At this point, we
are free to splice the estimates however we desire—this can be
done to mimic the mingled-frequency structure of Y , if desired.
For example, suppose that on January 2005 monthly data be-
came available, the sample being purely quarterly beforehand.
We can run both procedures and obtain quarterly and monthly
seasonal adjustments. Then we could plot the quarterly seasonal
adjustment up through 4th quarter 2004, and the monthly sea-
sonal adjustment from January 2005 onward. If the filters are
coherent and the model is decent, the results should splice.

4. SIMULATION STUDIES

In this section, we seek to investigate the performance of
our methodology by addressing two aspects: (i) if the relative
proportion—in terms of how much of the whole sample of data
they each occupy—of two frequencies is unbalanced, how are
results affected? (ii) in the case of flow requiring a log trans-
formation, how are results sensitive to the ratio of sampling
frequencies? We are interested in evaluating these questions
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through criteria associated with model fitting, but also through
the quality of seasonal adjustment—this being a key applica-
tion of interest in the article. It will be important to assess how
sample size and the underlying dynamics of the process exert an
impact on both model fitting and seasonal adjustment. One limi-
tation of our study is the exclusion of the model misspecification
question.

To these ends, we consider simulations of monthly Gaussian
time series {Xt } drawn from an airline process

(1 − B)(1 − B12)Xt = (1 − θB)(1 −�B12)εt ,

with {εt } a white-noise process of variance one. Note that Wt

is the moving average process (1 − θB)(1 −�B12)εt . We con-
sider four specifications, which allow for some variation in both
the trend and seasonal dynamics:

1. Process 1: θ = 0.3, � = 0.3
2. Process 2: θ = 0.3, � = 0.6
3. Process 3: θ = 0.3, � = 0.9
4. Process 4: θ = 0.6, � = 0.6

Note that Process 1 has a fairly chaotic (rapidly changing)
seasonal pattern, while Process 3 has more stable seasonality.
For background on such processes and the implications for sea-
sonal adjustment, see Hillmer and Tiao (1982) and Bell and
Hillmer (1991). For these processes, the lag one autocorrelation
is equal to −θ/(1 + θ2), whereas the lag 12 autocorrelation is
−�/(1 +�2); the lag 11 and lag 13 autocorrelations are both
equal to the product of the lag 1 and 12 autocorrelations. Hence,
increasing θ (e.g., Process 2 compared to Process 4) generates
a more substantial negative correlation at lag one, while com-
paring the first three processes provides a contrast in the lag 12
correlation.

To investigate the impact of sample size, we suppose the un-
derlying monthly series to be of length T = 60, 120, 240, which
corresponds, respectively, to series that are “too short,” “mod-
erate,” and “lengthy” for purposes of model-based seasonal ad-
justment. We also consider three ratios ρ = 0.3, 0.5, 0.7 cor-
responding to the proportion of monthly observations that are
only available at a quarterly sampling frequency. For example,
with T = 120 we consider scenarios in which 36, 60, or 84
of the monthly observations actually correspond to Q quarterly
observations (respectively, either 12, 20, or 28 quarters). These
quarterly observations are produced in one of three ways: if the
series is a stock, we simply subsample systematically; if the
series is a flow, we aggregate the subsamples appropriately; if
the series is a flow that is modeled with a log transformation, we
exponentiate the monthly simulation, flow aggregate, and then
take logarithms to produce the mixed sample.

Each simulation is then fitted with a correctly specified airline
model for the monthly frequency—note that the quarterly por-
tion is assigned to the latter end of the time series. In the most
meager scenario with T = 60 and ρ = 0.7, there are only 18
monthly observations, followed by 14 quarterly observations;
since the 18 contiguous high-frequency observations exceed the
total order of differencing (d = 13), we can apply our methodol-
ogy. The model fit is assessed through analysis of the time series
residuals ε (discussed in Section 2.4) via the lag 24 Ljung–Box
(LB) statistic and the difference-sign (DS) test, each at a nom-
inal α = 0.05 Type I error rate. The proportion of rejections

across 1000 simulations is recorded in Table 1. The MLEs for
θ and � were also obtained, but tended not to be clustered
about the true parameters—estimating parameters through the
mixed frequency framework may well interfere with asymp-
totic consistency. Being less easy to interpret, and ultimately
less important than the time series residuals for the purpose of
assessing model fit, we have omitted a summary of the MLEs.

Each simulation is also seasonally adjusted by first computing
an appropriate number of forecasts, backcasts, and imputations,
to which an X-11 filter was applied. To match our subsequent
empirical investigations, we used the same specification for the
X-11 filter: we used a 3 × 3 and 3 × 5 for the seasonal moving
averages, and a 9-term Henderson, all for the monthly frequency
(see Ladiray and Quenneville 2001 for definitions). The quality
of seasonal adjustment can be assessed through the presence or
absence of seasonal spectral peaks (Soukup and Findley 1999).
In this case, we apply the nonparametric spectral peak test of
McElroy and Holan (2009) to each trend-differenced seasonal
adjustment; recall that the output seasonal adjustments are avail-
able at a monthly frequency for the entire monthly data length
T . There are five spectral peak tests, one for each monthly sea-
sonal frequency π/6, 2π/6, 3π/6, 4π/6, and 5π/6, and the
maximum of the normalized test statistics is used at the appro-
priate α = 0.05 quantile (the test statistics for various peaks are
asymptotically independent and normally distributed). The null
hypothesis in this case is a locally flat spectrum, so even mod-
erate departures toward residual seasonal peaks can produce a
significant test statistic (we use an upper one-sided alternative,
wishing to test against residual peaks, but being content with a
residual spectral trough). The seasonal adjustments were very
rarely flagged as being inadequate according to this criterion, as
shown in Tables 1–3.

We note that the rejection rate for the LB statistic tended to
exceed the nominal in the majority of cases, with little improve-
ment due to sample size (when T = 60,Q = 42, there are too
few observations to compute a lag 24 autocovariance, so these
cells are reported as an NA). The DS statistics tended to be
closer to nominal, with worse size in the cases where ρ = 0.5
and sample size is small. In the stock case (Table 1), there was
little appreciable impact due to changing autocorrelation in the
underlying process, and the story is similar for flows (Tables 2
and 3). Seasonal adjustments were rarely inadequate at sample
size T = 240, and never inadequate with smaller sample sizes.
Overall, the method is able to handle different sampling ratios
at small to moderate sample sizes quite well, at least for the
purpose of seasonal adjustment.

These studies address the first question (i) posed in this sec-
tion, namely, how the ratio ρ—as well as sample size T , series
type (stock versus flow), and level of autocorrelation—affects
model fitting and seasonal adjustment quality. The second ques-
tion (ii) requires us to investigate differing sampling frequen-
cies. Recall from Section 2.5 the notation fk for the sampling
period, relative to the highest frequency. We consider monthly
(k = 1), quarterly (k = 2), bi-annual (k = 3), and annual data
(k = 4), so that f1 = 1, f2 = 3, f3 = 6, and f4 = 12, respec-
tively. When we consider a flow that is modeled in its logs, we
offset the logged simulation by log fk for observations of the kth
lowest frequency. By studying monthly to quarterly, monthly to
bi-annual, and monthly to annual comparisons in sequence, we
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Table 1. Simulation results for stock series

(0.3, 0.3) (0.3, 0.6) (0.3, 0.9) (0.6, 0.6)
Airline process
diagnostic LB DS Spec LB DS Spec LB DS Spec LB DS Spec

T = 60, Q = 18 0.085 0.035 0 0.086 0.045 0 0.096 0.038 0 0.089 0.043 0
T = 60, Q = 30 0.095 0.097 0 0.084 0.110 0 0.087 0.098 0 0.089 0.102 0
T = 60, Q = 42 NA 0.055 0 NA 0.043 0 NA 0.057 0 NA 0.052 0
T = 120, Q = 36 0.063 0.026 0 0.097 0.038 0 0.084 0.041 0 0.098 0.034 0
T = 120, Q = 60 0.077 0.056 0 0.094 0.047 0 0.092 0.053 0 0.102 0.058 0
T = 120, Q = 84 0.080 0.030 0 0.085 0.021 0 0.075 0.019 0 0.085 0.028 0
T = 240, Q = 72 0.064 0.057 0 0.065 0.050 0 0.075 0.044 0 0.103 0.047 0
T = 240, Q = 120 0.060 0.072 0 0.086 0.058 0 0.084 0.067 0 0.106 0.069 0
T = 240, Q = 168 0.075 0.034 0.004 0.087 0.031 0 0.107 0.035 0 0.121 0.035 0

NOTES: Simulated airline processes with T −Qmonthly stock observations followed byQ/3 quarterly stock observations. Four airline processes are considered, with nonseasonal and
seasonal moving average parameters varying by column. Each cell reports the proportion of significant lag 24 Ljung–Box (LB) statistics, the proportion of significant difference-sign
(DS) test statistics, or the proportion of significant seasonal spectral peak (Spec) test statistics, out of 1000 Monte Carlo simulations, at α = 0.05.

can look for deterioration in performance. To focus our study
somewhat, for this part we setT = 120, but still consider various
choices of ρ.

The results are presented in Table 4. Again, changes in the
process’ autocorrelations are adequately handled by the model,
but as the respective sampling period fk increases—from quar-
terly to bi-annual to annual—the LB statistic becomes more
missized. In the case of the last row, consisting of 7 annual ob-
servations (A = 84) and 36 monthly observations, the monthly
pattern must be imputed for 92 % of the observations in each
of the 7 years, based on only 36 monthly observations. Nev-
ertheless, the seasonal adjustments continue to be adequate. At
least for this particular set of processes, and assuming the model
has been correctly specified, the mixed frequency methodology
appears to perform reasonably well.

5. EMPIRICAL APPLICATIONS

We are interested in applying these techniques to time se-
ries under production at official agencies. We first examine a
U.S. Census Bureau time series for which all monthly values
are available, but for which we artificially construct a quarterly
segment, so that we can assess our method. Second, we perform
a similar exercise with the flow series of industrial production,
modeled with a seasonal long memory process, and illustrate

the impact of the proportion of months to quarters. Third, we
examine a stock time series from the Bank of England, where
monthly frequencies were added to the previous quarterly sur-
vey, in the middle of 2009. Fourth, we examine a flow time
series from the Bundesbank, where an originally monthly series
became quarterly after 1996. All applications were computed by
an implementation of the above methods in R (R Development
Core Team 2014).

5.1 Application to Series U11SFI

Our first example is a stock time series available at a monthly
frequency. The series is “Food Product Finished Goods Inven-
tory,” denoted by U11SFI, for the dates January 1992 through
December 2005. Now this series is not actually mixed fre-
quency: we generated a mixed quarterly–monthly version of
it, and analyzed the result. Projections from this mixed sample
can be compared to truth, and the mixed frequency seasonal ad-
justments can also be compared to straight X-11 applied to the
original monthly series. We worked with a regression-adjusted
version of the series, using X-12-ARIMA initially to remove an
additive outlier (no other fixed effects, such as trading day or
holiday, were found to exist). Although the regression estima-
tion approach of Section 2.3 could be used, this would intro-
duce extra error at the model fitting stage—to isolate the X-11

Table 2. Simulation results for untransformed flow series

(0.3,0.3) (0.3,0.6) (0.3,0.9) (0.6,0.6)
Airline processes
Diagnostic LB DS Spec LB DS Spec LB DS Spec LB DS Spec

T = 60, Q = 18 0.075 0.047 0 0.077 0.047 0 0.078 0.027 0 0.099 0.033 0
T = 60, Q = 30 0.115 0.065 0 0.100 0.096 0 0.100 0.110 0 0.095 0.083 0
T = 60, Q = 42 NA 0.047 0 NA 0.049 0 NA .046 0 NA 0.045 0
T = 120, Q = 36 0.071 0.034 0 0.108 0.035 0 0.104 0.044 0 0.115 0.036 0
T = 120, Q = 60 0.083 0.054 0 0.085 0.059 0 0.085 0.058 0 0.079 0.046 0
T = 120, Q = 84 0.101 0.029 0 0.104 0.037 0 0.099 0.022 0 0.085 0.040 0
T = 240, Q = 72 0.069 0.057 0 0.097 0.051 0 0.089 0.056 0 0.105 0.047 0
T = 240, Q = 120 0.075 0.062 0.004 0.073 0.077 0 0.112 0.063 0 0.132 0.076 0
T = 240, Q = 168 0.073 0.038 0.015 0.066 0.034 0 0.092 0.043 0.001 0.076 0.034 0.001

NOTES: Simulated airline processes with T −Q monthly flow observations followed by Q/3 quarterly flow observations. Four airline processes are considered, with nonseasonal and
seasonal moving average parameters varying by column. Each cell reports the proportion of significant lag 24 Ljung–Box (LB) statistics, the proportion of significant difference-sign
(DS) test statistics, or the proportion of significant seasonal spectral peak (Spec) test statistics, out of 1000 Monte Carlo simulations, at α = 0.05.
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Table 3. Simulation results for log flow series

(0.3,0.3) (0.3,0.6) (0.3,0.9) (0.6,0.6)
Airline processes
Diagnostic LB DS Spec LB DS Spec LB DS Spec LB DS Spec

T = 60, Q = 18 0.101 0.042 0 0.100 0.052 0 0.075 0.051 0 0.096 0.035 0
T = 60, Q = 30 0.100 0.107 0 0.088 0.100 0 0.098 0.080 0 0.079 0.100 0
T = 60, Q = 42 NA 0.044 0 NA 0.045 0 NA 0.044 0 NA 0.049 0
T = 120, Q = 36 0.073 0.033 0 0.081 0.044 0 0.104 0.042 0 0.073 0.032 0
T = 120, Q = 60 0.085 0.047 0 0.072 0.077 0 0.100 0.047 0 0.089 0.055 0
T = 120, Q = 84 0.092 0.016 0 0.081 0.029 0 0.097 0.020 0 0.098 0.026 0
T = 240, Q = 72 0.058 0.056 0.001 0.061 0.052 0 0.090 0.045 0 0.094 0.046 0
T = 240, Q = 120 0.066 0.061 0.004 0.082 0.071 0 0.079 0.065 0 0.098 0.071 0
T = 240, Q = 168 0.067 0.039 0.011 0.078 0.035 0 0.085 0.029 0 0.083 0.022 0

NOTES: Simulated airline processes with T −Q monthly flow observations followed by Q/3 quarterly flow observations, where modeling is done in logarithms. Four airline processes
are considered, with nonseasonal and seasonal moving average parameters varying by column. Each cell reports the proportion of significant lag 24 Ljung–Box (LB) statistics, the
proportion of significant difference-sign (DS) test statistics, or the proportion of significant seasonal spectral peak (Spec) test statistics, out of 1000 Monte Carlo simulations, at α = 0.05.

filtering aspect and facilitate comparisons with truth, we pre-
sume that all fixed effects have been satisfactorily removed.

To produce the mixed frequency sample, we will suppose that
the last five full years of monthly observations are available,
but prior to this all data is quarterly. (We also did an analysis
with only two full years of monthly data, but the quality of the
results deteriorated somewhat; see further discussion below.)
Then Y consists of the last 60 monthly values, followed by
all the quarterly values in order, for all but the last five years;
see Figure 1. In the following plots, the following colors are
used consistently for this example: green represents the true full
monthly time series, whereas black is what we pretend is only
available to us for analysis. Projections are in blue, whereas the
mixed sample X-11 seasonal adjustment is in red. We can also
compute the full sample X-11 seasonal adjustment based on the
(green) monthly time series, which is depicted in purple. Shaded
intervals depict confidence intervals using two standard errors.
These plots are further discussed below.

Now although a Box–Jenkins airline model (Box and Jenk-
ins 1976)—deemed best by X-12-ARIMA—fitted to the logged
monthly data produced nonseasonal and seasonal moving aver-
age parameter MLEs of −0.08 and 0.61, respectively, we do not
know a priori that this model will work well with the mixed data.

After trying various specifications, it became clear that an I (2)
model for the monthly data was really necessary (see below),
and the airline model performed well; the lag 24 Ljung–Box
statistic was 20.904, and the difference-sign test statistic was
−0.756, neither being significant. So the low-frequency data
seems to inherit the I (2) structure of the airline model specified
for the higher frequencies. The nonseasonal and seasonal mov-
ing average parameters were estimated to be −0.13 and 0.66,
respectively, reflecting only modest departures from the model
fitted to the full data span. The time series residuals display lit-
tle serial structure, as is evident from the ACF plot in Figure 1.
Note that because the series is a stock, the model-fitting exer-
cise to the mixed data is equivalent to fitting a monthly model
to a series with a regular pattern of missing observations, that
is, prior to 2001 two out of every three observations is missing.
The fact that the estimated parameters in this case are close
to those obtained from the full monthly data confirms that our
methodology is sound.

Using these MLEs, we then calculated the quantities in Theo-
rem 3 to obtain the X-11 seasonal adjustment. (The specification
in this case was a 3 × 3 and 3 × 5 for the seasonal moving av-
erages, and a 9-term Henderson, all for the monthly frequency.
See Ladiray and Quenneville (2001) for definitions.) We are

Table 4. Simulation results for changing frequency series

(0.3,0.3) (0.3,0.6) (0.3,0.9) (0.6,0.6)
Airline processes
Diagnostic LB DS Spec LB DS Spec LB DS Spec LB DS Spec

T = 120, Q = 36 0.073 0.033 0 0.081 0.044 0 0.104 0.042 0 0.073 0.032 0
T = 120, Q = 60 0.085 0.047 0 0.072 0.077 0 0.100 0.047 0 0.089 0.055 0
T = 120, Q = 84 0.092 0.016 0 0.081 0.029 0 0.097 0.020 0 0.098 0.026 0
T = 120, B = 36 0.084 0.071 0 0.075 0.088 0 0.080 0.062 0 0.100 0.071 0
T = 120, B = 60 0.106 0.033 0 0.105 0.031 0 0.107 0.026 0 0.086 0.037 0
T = 120, B = 84 0.255 0.049 0 0.189 0.054 0 0.128 0.042 0 0.115 0.044 0
T = 120, A = 36 0.076 0.041 0 0.082 0.043 0 0.078 0.055 0 0.095 0.051 0
T = 120, A = 60 0.078 0.049 0 0.095 0.060 0 0.103 0.045 0 0.088 0.070 0
T = 120, A = 84 0.132 0.068 0 0.138 0.062 0 0.111 0.060 0 0.120 0.062 0

NOTES: Simulated airline processes with differing sampling frequencies, for a flow process modeled in the logarithms. First, for a monthly-to-quarterly study, T −Q monthly flow
observations are followed byQ/3 quarterly flow observations; for a monthly-to-biannual study, T − B monthly flow observations are followed by B/6 biannual flow observations; finally
for a monthly-to-annual study, T − A monthly flow observations are followed by A/12 annual flow observations. Four airline processes are considered, with nonseasonal and seasonal
moving average parameters varying by column. Each cell reports the proportion of significant lag 24 Ljung–Box (LB) statistics, the proportion of significant difference-sign (DS) test
statistics, or the proportion of significant seasonal spectral peak (Spec) test statistics, out of 1000 Monte Carlo simulations, at α = 0.05.
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McElroy and Monsell: Model Estimation, Prediction, and Signal Extraction 1295

Figure 1. The left panel displays the mixed frequency sample along with the original monthly sample of U11SFI, whereas the right panel
displays the ACF of the time series residuals from the fitted mixed frequency airline model. The spacing of the black dots in the left panel
changes in 2001, which reflects the transition from quarterly to monthly frequencies.

primarily interested in the values for the monthly segment, but
values for the quarterly portion of the mixed sample are pro-
duced by our algorithm as well. In Figure 2, we have the mixed
sample plotted with the projections, that is, the forecasts, back-
casts, and imputations. Also overlaid are the monthly seasonal
adjustments. We depict with shading the confidence intervals
associated with two standard errors, where a standard error is
the square root of the projection MSE (see Remark 1). It is ev-
ident that the forecasts and backcasts are heavily based on the
pattern present in the five years of monthly data; for the sweep
of years corresponding to quarterly data, the projections effect
an interpolation using the inferred monthly pattern (see the right
panel of Figure 3).

To assess whether the seasonally adjusted values for the
monthly portion—that is, January 2001 through December
2005—it is informative to apply the same X-11 filter to the
complete monthly dataset (purple). For this exercise, we use the
model that was fitted to the mixed frequency data, although one
could use the original model instead. We do it this way to isolate
the effect of the mixed sampling, since otherwise the discrepan-
cies between the two seasonal adjustments would be due to both

differences in model parameters as well as effects of the mixed
sample. Figure 3 displays both X-11 seasonal adjustments to-
gether; we note there is little discrepancy in the quarterly portion,
where much of the monthly pattern is inferred, and even better
agreement on the monthly portion. This agreement increases
as one progresses from 2001 to 2005, since the impact of the
older data, where the two methods diverge, has less impact. The
right panel of Figure 3 reveals that the good results are due
to the high accuracy of the projection results in the quarterly
span.

MSEs can also be directly examined (see Remark 1 for
their calculation). We first display the projection MSEs for the
monthly series in the left panel of Figure 4; note that the central
portion has the value zero, along with every third value in the
quarterly span of the mixed sample—of course these values are
known and the error is zero. Uncertainty rises predictably at the
boundaries of the sample, which are marked by the dotted blue
lines. Finally, the right panel of Figure 4 gives the MSEs for the
X-11 seasonal adjustment estimates, the asymmetric structure
following the pattern for the projections. The oscillatory and
step-function characteristics of these plots are a familiar feature

Figure 2. The left panel displays the mixed frequency sample, full projections, and seasonally adjusted data for U11SFI. The right panel
displays the same information without the projections. The spacing of the black dots in these panels changes in 2001, which reflects the transition
from quarterly to monthly frequencies.
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Figure 3. The left panel displays the seasonal adjustments for U11SFI using both the mixed sample and the entire monthly data span. The
right panel compares the projections directly to the actual partially unobserved true monthly data.

of finite-sample MSEs for time series projections (see McElroy
2008).

We also examined the same series with a monthly span of
two years, rather than five years (we do not present results
here). As with the longer span, the airline model was still an ad-
equate fit, with parameters −0.08 and 0.59. The projections did
a remarkable job of tracking the real monthly movements in the
quarterly portion, although the error was increased over the for-
mer results. Accordingly, the difference between the mixed and
full monthly X-11 seasonal adjustments was still small. This en-
couraging result suggests that when only 24 − 13 = 11 monthly
observations are available (after differencing), the method is
still viable because the quarterly data can be sensibly put to use.
This agrees with our simulation results for the case that ρ is
small.

5.2 Application to Industrial Production

We extend the previous subsection’s exercise to a monthly
flow series, namely, industrial production (Source: Federal Re-
serve Board 1959–2007), where we fictitiously generate quar-
terly flows by averaging 3 monthly values at a time, from the
beginning of the sample. The span (in years) of monthly data,

at the end of the series, is taken to be 10, 20, 30, or 40, yield-
ing a progressively greater proportion of monthly observations.
Note that we do not use a log transformation for this example,
and that we define the quarterly flows by averaging, rather than
summing, because this allows for easier visualization.

We are interested in the performance of long memory mod-
els in this context, and therefore consider a 7-GEXP (general-
ized EXPonential) model with seven spectral peaks, discussed
in McElroy and Holan (2012). This model is written in the fre-
quency domain, with spectral density f for the trend-differenced
monthly high-frequency process given by

f (λ) = (2 − 2 cos λ)−a (2 + 2 cos λ)−b

×
k∏
j=1

|1 − 2 cos(πj/6)e−iλ + e−i2λ|2cj g(λ)

g(λ) = exp

⎧⎨⎩
3∑
j=1

gj cos(λj )

⎫⎬⎭ σ 2.

The short memory part of the model is provided by g, and
the parameters g1, g2, g3 are real numbers known as cepstral
coefficients (Bloomfield 1973), with σ 2 being the innovation
variance. The long memory portion of the model—including

Figure 4. The left panel displays the MSEs for the full projections for U11SFI, whereas the right panel displays the MSEs for the mixed
frequency seasonal adjustment.
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McElroy and Monsell: Model Estimation, Prediction, and Signal Extraction 1297

Figure 5. The left panel displays the mixed frequency sample, full projections, and seasonally adjusted data for industrial production. The
right panel displays the same information without the projections. This case uses 10 years of monthly and 39 years of quarterly observations.

seasonal long memory and possible anti-persistence—is param-
eterized through a, b, c1, . . . , c5, which correspond to spectral
behavior at frequencies 0, π, π/6, . . . , 5π/6, respectively. Posi-
tive exponents correspond to long memory (at the corresponding
frequency), whereas negative exponents correspond to negative
memory, or anti-persistence (McElroy and Politis 2014 provided
an overview).

We expect that as the proportion of monthly observations
decreases, the model will be more difficult to fit. This is be-
cause in the extreme case that the data are completely quarterly,
only three spectral peaks—instead of seven—will be present,
so that some of the memory parameters will not be identified.
Therefore, we are interested in the modeling performance as
the monthly span is adjusted, and we examine both model fit
and seasonal adjustment. We are not aware of any other meth-
ods (there seems to be no literature on embedding seasonal
long memory processes into an SS framework, although it may
be possible to extend Chan and Palma (1998) to the mutiple-
spectral pole case) that can address this type of model structure.
Whereas a SARIMA model, such as is used in the U11SFI, is
reasonable for the industrial production, there seems to be some
evidence that a seasonal long memory approach, as provided by

the 7-GEXP model, can ably produce a better frequency domain
description of the seasonality.

Using the spans of 10, 20, 30, and 40, we obtain fitted mod-
els in each case after several minutes of computing (the sam-
ple size is much larger here than for U11SFI), with sign test
p-values of 0.42, 0.36, 0.12, and 0.08, respectively. This indi-
cates the residuals have a bit more serial correlation when more
monthly data are present. The maximum likelihood estimates
of the parameters show a quite high degree of long memory for
all seven frequencies, albeit the first seasonal π/6 is much more
moderate than the others—this behavior persists for all four
spans.

We apply the same seasonal adjustment filters as for the
U11SFI example, and display the working data, the fitted spec-
tral density (for the underlying trend-differenced high-frequency
model), and the seasonal adjustment; see Figures 5–8. We also
compared these adjustments to those obtained by having the full
monthly data, but there was no visual discrepancy, and hence
these figures are omitted. The standard errors for projections
and adjustments were quite small, being hardly visible (except-
ing for forecasts and backcasts). Overall, the adjustments were

Figure 6. The left panel displays the mixed frequency sample, full projections, and seasonally adjusted data for industrial production. The
right panel displays the same information without the projections. This case uses 20 years of monthly and 29 years of quarterly observations.
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Figure 7. The left panel displays the mixed frequency sample, full projections, and seasonally adjusted data for industrial production. The
right panel displays the same information without the projections. This case uses 30 years of monthly and 19 years of quarterly observations.

quite adequate, and the methodology worked quite satisfactorily
for all four spans.

5.3 Application to Sterling Series

Our third example is a stock time series available at a quarterly
frequency up until July 2009, when it also became available at
a monthly frequency. The original dataset (which we obtained
from Fida Hussain of the Bank of England) ran through May
2011, although new values have since been added to the series.
The title is “Sterling net lending to construction companies”—or
Sterling for short—and is published in the “Analysis of Mone-
tary Financial Institutions’ deposits from and lending to UK resi-
dents” statistical release of the Bank of England (see http://www.
bankofengland.co.uk/statistics/abl/current/index.htm.) It covers
the dates December 1986 through May 2011, with the last 23
observations being monthly in addition to quarterly. The se-
ries was deemed seasonal according to standard diagnostics of
X-12-ARIMA, including the stable F test, and these data have
traditionally been seasonally adjusted by Bank of England. Note
that this short span of monthly observations indicates, in light of
our experience with U11SFI, that the inferred monthly patterns
may be somewhat unreliable. This is just less than two years of

data, and it is quite difficult to see a seasonal monthly pattern
here.

A salient feature in the data is an enormous level shift occur-
ring in January 2011, due to a reclassification. No other fixed
effects were deemed significant in the quarterly data, so we
proceeded only with the level shift regressor, which was esti-
mated in an initial run of X-12-ARIMA on the quarterly span.
Adopting a similar modeling approach as with the U11SFI se-
ries, our final model for logged monthly Sterling—after testing
some inferior competitors—was a SARIMA (1,1,1)(0,1,1) given
by

(1 − 0.96B)(1 − B)(1 − B12) [Xt − 0.844 LSt ]
= (1 − 0.79B)(1 − 0.71B12)εt .

The fit produced residuals with little apparent serial structure;
the lag 24 Ljung–Box statistic was 19.453, and the difference-
sign test statistic was 1.715 (significantly different from zero
with p-value 0.043).

Then we computed all projections and applied an X-11
monthly seasonal adjustment filter (same specification as with
U11SFI). The left panel of Figure 9 displays the available data
together with all projections and the seasonal adjustments (with
two standard error confidence intervals), while the right panel

Figure 8. The left panel displays the mixed frequency sample, full projections, and seasonally adjusted data for industrial production. The
right panel displays the same information without the projections. This case uses 40 years of monthly and 9 years of quarterly observations.
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Figure 9. The left panel displays the mixed frequency sample, full projections, and seasonally adjusted data for the Sterling series. The right
panel displays the same information without the projections. The spacing of the black dots in the left panel changes in 2009, which reflects the
transition from quarterly to monthly frequencies.

focuses on just the portion of July 2009 through May 2011. All
projection results are based on regression-adjusted data, and so
in the left panel the level shift has been removed from them.
The right panel displays a more focused picture with the projec-
tions removed. For production purposes, the level shift would
be reincorporated into the published seasonal adjustment.

The result of the analysis is difficult to assess, due to the
limited scope of the 23 monthly observations, but no egregious
problems with the adjustment are visible at this point. Figure 10
displays the MSE curves for both the projections and the sea-
sonal adjustments. The left panel has zeroes at the correct times,
and a pattern similar to that found with the U11SFI series. The
right panel has the actual MSE curves for the seasonal adjust-
ment.

5.4 Application to Construction Series

It is of interest to consider the opposite case to the Sterling se-
ries, where the data becomes less frequent over time. Our fourth
example is a flow series where the frequency of observation
decreases. Available as a monthly flow from 1977 onward, the

series was only published at a quarterly interval starting in 1996.
The title is “Total turnover of installation and building comple-
tion work,” or Construction for short. The source of the data is
the German Federal Statistical Office, and former values in Ger-
man marks were converted to Euros via the official conversion
rate. Our sample is taken up through December 2008, so the
series has 228 monthly observations followed by 52 quarterly
observations.

The series presents obvious seasonality, and also has a signif-
icant trading day pattern. Since both the monthly and quarterly
spans contain a fair amount of data, we can expect the method
to work reliably, so long as a decent model is identified. We
used a trading day model, estimated using X-12-ARIMA on
the monthly portion, that resulted in estimated coefficients of
−2.63, 13.98,−4.32, 32.78,−17.37,−0.79,−21.66 for Mon-
day through Sunday. Since the model was adequate without
a transformation, we chose not to use a logarithmic transfor-
mation. The final model, after some analysis of competing
SARIMA specifications, was again an airline model with non-
seasonal and seasonal moving average parameters of 0.64 and

Figure 10. The left panel displays the MSEs for the full projections for the Sterling series, whereas the right panel displays the MSEs for the
mixed frequency seasonal adjustment.
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Figure 11. The left panel displays the mixed frequency sample for the Construction series, together with the monthly flow aggregated to a
quarterly frequency (in red). The right panel displays the monthly data, full projections, and monthly seasonally adjusted data for the Construction
series.

0.52. The fit produced residuals with little apparent serial cor-
relation; the lag 24 Ljung–Box statistic was 19.842, while DS
was −1.481.

For such a series—which was monthly and has become
quarterly—one can simply aggregate past monthly data to form
a historical quarterly series, and seasonally adjust it. Such a pro-
cedure can be accomplished using standard software. A more
challenging question is: can we continue to produce monthly
seasonal adjustments on the basis of the historical monthly data
together with the current quarterly data? We proceed to apply
our methodology to this problem.

Visualization of mixed frequency data is harder for flows
than stocks, because lower frequency data have much higher
values (since it is obtained by summing higher frequency val-
ues). Figure 11 displays the Construction series: its monthly
portion is in black, and the higher quarterly portion is given
with black dots. We also converted the monthly flows to quar-
terly flows by aggregation, and plotted in green these num-
bers alongside the latter quarterly flows. Projection results in
Figure 11 show forecasts and backcasts, but the later quarterly
data has been left out of the picture for easier viewing. Note
that the projections take into account regression preadjustment

(for trading day), and hence in the center the projections dif-
fer very slightly from the monthly data—without trading day
adjustment, these portions would be identical. Also, the fore-
casts of the monthly portion will aggregate exactly to the known
quarterly values for the years 1996 through 2008, since this is a
built-in constraint. The monthly seasonal adjustment looks emi-
nently reasonable, and has the right statistical behavior (there is
some slight negative autocorrelation at lag 12, but this is fairly
typical).

Figure 12 displays the MSE curves for both the projections
and the seasonal adjustments, with results similar to Sterling
and U11SFI. The three vertical lines mark the beginning and
end of the sample, and also the transition time from monthly
to quarterly flow. Unlike with the MSEs of the previous stock
examples, the error for the projections during the quarterly pe-
riod are all nonzero, which is because none of the quarterly
flow values correspond to monthly flow values, and hence all
must be estimated (imputed). Beyond the first and third verti-
cal lines, we fall into the territory of backcasts and forecasts,
respectively, and the uncertainty increases at a greater rate over
time. The mesa-like structure of the X-11 seasonal adjustment
MSE again is due to this transition from monthly to quarterly,

Figure 12. The left panel displays the MSEs for the full projections for the Construction series, whereas the right panel displays the MSEs
for the mixed frequency seasonal adjustment.
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with additional uncertainty due to the flow structure relative to
stock series.

6. CONCLUSION

The research of this article stems naturally from an applied
problem in time series analysis with potentially wide ramifica-
tions. The issue of changing sampling frequency can be viewed
from the broader perspective of the task with which many statis-
ticians are faced, whereby it is necessary to integrate several
disparate sources of information—potentially arising from dif-
ferent surveys, constructed under disparate assumptions—into a
coherent whole. In this particular case, the problem can be tack-
led fairly easily by reducing all observations to a linear function
of the highest available frequency. Although the application of
projection theory is classical at this stage, the practical formulas
for nonstationary processes are subtle and require some care.

This article’s main contribution is a presentation of exact for-
mulas for likelihoods and projections in the context of such
mixed frequency data, which fills an important theoretical gap
in the literature. Some authors may prefer to use the formu-
las herein, rather than encode a state–space approach to the
problem. We believe there are some advantages to having the
exact matrix formulas for conditional expectations, and the cor-
responding error covariance matrices. In particular, the cases of
long memory models and exponential models cannot be given
an exact treatment with SS methodology, and recourse to a di-
rect method is recommended. Practical issues, such as dealing
with logarithmic transformations of flow variables, as well as
regressors, are addressed herein as well.

The method applied to produce X-11 seasonal adjustments
performs quite reasonably once a decent model is identified
for the mixed sample. We emphasize that this aspect is crucial,
since our own earlier efforts based on faulty models produced
grotesque results. In particular, we have found that I (1) mod-
els for the highest frequency generate projections that attempt
to maintain a steady level while at the same time remaining
faithful to constraints from the lower frequencies. For example,
with U11SFI the projections from an I (1) model extrapolate the
monthly seasonal pattern backward in time, at the same level, but
with ever-increasing amplitude of the seasonal factors to ensure
that the projections coincide with every third monthly historical
value (i.e., the quarterly values). To ensure that high-frequency
structure can be appropriately imposed on low-frequency obser-
vations with changing level, an I (2) model was necessary. Once
the differencing polynomial δ(B) is correctly ascertained, the
other aspects of the model (such as SARMA specification and
parameter values) had a much narrower impact. Of course, this
sort of discussion is well known for single frequency time series,
but our point here is that the repercussions of mis-specifying the
unit root have a much greater impact on projections in the case
of mingled frequency data.

In actual practice, earlier seasonal adjustments from a single
frequency may be historically available to the analyst, and any
viable model should produce new seasonal adjustments that are
largely in agreement with the past. Our methodology (and exam-
ples) suggests that an available model for the highest frequency
data (in the past) may well serve as a good model for {Xt } when
fitting to the mingled data as well; but this strategy is only avail-

able when the data are becoming less frequent over time, as
with the Construction series. The practitioner naturally wishes
the new seasonal adjustments, at whatever desired frequency
that is considered, to be in agreement with past adjustments.
This aesthetic can be used to guide model selection, that is,
models that produce seasonal adjustments radically disparate
from previous single frequency seasonal adjustments should be
questioned and revised. Adopting this principle has allowed
us—in the examples of Section 5—to obtain superior models to
those that we had initially conceived.

In addition, assessing the model fit through ACF plots of the
time series residuals seems to be a good screening technique as
well. An extensive exposition of model selection in the context
of multiple frequency data would be welcome, but is beyond
the scope of this article. We also reiterate that it is important
to have a suitably long stretch of highest frequency data—as
supported by our simulation studies of Section 4—since the in-
ferred patterns that are imputed to the lower frequency stretches
principally arise from the observed high frequencies. Our par-
ticular implementation of the likelihoods and projections were
written in R (R Development Core Team 2014), and all programs
and scripts are available from the authors upon request. (This
methodology has not yet been incorporated into X-12-ARIMA
or X-13 ARIMA-SEATS.)

APPENDIX: PROOFS OF RESULTS

Proof of Proposition 1. We begin with the representation result of
Bell (1984), which can be written as

Xt = A′
tX0 +

t∑
j=d+1

ξt−jWj , (A.1)

where the kth component of At is ξt−k − ξt−k−1δ1 − · · · − ξt−dδd−k
for k = 1, 2, . . . , d and the {ξj } are the coefficients of δ−1(B). Here
X0 = [X1, X2, . . . , Xd ]′, which is a “canonical” choice of initial val-
ues; in this case the corresponding P is the identity matrix, and the
admissibility of X0 follows at once from the fact that �̃(1�) is unit
lower triangular (hence invertible) for any given �. Then for any ad-
missible X∗, we have

X = �̃−1(1�)

[
X0

W

]
= �̃−1(P )

[
X∗
W

]
,

where W = [Wd+1, . . . ,W�]
′. This shows that

X0 = [1d 0] �̃−1(P ) [1d 0]′X∗ + [1d 0] �̃−1(P ) [0 1�−d ]′W.

Plugging this into (A.1) with � = t then yields the representation dis-
cussed in the statement of the proposition, after collecting terms. More-
over, the above argument shows thatX∗ = CX0 + BW with C a d × d

matrix and B a matrix with d rows; see the representation in eq. (4.1) of
Bell and Hillmer (1991). This relates X∗ to X0, but we can also relate
X∗ to any other admissible initial values in this way. �

Proof of Proposition 2. By assumption, �̃(P ) is invertible. We begin
by calculating Y ′�−1

Y Y , and then consider the direct and converse
statements. A general block decomposition of R J �̃−1(P ) for any
invertible matrix R is

R J �̃−1(P ) =
[
A B

A B

]
,
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partitioned into d and m− d rows, and d and n− d columns. Then
R Y = R J X is given by

R Y =
[
A B

A B

] [
X∗
W

]
.

Then, using the assumption that Y∗ and W are uncorrelated, along with
the Schur decomposition (Axelsson 1996), we obtain:

R�Y R
′ =

[
A�∗A

′ + B�WB
′
A�∗A′ + B�WB

′

A�∗A
′ + B�WB

′
A�∗A′ + B�WB

′

]
S = A�∗A′ + B�WB

′ −
(
A�∗A

′ + B�WB
′)(

A�∗A
′ + B�WB

′)−1 (
A�∗A′ + B�WB

′)
Y ′�−1

Y Y = [
AX∗ + BW

]′(
A�∗A

′ + B�WB
′)−1

[
AX∗ + BW

]
+[
AX∗ + BW −

(
A�∗A

′ + B�WB
′)(

A�∗A
′ + B�WB

′)−1 (
AX∗ + BW

) ]′
· S−1

[
AX∗ + BW −

(
A�∗A

′ + B�WB
′)(

A�∗A
′ + B�WB

′)−1 (
AX∗ + BW

) ]
.

Note that R does not appear in the final quadratic form, since it is in-
vertible. If we first assume that a block-diagonalizing R exists, then
B = 0 and A = 0, and the quadratic form reduces to the sum of

[AX∗]
′
(A�∗A

′
)
−1

[AX∗] and [BW ]′(B�WB ′)−1[BW ], so factorization
is immediate. Conversely, suppose that the likelihood factorizes. Then
if we apply ∇W , the gradient with respect to W, to the quadratic form,
the resulting expression will depend upon�W unless B = 0. Similarly,
if we apply ∇X∗ to Y ′�−1

Y Y , we find that A = 0 must hold (otherwise
S will depend on �∗). This shows that R J �̃−1(P ) is block diagonal
as desired. �

Proof of Lemma 1. Contiguity means that the indices {t1, . . . , td} of
X∗ are in a block {t∗ + 1, . . . , t∗ + d}, and� is the mapping of this set to
{1, . . . , d}. The matrix form of this is the first statement of the lemma.
For the second assertion, suppose that �̃(P )v = 0, so that �v = 0.
Therefore, we can write v = {∑d

i=1 βizi(tj )}
n

j=1 for basis functions zi(t)
and times tj . (The action of� on each basis function annihilates it.) This
can be written v = Zβ withZji = zi(tj ). So 0 = [0 � 0]v = [� 0]Zβ,
where Z consists of removing the first t∗ rows of Z. Consider column
operations M (with M invertible) such that ZM has first d rows equal
to 1d , which we can accomplish because the columns of Z are linearly
independent. Thus,

0 = [� 0]Zβ = �M−1β,

which implies that β = 0, and hence that v = 0. This shows that �̃(P )
is invertible. �

Proof of Theorem 1. The invertibility of �̃(P ) follows from conti-
guity and Lemma 1. Also [1d 0] J �̃−1(P ) = [1d 0] since [1d 0] J =
[1d 0] �̃(P ). With the definition of A and B in (4), the block diagonal
form of R J �̃−1(P ) follows at once from the definition of R, which is
clearly lower triangular with unit diagonal (and hence invertible). Also

Y = J X = J �̃−1(P )

[
X∗
W

]
= R−1

[
1d 0
0 B

] [
X∗
W

]
= R−1

[
X∗
BW

]
, (A.2)

from which follows (5) upon left multiplication of (A.2) by R. In
addition it follows from (A.2) that

�Y = R−1

[
�∗ 0
0 B�WB

′

]
R†

�−1
Y = R′

[
�−1

∗ 0

0
(
B�WB

′)−1

]
R,

where all the stated inverses indeed exist. The dagger notation stands
for inverse transpose. Now using this in (1) together with (A.2) and the
fact that R has unit determinant, we obtain (6). �

Proof of Theorem 2. First, we can write J�XJ ′ = R−1CR†, and
thus (J�XJ ′)−1 = R′C−1R. Then �Y = R−1CR† +�E = R−1[C +
�ε]R†, where�ε = R�ER

′. Using the Sherman–Morrison–Woodbury
identity (Golub and Van Loan 1996),

�−1
Y = R′(C−1 − C−1�ε[1m + C−1�ε]

−1
C−1)R.

Also we have

Y = R−1

[
X∗
BW

]
+ E = R−1U.

As a result, we obtain

Y ′�−1
Y Y = U ′C−1U − U ′C−1�ε[1m + C−1�ε]

−1
C−1U,

from which the result of the Theorem now follows. �
Proof of Theorem 3. The first line of Î X follows directly from

Parzen (1961). Note that

�X = �̃−1(P )

[
�∗ 0
0 �W

]
�̃†(P ),

so that by (A.2) and the other calculations in the proof of Theorem 1
we obtain

Î X =
I �̃−1(P )

[
�∗ 0
0 �W

] [
1d 0
0 B ′

] [
�−1

∗ 0

0
(
B�WB

′)−1

]
RY,

which simplifies to the stated formula. This depends on no nuisance
values. The error process is

Î X − I X = −I (
1n −�X J

′�−1
Y J

)
X,

which has covariance matrix

I
(
1n −�X J

′�−1
Y J

)
�X

(
1n − J ′�−1

Y J �X
)

= I �̃−1(P )

[
�∗ 0
0 �W

]
�̃†(P ) I ′

−I �̃−1(P )

[
�∗ 0

0 �WB
′(B�WB ′)−1

B�W

]
�̃†(P ) I ′,

which simplifies to the stated formula. �
[Received June 2012. Revised September 2014.]
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