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Abstract 

When data are available, the X-11 method uses 
symmetric moving average filters, utilizing the same 
amount of data before and after the point of interest. 
For the most relevant points at the end of the series, 
we have two options: use asymmetric filters or 
extend the series with forecasts and use “symmetric” 
filters where possible. At the U.S. Census Bureau, 
most economic series are extended with RegARIMA 
models that incorporate holiday and trading day 
effects. We apply symmetric filters (with forecasts) 
and asymmetric filters (without forecasts) to 
empirical data from series with large forecast errors 
to assess the revision size-effects.  

Disclaimer: Any views expressed are those of the 
author and not necessarily those of the U. S. Census 
Bureau.  

1. Introduction 

Forecasts extension is a key part of any seasonal 
adjustment procedure. With the addition of the 
popular ARIMA models, X-11-ARIMA (Dagum, 
1975) applied the X-11 method to time series 
extended with forecasts allowing points near the end 
of the time series to be seasonally adjusted using the 
same symmetric filters as those near the center of the 
series. Seasonally adjusted series published by the 
U.S. Census Bureau utilize the X-11 method 
currently deployed in X-13ARIMA-SEATS.  

There has been much work done on the effect of 
forecasts on seasonal adjustment revisions with 
concurrent seasonal adjustment. Bobbitt and Otto 
(1990) found significantly smaller revisions between 
concurrent and final estimates with forecasts than 
without. Moreover, they showed that the differences 
in revisions were smaller for estimates calculated 
with a full set of forecasts compared to estimates 
calculated with only one year of forecasts.  

Thus, it is clear from past research that when 
forecasts are reasonable, extending a series with 
forecasts for seasonal adjustment is preferred to the 
alternative method, asymmetric filters. For example, 

Figure 1 (see appendix) shows construction spending 
on pavement lighting with 36 months of forecasts. 
This series has a very obvious, stable seasonal pattern 
and the confidence bounds on the forecasts are tight. 
We can expect that the estimates we obtain from 
performing a moving average calculation with these 
forecasts will be reasonably close to the estimates we 
will obtain when the forecasts are replaced with real 
data. 

On the other hand, some series are more difficult to 
forecast and thus, subject to large forecast errors. One 
example is the construction expenditures on rubber 
and plastics plants series shown in Figure 2 (see 
appendix). This seasonal series has large forecast 
errors and has very wide confidence bounds. 
Naturally, we have questioned whether using 
forecasts with such large errors can still minimize 
seasonal adjustment revisions. In this paper, we seek 
to answer this question by comparing revisions to 
seasonally adjusted estimates with and without 
forecasts for series with large forecast errors. 

2. X-11 Background and History 

The X-11 method decomposes time series into trend-
cycle (C), seasonal (S), and irregular (I) components. 
The seasonally adjusted series is calculated by 
removing the seasonal component from the calendar 
adjusted original series. The decomposition can be 
either additive (1) or multiplicative (2). 
Multiplicative seasonal adjustment is the more 
common of the two for economic series at the Census 
Bureau. Only multiplicative seasonal adjustment was 
used for this study.  

𝑋𝑋𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝑆𝑆𝑡𝑡 + 𝐼𝐼𝑡𝑡  (1) 

𝑋𝑋𝑡𝑡 = 𝐶𝐶𝑡𝑡 ∙ 𝑆𝑆𝑡𝑡 ∙ 𝐼𝐼𝑡𝑡   (2) 

The X-11 method decomposes time series into these 
components by iterating between estimating the 
trend-cycle and seasonal components using a series 
of moving average filters. In general, these 
calculations take the form: 



𝑌𝑌𝑡𝑡 = � 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖

𝐹𝐹

𝑖𝑖=−𝐹𝐹

 

where 𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, and the filter is length is 2F+1.  

Near the center of the series, ( 𝑡𝑡0 < 𝑡𝑡 − 𝐹𝐹, 𝑡𝑡 + 𝐹𝐹 <
𝑇𝑇) the filter is symmetric (𝑤𝑤−𝑖𝑖 = 𝑤𝑤𝑖𝑖). However, near 
the ends of the series we do not have all of the 𝑋𝑋𝑡𝑡’s 
needed to calculate 𝑌𝑌𝑡𝑡 using the typical symmetric 
filters. Prior to X-11-ARIMA, the only option for 
these points was to use asymmetric filters applied to 
the data that we do have. X-11-ARIMA extended the 
series with forecasts from ARIMA models. When 
enough forecasts were generated, symmetric filters 
could be used to calculate seasonally adjusted values 
for all points in the time series. This approach 
generally resulted in smaller revisions to seasonal 
factors, thereby giving a more stable seasonal 
adjustment. Likewise, backcasts can be used to apply 
symmetric filters to values at the beginning of the 
series, though we will not consider backcasts for this 
paper.  

2.1 Example: 3x3 Filter 

To illustrate the difference between the two methods, 
we will look at 3x3 seasonal filter weights that would 
be used in one X-11 iteration. 

If the series is not extended with forecasts, only 
values up to time t can be used in the calculations for 
points near the end of the series. Thus, for a monthly 
series, the estimate of the seasonal component, �̂�𝑆𝑡𝑡|𝑡𝑡 , at 
time t given all of the information up to time t 
(commonly called the concurrent estimate) is given 
by: 

�̂�𝑆𝑡𝑡|𝑡𝑡 = 5
27
𝑋𝑋𝑡𝑡−24 + 11

27
𝑋𝑋𝑡𝑡−12 + 11

27
𝑋𝑋𝑡𝑡    

When 12 months of data are added, the 𝑡𝑡 + 12 value 
is incorporated into the calculation for �̂�𝑆𝑡𝑡. 

�̂�𝑆𝑡𝑡|𝑡𝑡+12 =
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After another 12 months of data have been added, the 
symmetric filter, centered at time t, is used.  

�̂�𝑆𝑡𝑡|𝑡𝑡+24 =
1
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Notice that since the weights must sum to one, the 
weights given to the series at time 𝑡𝑡, 𝑡𝑡 − 12, and 
𝑡𝑡 − 24 change as new values are added.  

When the series is extended with at least 24 forecasts, 
symmetric filters can be used for the concurrent 
estimate, treating the forecasted values as if they 
were true data points. Let 𝑋𝑋𝑡𝑡� denote the forecasted 
values. 

�̂�𝑆𝑡𝑡|𝑡𝑡 =
1
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𝑋𝑋𝑡𝑡−24 +

2
9
𝑋𝑋𝑡𝑡−12 +

3
9
𝑋𝑋𝑡𝑡 +

2
9
𝑋𝑋�𝑡𝑡+12|𝑡𝑡

+
1
9
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Note that both the weights applied and the data used 
in the calculation for the concurrent estimate, �̂�𝑆𝑡𝑡|𝑡𝑡 , 
differ between the case with forecast extension and 
the case without. As a result, the concurrent estimates 
could be quite different between the two treatments.  

2.2 Forecasting in Practice 

Further releases in the X-11 family of programs 
incorporated additional regression variables such as 
trading day, Easter (Bell and Hillmer, 1983), and 
outliers (Bell, 1984), which can improve forecast 
quality.  

Dagum (1978) gave some guidelines as to forecast 
quality, stating that ARIMA models used with the X-
11 method should fit the data well and produce 
“reasonable” forecasts. She defines “reasonable” as 
forecasts with a mean absolute error less than 5% for 
“well behaved” series and less than 10% for highly 
irregular series.  

At the Census Bureau, forecast extension has been 
the rule, regardless of the size of forecast errors. 
Bobbitt and Otto (1990) found that revisions were 
minimized by extending the series to the full forecast 
horizon (F months), but that extending the series with 
even a single year of forecasts could significantly 
reduce the magnitude of revisions. Bobbitt and Otto 
also noted that extending a series with forecasts from 
the airline model (rather than the selected model) still 



offered improvements in revisions over not 
forecasting at all. Moreover, they found no 
significant difference in revisions between series 
extended with forecasts from the airline model and 
those using forecasts from a carefully selected model, 
suggesting that model selection may not be of great 
importance when it comes to reducing revisions.   

Since forecast extension has been shown to reduce 
revisions in seasonally adjusted series, X-13ARIMA-
SEATS, the most recent release in the X-11 family of 
programs, extends the series with a year of forecasts 
by default (as did previous releases of the program). 
Therefore, to obtain an adjustment that does not 
utilize forecast extension, zero forecasts must be 
explicitly specified. 

3. Forecast Quality and Revisions 

Although Dagum (1978) offered guidelines for 
maximum forecast errors that should be permitted 
when extending a series with forecasts for seasonal 
adjustment, these are rarely checked in practice. 
Forecast errors are frequently used in comparing 
competing models during model selection but have 
not been used to determine how to treat data at the 
end of the series for seasonal adjustment.  

In this study, we investigated the effect of forecast 
quality on revisions to seasonally adjusted estimates. 
Revisions to seasonally adjusted estimates come from 
different sources depending on how we treat the 
points near the end of the series. Here we will 
consider the total revision, 𝑅𝑅𝑡𝑡 ,  or the absolute 
difference between the concurrent estimate, 𝑌𝑌�𝑡𝑡|𝑡𝑡, and 
the final estimate, 𝑌𝑌�𝑡𝑡|𝑡𝑡+𝐹𝐹 . This is somewhat of a 
simplification of the final estimate. The value of the 
weights beyond F months are very small but still 
nonzero. Therefore, 𝑌𝑌�𝑡𝑡  is revised beyond F months, 
but by a very small amount. The concurrent and final 
estimates without forecast extension are given by (3) 
and (4), respectively. The corresponding calculations 
with forecast extension are provided in (7) and (8), 
respectively. Symmetric weights are denoted by 
𝑤𝑤𝑖𝑖  and the asymmetric weights used for the 
concurrent estimate are denoted 𝑤𝑤�𝑖𝑖. 

𝑌𝑌�𝑡𝑡|𝑡𝑡 = ∑ 𝑤𝑤�𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖0
𝑖𝑖=−𝐹𝐹  (3) 

𝑌𝑌�𝑡𝑡|𝑡𝑡+𝐹𝐹 = ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖𝐹𝐹
𝑖𝑖=−𝐹𝐹  (4) 

𝑅𝑅𝑡𝑡 = �𝑌𝑌�𝑡𝑡|𝑡𝑡+𝐹𝐹 − 𝑌𝑌�𝑡𝑡|𝑡𝑡�  

= �∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖𝐹𝐹
𝑖𝑖=−𝐹𝐹 − ∑ 𝑤𝑤�𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖0

𝑖𝑖=−𝐹𝐹 � (5) 

= �∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖𝐹𝐹
𝑖𝑖=1 + ∑ (𝑤𝑤𝑖𝑖 − 𝑤𝑤�𝑖𝑖)𝑋𝑋𝑡𝑡+𝑖𝑖0

𝑖𝑖=−𝐹𝐹 � (6) 

If the series is not extended with forecasts, revisions 
come from changes to filter weights on existing data 
points and the addition of new data points into the 
moving average (6).   

If the series is extended with enough forecasts so that 
symmetric filters can be used, the filters’ weights are 
the same for both the concurrent and final estimates. 
Therefore, revisions come only from the forecast 
errors (10).  

𝑌𝑌�𝑡𝑡|𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖0
𝑖𝑖=−𝐹𝐹 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋�𝑡𝑡+𝑖𝑖|𝑡𝑡𝐹𝐹

𝑖𝑖=1  (7) 

𝑌𝑌�𝑡𝑡|𝑡𝑡+𝐹𝐹 = ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖𝐹𝐹
𝑖𝑖=−𝐹𝐹  (8) 

𝑅𝑅𝑡𝑡 = �𝑌𝑌�𝑡𝑡|𝑡𝑡+𝐹𝐹 − 𝑌𝑌�𝑡𝑡|𝑡𝑡�  

= |∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖𝐹𝐹
𝑖𝑖=−𝐹𝐹 − ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑡𝑡+𝑖𝑖0

𝑖𝑖=−𝐹𝐹 − 
∑ 𝑤𝑤𝑖𝑖𝑋𝑋�𝑡𝑡+𝑖𝑖|𝑡𝑡𝐹𝐹
𝑖𝑖=1 | (9) 

= �∑ 𝑤𝑤𝑖𝑖�𝑋𝑋𝑡𝑡+𝑖𝑖 − 𝑋𝑋�𝑡𝑡+𝑖𝑖|𝑡𝑡�𝐹𝐹
𝑖𝑖=1 � (10) 

4. Data and Methods 

This study follows the outline of the analysis done by 
Bobbitt and Otto (1990) and utilizes many of the 
same methods.   

We focus on the following two research questions: 
1) When forecast errors are large, are revisions to 
seasonally adjusted estimates smaller without 
forecasts than with forecasts? 2) If revisions are 
smaller with forecasts, does the number of forecasts 
used affect the size of revisions?   

We selected monthly series from the Value of 
Construction Put in Place Survey 
(www.census.gov/construction/c30/methodology.html) 
over the span of 1993 to 2009. This survey provides 
monthly estimates of the total dollar value of 
construction work done in the United States. The 
estimates are subject to error, including sampling 



error, nonsampling error, and other measurement 
errors for the indirect estimates. Information about 
the estimation methods is available on the survey 
website. The selected study period was January 2000 
to December 2004 in an attempt to minimize the 
impact of the Great Recession. Since the goal was to 
focus on series with large forecast errors, we selected 
series with average absolute percent error for one-
year ahead out of sample forecasts of 20% or more, 
twice the limit recommended by Dagum for highly 
irregular series.  

Current production models and filters were used and 
remained fixed throughout the study. Automatic 
identification of additive outliers, level shifts, and 
temporary change outliers was permitted throughout 
the entire span of the series. Model parameters were 
re-estimated with each run of X-13ARIMA-SEATS.    

Three different forecast treatments were compared 
for each series, zero forecasts, one year of forecasts, 
and a full set of forecasts, dependent on the seasonal 
filter length. These three treatments are denoted as 0, 
12, and F, respectively. We define a full set of 
forecasts, F, as the number of forecasts needed for 
the last point in the time series to be adjusted using 
symmetric seasonal filters applied to observed and 
forecasted data in a single X-11 iteration. This 
translates to 24 forecasts for a 3x3 filter, 36 for a 3x5 
filter, and 60 for a 3x9 filter.  

Data users generally prefer the difference between 
the concurrent and final estimates to be as small as 
possible. Due to the iterative nature of the X-11 
method, seasonally adjusted estimates do not achieve 
their final value for many years after the concurrent 
estimate, if they achieve a final value at all. However, 
revisions are generally trivial after a value is adjusted 
with symmetric filters using only real data, in other 
words after another F months of data have been 
added. For this study, the final seasonally adjusted 
estimate, 𝑌𝑌�𝑡𝑡|𝑡𝑡+𝐹𝐹, is the seasonally adjusted estimate 
for the value at time t calculated after an additional F 
months of data have been added to the end of the 
series. We use the final estimate for the treatment 
without forecast extension as the final estimate for all 
revisions calculations, thus comparing all concurrent 
estimates to the same target. Recall from (4) and (8) 
that the final seasonally adjusted estimates should be 

the same with or without forecast extension. The 
revisions for month t between the final estimate and 
the concurrent estimates under the three forecast 
treatments are defined as: 

𝑅𝑅𝑡𝑡,0 = �𝑌𝑌𝑡𝑡|𝑡𝑡+𝐹𝐹,0 − 𝑌𝑌𝑡𝑡|𝑡𝑡,0� 

𝑅𝑅𝑡𝑡,12 = �𝑌𝑌𝑡𝑡|𝑡𝑡+𝐹𝐹,0 − 𝑌𝑌𝑡𝑡|𝑡𝑡,12� 

𝑅𝑅𝑡𝑡,𝐹𝐹 = �𝑌𝑌𝑡𝑡|𝑡𝑡+𝐹𝐹,0 − 𝑌𝑌𝑡𝑡|𝑡𝑡,𝐹𝐹� 

We compared mean squared revisions, mean absolute 
revisions, and maximum absolute revisions for levels, 
log levels, and month-to-month changes. We 
calculated an analysis of variance (ANOVA) for each 
of these revisions measures to check the significance 
of the forecast method effect; in other words, to test 
whether revisions differed by forecast method. Since 
the data are heteroskedastic, the ANOVA was 
conducted on the ranks of the revisions measures 
rather than the revisions measures themselves. The 
magnitude of revisions varied greatly by series so we 
used the series mean as a blocking factor. Thus, the 
formula for the ANOVA is given by: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑅𝑅𝑖𝑖,𝑗𝑗) = 𝜇𝜇 + 𝑠𝑠𝑖𝑖 + 𝑓𝑓𝑗𝑗 + 𝑒𝑒𝑖𝑖,𝑗𝑗 

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑅𝑅𝑖𝑖,𝑗𝑗) is the rank of revisions measure R 
for series 𝑖𝑖 and forecast treatment 𝑗𝑗, 𝜇𝜇 is the overall 
mean, 𝑠𝑠𝑖𝑖 is the series mean for series 𝑖𝑖, and 𝑓𝑓𝑗𝑗 is the 
method effect for forecast treatment j. We also 
examined pairwise comparisons to test for 
differences in revisions between each pair of forecast 
treatments. Where the revisions measures were 
normally distributed, we compared pairwise with a 
paired t test. Where they were not normally 
distributed, we used a Wilcoxon signed rank test 
(“Wilcoxon signed-rank test”, 2015) 

5. Results 

The results of the ANOVAs, paired t tests, and 
Wilcoxon signed rank tests are presented in Tables 1 
to 3 for mean squared revision, mean absolute 
revision, and maximum absolute revision, 
respectively. In each table, the ANOVA column 
gives the F statistic of the forecast method effect 
from the ANOVA and columns 0-F, 0-12, and 12-F 
contain the t statistic from the paired t test or W 



statistic from the Wilcoxon signed rank test. Each 
statistic is accompanied by its corresponding p value.  

In each of our ANOVAs, the forecast method effect 
is significant. As in previous studies, the magnitude 
of revisions differs across forecast treatments.  

It is with the paired comparisons that we truly get at 
the two research questions. For the first, we looked 
for evidence of smaller revisions for estimates 
calculated without forecast extension than with either 
of the two forecast treatments. In particular, we 
looked for negative t statistics from the paired t test 
and negative W statistics from the Wilcoxon signed 
rank test for the 0-F and 0-12 comparisons. In fact, 
we found no such evidence. Every statistic for the 0-
F and 0-12 comparisons was positive, with all but 
one (maximum absolute revision of the level) 
significant at the 0.05 level. Thus, even with large 
forecast errors, smaller revisions are obtained with 
forecast extension than without. 

Another interesting result lies in the paired 
comparisons between revisions with one year of 
forecasts and with a full set of forecasts. There was a 
significant difference in revisions for only two of 
nine measures (maximum absolute revisions for log-
levels and month-to-month changes). This suggests 
that with large forecast errors, there is little if any 
improvement in revisions achieved by forecasting a 
full F months rather than only 12 months. This 
differs from the result from Bobbitt and Otto who 
found a significant reduction in revisions using a full 
set of forecasts compared to a single year of 
forecasts.  

Additionally, we looked at the correlations between 
forecast errors and the log revisions measures (Table 
4). Intriguingly, the correlations between revisions 
measures and forecast errors sharply decline from the 
lead-1 error to the lead-12 error. This is somewhat 
puzzling because the value one year away receives a 
much higher weight in the moving average 
calculation than the value one month away. Thus, we 
would expect the lead-12 error to be more highly 
correlated with revisions than the lead-1 error. Figure 
3 (see appendix) shows the weights associated with a 
3x5 seasonal filter and a 13-term Henderson filter; 
the pattern is similar for other filter combinations. It 
is also interesting to note that the correlations for 

revisions measures without forecast extension are 
almost as high as, or at times even higher than the 
corresponding correlations for revisions measures 
with forecast extension.  

Table 1. Mean Squared Revisions 

Revision 
Measure 

ANOVA 
(p) 

0-F 
(p) 

0-12 
(p) 

12-F 
(p) 

*Level 12.54 
(0.000) 

578.5 
(0.000) 

754.5 
(0.000) 

106.5 
(0.491) 

Log-Level 21.73 
(0.000) 

4.11 
(0.000) 

5.14 
(0.000) 

-0.72 
(0.474) 

*Month-to-
Month 

23.49 
(0.000) 

543.5 
(0.000) 

761.5 
(0.000) 

109.5 
(0.479) 

 

Table 2. Mean Absolute Revisions 

Revision 
Measure 

ANOVA 
(p) 

0-F 
(p) 

0-12 
(p) 

12-F 
(p) 

*Level 14.70 
(0.000) 

604.5 
(0.000) 

751.5 
(0.000) 

135.5 
(0.380) 

Log-Level 18.90 
(0.000) 

4.67 
(0.000) 

6.74 
(0.000) 

-0.34 
 (0.735) 

Month-to-
Month 

15.95 
(0.000) 

2.53  
(0.014) 

5.23 
(0.000) 

-1.16  
(0.251) 

 

Table 3. Maximum Absolute Revisions 

Revision 
Measure 

ANOVA 
(p) 

0-F 
(p) 

0-12 
(p) 

12-F 
(p) 

*Level 6.21 
(0.003) 

271.5 
(0.076) 

440.5 
(0.003) 

-23.5 
(0.879) 

Log-Level 10.53 
(0.000) 

4.10 
(0.000) 

2.99 
(0.004) 

2.74 
(0.008) 

*Month-to-
Month 

10.85 
(0.000) 

551.5 
(0.000) 

378.5 
(0.012) 

524.5 
(0.000) 

Tables 1-3. The first column contains the F statistic of the 
forecasting method effect from the ANOVA accompanied by the 
corresponding p value. The last three columns contain the t statistic 
of the paired t test with the corresponding p value when the data 
are normally distributed. For data that are not normally distributed, 
denoted by *, the Wilcoxon signed rank test was used and the W 
statistic from this test is provided with the corresponding p value. 

 

 

 

 

 

 



Table 4. Spearman Correlation Coefficients 
Between Revisions Measures and Forecast Errors 

 Forecast Error 
Revision Measure Lead 1 Lead 12  Lead 24  
Mean Squared Log Revision 
No Forecast .811 .464 .200 
12 Forecasts .859 .521 .251 
F Forecasts .824 .469 .226 
Mean Absolute Log Revision 
No Forecast .789 .449 .204 
12 Forecasts .854 .520 .255 
F Forecasts .827 .486 .239 
Maximum Absolute Log Revision 
No Forecast .809 .409 .148 
12 Forecasts .776 .403 .173 
F Forecasts .735 .358 .144 
 

6. Conclusions 

For this study, we compared revisions to seasonally 
adjusted estimates under three different forecast 
lengths, focusing on series with large forecast errors. 
In summary, we did not find any results to suggest 
that revisions could be improved by not utilizing 
forecasts, even when those forecasts are subject to 
large errors. Nearly all of the paired t tests and 
Wilcoxon signed ranks tests indicated revisions were 
significantly smaller when forecasts were used. 
However, extending series with a single year of 
forecasts may be sufficient to reduce revisions as 
there seems to be little improvement when further 
forecasts are added. Furthermore, these results 
support the default setting in X-13ARIMA-SEATS of 
using one year of forecasts automatically and the 
current Census Bureau practice of using forecasts for 
all seasonal adjustments. However, forecast errors 
should not be discarded from the seasonal adjustment 
dialog. Forecast errors remain an effective tool for 
model comparisons and give insight into the 
predictability, or lack thereof, of a given series. 
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Appendix: Graphs  
 

Figure 1: Construction expenditures on pavement lighting. Source: Value of Construction Put in Place 
Survey (1993-2009) http://www.census.gov/construction/c30/historical_data.html 

 

Figure 2: Construction expenditures on rubber/plastics plants. Source: Value of Construction Put in Place 
Survey (1993-2009) http://www.census.gov/construction/c30/historical_data.html 

 

 

 

 



Figure 3. Seasonal Adjustment Weights with 3x5 Seasonal Filter and 13-term Henderson Trend Filter 

 


