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This article advances the theory and methodology of signal extraction by developing the optimal treatment of difference sta-
tionary multivariate time-series models. Using a flexible time-series structure that includes co-integrated processes, we derive
and prove formulas for minimum mean square error estimation of signal vectors in multiple series, from both a finite sample
and a bi-infinite sample. As an illustration, we present econometric measures of the trend in total inflation that make optimal
use of the signal content in core inflation.
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1. INTRODUCTION

In many scientific fields, research and analysis make widespread use of a signal extraction paradigm. Often, inter-
est centres on underlying dynamics (such as trend, seasonal, and cyclical parts) of time series also subject to less
regular components representing temporary fluctuations. In such cases, the resulting strategy involves the estima-
tion of signals in the presence of noise. For instance, economists and policymakers routinely want to assess major
price trends, cycles in real activity, and other pivotal indicators of economic performance. Another application is
seasonal adjustment – a major undertaking for statistical agencies – wherein the noise is the seasonal component
and the signal consists of the non-seasonal components, such as trend and cycle.

Here, we concentrate on developing the formal apparatus for detecting signals in a comprehensive statistical
framework, motivated by two basic considerations. First, the signal extraction problems relevant to experience
usually involve more than one variable; at central banks, for instance, staff use a range of available series to
monitor prevailing inflationary conditions. Second, economic data often involve non-stationary movements, with
(possibly close) statistical relationships among the stochastic trends (or seasonals) for a set of indicators. In
this article, we generalize the existing theory and methodology of signal extraction to multivariate difference
stationary time series, handling both the asymptotic and finite-sample cases and introducing the treatment of
co-integrated systems.

While the co-integration literature expanded rapidly following initial advances (e.g. Engle and Granger, 1987;
Johansen, 1988; Stock and Watson, 1988), the problem of designing optimal estimators of common trends has
not yet been solved. Here, we show how the co-integrated structure has special implications for the characteristics
of the signal estimators. For instance, it follows from our formulae (Theorem 1) that the trend estimator must
satisfy the same integration relations as the true signal; such a finding, while plausible and aesthetically attractive,
remained elusive in previous work, despite the immense effort devoted to studying common trend specifications.
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210 T. MCELROY AND T. TRIMBUR

Our main new result is the formula for the finite-sample signal extraction matrix, for difference stationary vector
time series; this generalizes the univariate results of McElroy (2008) to the multivariate case. The bi-infinite-
sample case was first treated by Wiener (1949) and Whittle (1963) for stationary series and extended by Bell
(1984) to the difference stationary case. Bell (1984) focuses on univariate series and, although explicit multivari-
ate expressions are not derived or proven, he does mention in a remark that the same methods can be extended to
the multivariate case; however, collinearity of signal innovations is not explicitly mentioned or addressed therein.
Our Theorem 1 extends existing results to difference stationary time series that are possibly non-invertible (corre-
sponding to co-integration in the raw data). For finite samples, the difference stationary univariate case was treated
by Bell and Hillmer (1988), Pollock (2007), and McElroy (2008). The stationary multivariate case, restricted
to processes embeddable in a state space (SS) framework (excluding long-memory time series), was treated by
Gómez (2006). Theorem 2 gives the general treatment of difference stationary multivariate processes, for a finite
sample; in the case of a process that is embeddable in a linear SS framework, our direct formulae provide the
same signal extraction results as obtained from a properly initialized (see Bell and Hillmer, 1991, for discussion)
SS smoother.

Many of the economic applications involving the extraction of signals (e.g. the multivariate trend–cycle anal-
yses of Harvey and Trimbur, 2003, and Basistha and Startz, 2008) have been undertaken without the rigorous
foundation provided in this article and have relied on standard recursive filtering and smoothing algorithms. From
a computational perspective, our framework is complementary to linear SS methods; our matrix expressions give
a different, direct route for computing multivariate signals that is more straightforward conceptually but ultimately
produces the same results. The focus of this article is methodological, presenting a mathematical basis for signal
extraction applicable to widely used multivariate difference stationary models.

The rest of the article is arranged as follows. Section 2 develops the generalized Wiener–Kolmogorov (WK) for-
mula for a set of difference stationary time series, expressing the optimal multivariate filters in both the frequency
and time domains. Exact signal extraction results for a finite-length dataset are derived in Section 3. Then Section 4
reviews some major models for multivariate stochastic trends, and the methodology is illustrated by the statistical
measurement of trend inflation using both core and total inflation data. Section 5 provides our conclusions, and
mathematical proofs are in the Appendix.

2. MULTIVARIATE SIGNAL EXTRACTION FROM A BI-INFINITE SAMPLE

This section gives the solution to the signal extraction problem for multiple difference stationary series (i.e. series
that are stationary after the application of a differencing polynomial) and generalizes the WK formula. Theorem 1
provides a generalization of the results of Bell (1984), which solves the univariate problem and goes on to claim
that the same formulae apply verbatim to the multivariate case as well. We also explicitly address the presence of
collinearity through Proposition 1 and the subsequent discussion.

Consider a vector-valued difference stationary time series denoted ¹ytº D ¹yt ; t D 0;˙1;˙2; : : :º, with each
yt of dimension N . A multivariate filter for a set of N series has the expression

W .L/ D

1X
hD�1

W hL
h; (1)

where L is the standard lag operator and W h is the N � N matrix of coefficients for lag h. The filter produces
output ¹ztº as follows:

zt D W .L/yt D
1X

hD�1

W hL
hyt D

1X
hD�1

W hyt�h: (2)

Therefore, the weight matrix W h at lag h is applied to the lagged series yt�h. In the case that ¹ytº is stationary,
recall that its spectral density F is related to the spectral density of the output process ¹ztº via the formula
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SIGNAL EXTRACTION FOR NON-STATIONARY MULTIVARIATE 211

W .e�i�/F .�/W 0.ei�/: When W �h D W h for all h, the frequency response function (FRF) W .e�i�/ is real
valued and is identical with the gain function, denoted G ; that is, G .�/ D W .e�i�/.

Recall that the spectral density F is related to the autocovariances �h D E.yty
0
t�h

/ of stationary ¹ytº via
F .�/ D

P
h �he�i�h (a Hermitian matrix), and the multivariate autocovariance generating function (ACGF) is

given by substituting L for e�i�, so that �y.L/ D
P
h �hL

h: The basic aim of signal extraction is to estimate a
target signal ¹stº from a series ¹ytº of interest, where for all integer t

yt D st C nt ; (3)

and ¹stº and ¹ntº have dimension N � 1 and are uncorrelated with one another. In the two-component decom-
position (3), the signal ¹stº can represent either a single component of interest or a combination of components,
with the noise ¹ntº absorbing the remaining components of yt . For example, a signal could refer to the sum of
latent trend and cycle components in ¹ytº, while the noise might be the latent seasonal and idiosyncratic com-
ponents. We emphasize that the noise processes considered here are not ‘white’ but could be non-stationary
(e.g. a seasonal component).

In this article, we compute the Gaussian conditional expectation EŒst j¹ytº�, which will also be the minimum
mean squared error (MSE) linear estimator of st in the non-Gaussian case. This is our notion of optimality, and
we denote the estimate by Ost . For stationary series st and nt , the optimal estimate is given byW WK.L/yt , where
the WK filter (Wiener, 1949) has FRF

W WK.e
�i�/ D �s.e

�i�/
h
�s.e

�i�/C �n.e
�i�/

i�1
: (4)

Here, �s.e�i�/ and �n.e�i�/ are the multivariate spectral densities of signal and noise respectively.
For the multivariate signal and noise processes, we consider all difference stationary processes, including vector

autoregressive integrated moving average as a special case. For the j th observed process, ¹y.j/t º, we assume there
exists a unit root polynomial ı.j/.L/ of minimal degree dj ; such that ¹w.j/t º D ¹ı

.j/.L/y.j/t º is covariance
stationary. Similarly, ¹u.j/t º D ¹ı

.j/
s .L/s.j/t º and ¹v.j/t º D ¹ı

.j/
n .L/n.j/t º for appropriately chosen differencing

polynomials for the j th signal and noise. We assume that ı.j/ D ı.j/n ı.j/s for each j and that no unit roots are
shared between ı.j/n and ı.j/s (this assumption is not restrictive to the bulk of applications). As a special and
leading case, it may occur that the signal and noise differencing operators do not depend on j , so that they are
the same for each series (although they still differ for signal vs noise); we refer to this situation as ‘uniform
differencing operators’.

The identification of these differencing polynomials is taken as a given in all applications, in the sense that
practitioner selection of these differencing polynomials constitutes a choice of signals that are of interest. The only
practical restriction is that ı.j/.L/ applied to ¹y.j/t º be stationary. For example, if one is interested in a random-
walk trend extraction application from a trend–seasonal–irregular decomposition, then ı.j/s .L/ D 1 � L for each
j , while ı.j/n .L/ D 1 C L C L2 C L3 (for quarterly data). If, on the other hand, one wants to capture the ‘first
seasonal’ (i.e. seasonal effects that occur only once a year, not twice), then ı.j/s .L/ D 1CL2 and the noise consists
of a random-walk trend plus irregular plus the ‘second seasonal’, so that ı.j/n .L/ D .1 � L/.1C L/ D 1 � L2.

Let F u, F v, and F w denote the matrix spectral density functions for the differenced signal, noise, and observed
processes respectively. We suppose that F w is invertible almost everywhere, that is, the setƒ of frequencies where
F w is non-invertible has Lebesgue measure zero. Note that if the data process is co-integrated, then F w.0/ is
singular, although F w.�/ remains invertible for � ¤ 0. Next, define the ‘over-differenced’ processes:

@u.j/t D ı.j/.L/s.j/t D ı.j/n .L/u.j/t

@v.j/t D ı.j/.L/n.j/t D ı.j/s .L/v.j/t :
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212 T. MCELROY AND T. TRIMBUR

These occur when the data differencing polynomial ı.j/.L/ is applied to signal and noise respectively, resulting
in covariance stationary processes that may have zeroes in their spectral densities.

As part of the model specification and identification, ¹utº and ¹vtº are assumed to be uncorrelated with one
another, which is a reasonable condition when signal and noise are driven by distinct kinds of factors; for instance,
a long-run trend might be little affected by temporary forces behind noisy fluctuations. This correlation structure
is commonplace in the literature, and it has the attractive and intuitive property that tight model linkages, like
common trends, give rise to symmetric filter structures.

Note that each difference stationary process ¹y.j/t º can be generated from dj stochastic initial values y.j/�
together with the disturbance process ¹w.j/t º, for each j . The information contained in ¹y.j/t º is equivalent to that
in ¹w.j/t º [ y.j/� for the purposes of linear projection, since the former is expressible as a linear transformation of
the latter, for each j . In model fitting and forecasting applications, a working assumption for vector time series
is that these initial values y.j/� are uncorrelated with the disturbance process ¹w.j/t º; we will assume a stronger
condition that actually implies this assumption.

Assumption M1. Suppose that, for each j D 1; 2; : : : ; N , the initial values y.j/� are uncorrelated with the
differenced signal and noise processes ¹utº and ¹vtº.

This assumption generalizes the univariate Assumption A of Bell (1984) to a multivariate framework – each
set of initial values y.j/� is orthogonal not only to the differenced signal and noise processes for the j th series
but also for all N series. (Other types of assumptions are possible, but as argued by Bell, 1984, the framework of
Assumption A is the most appealing.) Set ´ D e�i� and ´ D ei�. For any matrix A; the matrix consisting of only
the diagonal entries is denoted by QA. Then for difference stationary (and possibly co-integrated) multivariate time
series, the optimal estimator of the signal, conditional on the observations ¹ytº, for each j and at each time t , is
given by a multivariate filterW .L/ described in the following.

Theorem 1. Assume that F w.�/ is invertible for each � in a subsetƒ � Œ��; �� of full Lebesgue measure. Also
suppose ¹utº and ¹vtº are uncorrelated with one another and AssumptionM1 holds. Leteı.´/ denote the diagonal
matrix with entries ı.j/.´/, with similar notation foreıs.´/ and Qın.´/. With the quantity

B.´/ D Q�v.´/ Qıs.´/�u.´/ Qın.´/ � Q�u.´/ Qın.´/�v.´/ Qıs.´/

defined, consider the filterW .L/ defined so that its FRF is given for all � 2 ƒ via the formula

W .´/ D Q�
�1

w .´/
�
Q�@u.´/C B.´/��1w .´/ Qı.´/

�
: (5)

Moreover, suppose this formula can be continuously extended to � 62 ƒ and refer to this extension by W .´/ as
well. Then the optimal estimate of the signal at time t is given by Ost D W .L/yt . Furthermore, the spectral density
of the signal extraction error process is

Q�
�1

w .´/
�
Q�u.´/�@u.´/ Q�u.´/C Q�v.´/�@v.´/ Q�v.´/

�
Q�
�1

w .´/

� Q�
�1

w .´/B.´/��1w .´/B0.´/ Q�
�1

w .´/:

When the differencing operators are uniform, a compact matrix formula for W .´/ is given by

W .´/ D �@u.´/�
�1
w .´/ D F @u.�/F

�1
w .�/ (6)

for � 2 ƒ, and by the limit of such for � 62 ƒ; the error spectral density is �u.´/�
�1
w .´/�v.´/.
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SIGNAL EXTRACTION FOR NON-STATIONARY MULTIVARIATE 213

Remark 1. The univariate case of formula (6) is given by Bell (1984), who remarks at the end of the article
that the method of proof can be extended to the multivariate case. However, this proposed expansion in the scope
of Bell’s (1984) exposition would rely on the assumption that matrix differencing operators [like Qın.´/] commute
with spectral density matrices. Only with uniform differencing operators is this assumption guaranteed to hold.

Remark 2. Defining the pseudo-ACGFs of signal and noise as

� s.L/ D �u.L/
h
Qıs.L/ Qıs.L

�1/
i�1

�n.L/ D �v.L/
h
Qın.L/ Qın.L

�1/
i�1

;

and substituting L for ´ D e�i�, together with (6) yields the same WK formula as the stationary case, namely (4).

We now show that the key assumptions of Theorem 1 hold for a very wide class of co-integrated processes.
Discussion is framed in the context of uniform differencing operators, so the vector signal and noise processes
satisfy ıs.L/st D ut and ın.L/nt D vt . Suppose that the Wold decompositions exist:

ut D „.L/�t ¹�tº Ï WN.0;†�/;

vt D �.L/�t ; ¹�tº Ï WN.0;†�/;
(7)

where WN.0;†/ denotes vector white noise, that is, serially uncorrelated process with zero mean vector and
N � N non-negative definite covariance matrix †. It is assumed that ¹�tº and ¹�tº are mutually uncorrelated,
and the moving-average filters „.´/ and �.´/ are linear and causal. As †� and †� are non-negative defi-
nite, F u.�/ D „.´/†�„

0.´/ is singular if and only if either j†� j D 0 or there is a matrix A and a � where
A0„.´/ D 0. The former case is described as collinearity of the innovations or in particular is referred to as ‘com-
mon trends’ when the signal is a trend (Stock and Watson, 1988). The latter case is a type of co-integration (with
A containing the co-integrating relations); co-integration in the sense of trends applies when there is a singular-
ity at the � D 0 frequency. Singularities in the spectrum of a differenced process can only arise in one of these
two ways, as collinearity or co-integration (in our generalized sense). Moreover, in the former case, it must fol-
low that the spectrum is singular at all frequencies, whereas in the latter case, there could be an isolated number
of singular matrices.

To ensure that F w is invertible almost everywhere, we assume that F v is positive definite at all frequencies – as
a sufficient condition. In such a case, the process ¹vtº is called invertible.

Proposition 1. Suppose that the differencing operators are uniform and that the differenced processes follow (7).
Also suppose that ¹vtº is invertible. Then F w is invertible except at a finite set of frequencies, and W .´/ can be
continuously extended from its natural domain ƒ to the entire interval Œ��; ��.

3. MULTIVARIATE SIGNAL EXTRACTION FROM A FINITE SAMPLE

Here, we present exact matrix formulae for the solution to multivariate signal extraction problems for a finite
series. The set-up is somewhat broader than in the previous section, including processes with heteroscedasticity of
known form. Let (3) hold for t D 1; 2; : : : ; T . Each series is now a length-T vector, y.j/ D Œy.j/

1
; y.j/
2
; : : : ; y.j/

T
�
0
,

and similarly for signal, s.j/; and noise, n.j/. For each j , the optimal estimate is the conditional expectation
E
�
s.j/

ˇ̌
y.1/; y.2/; : : : ; y.N/

�
. As in the previous section, the definition of optimality used here is the minimum

linear MSE estimator. The estimate for the j th signal is

Os.j/ D
NX
kD1

F jky.k/:
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214 T. MCELROY AND T. TRIMBUR

Each matrix F jk is T � T dimensional. The superscript j refers to the output, whereas the superscript k refers
to the input. It is sufficient to determine the entries of F jk such that error process Os.j/ � s.j/ is uncorrelated with
the observed data.

We may express the specification of the finite series in matrix notation with �.j/y.j/ being a stationary vector,
where �.j/ is a T � dj � T -dimensional matrix whose rows consist of the coefficients of ı.j/, appropriately
shifted. The application of each �.j/ yields a stationary vector, called w.j/, which has length T � dj (so w.j/ D
Œw.j/
djC1

; : : : ;w.j/
T
�
0
). Let †jkw D EŒw.j/w.k/

0
� denote the associated covariance structure. We further suppose

that the differencing is taken such that all random vectors have mean zero (this presupposes that fixed effects have
been removed via regression).

This discussion can also be extended to the signal and noise components as follows. Now, form the matrices
�.j/s and �.j/n corresponding to ı.j/s and ı.j/n : Let u.j/ D �.j/s s.j/ and v.j/ D �.j/n n.j/, with cross-covariance
matrices denoted †jku and †jkv . Now assume there are no common roots among ı.j/s and ı.j/n , so that ı.j/.L/ D
ı.j/s .L/ı.j/n .L/. Then as in the univariate case (McElroy, 2008)

�.j/ D �.j/n �.j/s D �.j/s �.j/n ; (8)

where �.j/n and �.j/s are similar differencing matrices of reduced dimension, having T � dj rows. It follows that

w.j/ D �.j/y.j/ D �.j/n u.j/ C�.j/s v.j/; (9)

and hence – if u.j/ and v.k/ are uncorrelated for all j; k –

†jkw D �
.j/
n †jku �.k/n

0
C�.j/s †jkv �.k/s

0
:

We can splice all these †jkw matrices together as block matrices in one large matrix †w, which is also the covari-
ance matrix of w, the vector composed by stacking all the w.j/. A key condition for optimal filtering is the
invertibility of †w; in this case, the Gaussian log likelihood is

logL.w;†w/ D �
�
w0†�1w wC log j†wj

�
=2; (10)

up to a constant (initial value vectors are factored out using Assumption MT ), and can be efficiently computed
using the innovations algorithm (Brockwell and Davis, 1991). An extended version of the article (McElroy and
Trimbur, 2012) shows that for possibly collinear signal and noise innovations, the invertibility of†w is guaranteed.

The following assumption, which is the analogue of Assumption M1 to the finite-sample case, is given
as follows.

Assumption MT . Suppose that, for each j D 1; 2; : : : ; N , the initial values of y.j/ (the first dj observations)
are uncorrelated with u and v.

Expressing the optimal estimate of the signal asbs D F y, we now present a compact formula for F . The
following notation is needed: if G is a block matrix partitioned into sub-matrices Gjk , then QG denotes a block
matrix consisting of only the diagonal sub-matrices Gjj , being zero elsewhere.

Theorem 2. Assume †w and all †jju , †jjv are invertible, and u.j/, v.k/ are mutually uncorrelated for all j , k.
Also suppose Assumption MT holds. Define block-matrices A, B , C , and D with jkth block entries given by

Ajk D �.j/s
0
†jju
�1
†jku †kku

�1
�.k/s ; Bjk D �.j/n

0
†jjv
�1
†jkv †kkv

�1
�.k/n ;

C jk D �.j/s
0
†jju
�1
†jku �.k/n

0
; Djk D �.j/n

0
†jjv
�1
†jkv �.k/s

0
:

wileyonlinelibrary.com/journal/jtsa Copyright © 2014 Wiley Publishing Ltd J. Time. Ser. Anal. 36
DOI: 10.1111/jtsa.12102

: 209–227 (201 )5



SIGNAL EXTRACTION FOR NON-STATIONARY MULTIVARIATE 215

Then the matrix M D QAC QB is invertible. Letting Q� denote a block diagonal matrix with the matrix �.j/ in the
j th diagonal,

F DM�1
�
QB C .C �D/†�1w

Q�
�
:

The covariance matrix of the error vector Os � s is M�1VM�1, where

V D AC B � .C �D/†�1w .C �D/0:

As an application, consider as the ultimate target of estimation some linear function of the signal, written as
H s for suitable H . (This could be a growth rate, if H acts on s by temporal differencing, or could be a cross-
panel aggregation of signals for a total.) Then the corresponding error covariance matrix is HM�1VM�1H 0,
which requires M and V as given earlier; thus having a knowledge of all entries of V , not just the diag-
onals (which are the MSEs for estimating s), is an advantage of utilizing Theorem 2, as opposed to an
SS approach.

4. SIGNAL EXTRACTION FOR RELATED AND COMMON TRENDS

We now treat some stochastic trend models widely used in econometrics. After developing the signal extrac-
tion filters, we discuss key aspects of the multivariate difference stationary case that warrant special attention,
such as the case of co-integration, or common trends, as in Stock and Watson (1988) and Harvey (1989). In
the case of common trends, the gain functions for signal extraction have a collective structure at the frequency
origin; this result, although not obvious a priori, is aesthetically appealing, and we give a formal proof in
the Appendix.

4.1. Discussion of Models

We follow the treatment of Harvey (1989), detailed here so as to set out our notation. Define the vector process
�t D .�.1/t ; : : : ; �.N/t /0 as the trend, "t D .".1/t ; : : : ; ".N/t /0 as the irregular, and yt D .y.1/t ; : : : ; y.N/t /0 as the
observed series. The multivariate local-level model (LLM) is given by

yt D �t C "t ; "t � WN.0;†"/;

�t D �t�1 C �t ; �t � WN.0;†�/;
(11)

where we may allow j†"j D 0, that is, collinear trend innovations. The irregular ¹"tº accounts for transient
factors, for instance, short-run movements due to weather, and is assumed to have invertible covariance matrix. We
parametrize each†with a Cholesky factorization‚D‚0, where‚ is unit lower triangular andD is a non-negative
diagonal matrix (Pinheiro and Bates, 1996). When the trend innovations ¹�tº are collinear (i.e. the process has
common trends present), †� has reduced rank K < N , and we set the last N �K entries of D to be zero, so that
‚ becomes N �K dimensional.

As an I(2) process, the smooth trend model (STM) specification accounts for a time-varying slope:

yt D �t C "t ; "t � WN.0;†"/; t D 1; : : : ; T;

�t D �t�1 C ˇt ;

ˇt D ˇt�1 C �t ; �t � WN.0;†�/:

(12)

This formulation tends to produce a visibly smooth trend when estimated. As with the LLM, †� can have a
reduced rank (corresponding to common trends).

Copyright © 2014 Wiley Publishing Ltd wileyonlinelibrary.com/journal/jtsaJ. Time. Ser. Anal. 36
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216 T. MCELROY AND T. TRIMBUR

4.2. Gain Functions and Finite-sample Filters

Here, we present expressions for gain functions in the bi-infinite case (and for exact filters for finite-length series
later). Let m denote an integer, where m D 1 for the LLM and m D 2 for the STM. Since

F u.�/ D †� F v.�/ D †" F w.�/ D †� C j1 � ´j
2m
†";

the quantities in Theorem 1 are �@u.´/ D †� and �@v.´/ D j1 � ´j
2m
†". Then the multivariate FRF, equivalent

to the gain, is

W .´/ D †�

�
†� C j1 � ´j

2m
†"

��1
: (13)

The time-domain expression for the filter follows by replacing ´ by L in (13).
The component gain functions are tied closely to the covariance matrices. Consider W .1/, which relates to the

lowest, limiting frequency. When †� is invertible, W .1/ D 1N , and there is a separation of gains at the zero
frequency – even though the FRF is non-diagonal everywhere else. So, in the absence of co-integration, the filters
eventually become specific to each series.

For the common trend case, with non-invertible †� , a different pattern emerges. Using (A2) in the proof of
Proposition 1, it follows that

W .1/ D lim
�!0

W .´/ D ‚
�
‚0†�1" ‚

��1
‚0†�1" :

In the special case of one common trend with ‚ D 	 – where 	 is defined to be the column vector of 1s – and
†" is a multiple of the identity matrix, we obtain W .1/ D 		0=N , which equally weights the contribution of each
input series. In general, when †� has less than a full rank, there exists ˇ0 such that ˇ0‚ D 0, which implies that
ˇ0Ost D ˇ0W .L/yt D 0. Hence, the signal estimate also has a co-integration property. We note in passing that a
basis for the space of co-integrating vectors is given by the column space of the inverse of the upper K �K block
of ‚.

For related trends, the determinant of†� is close to zero; the filter FRF for common trends is similar away from
frequency zero, and (13) gives

‰.´/ D ‚D‚0
�
‚D‚0 C j1 � ´j

2m
†�1"

��1
:

Now suppose we continuously change a related trend model to common trend form, by lettingN �K of the entries
ofD tend to zero. The limit of‚D‚0 becomes the reduced-rank version, with the lastK columns of‚ eliminated.
Hence, low frequencies – apart from frequency zero – are treated similarly by the signal extraction FRFs, when the
correlations are high. But the treatment of frequency zero remains distinct; given the discontinuity in the FRFs’
behaviour at the lower bound of the spectrum – the longest periodicity – it is important to clearly differentiate
between the cases of related and common trends.

The same analysis also shows that signal extraction MSE can differ between the two cases. The error spectral

density is †� .†� C j1 � ´j
2m
†"/
�1
†"; its average integral equals the signal extraction MSE matrix. Since the

values at � D 0 can be quite different for the common and related trend cases, the resulting MSEs need not be
the same. Because of continuity of these functions in �, no matter how close the related trends’ eigenvalues are
to zero, it will differ from the common trends’ FRF in a neighbourhood of � D 0, yielding a discrepancy in their
integrals (as also verified numerically). Therefore, it is important to keep a clear distinction between the common
versus related trend formulations when deriving gain functions or signal extraction MSE.
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Moving to analytical finite-length filters, the covariance matrices needed in Theorem 2 are given by

†u D †� ˝ 1T�m †v D †" ˝ 1T ; (14)

where˝ denotes the Kronecker product. Given white noise processes, we obtain partitioned matrices, each T �T
block of which is a scalar times the identity. In the case of common trends, recall that †� D ‚D‚0 has a reduced
rank. It follows from (14) that

†w D †� ˝ 1T�m C†" ˝��
0; (15)

where � is .T �m/� T , with row entries given by the coefficients of .1 � L/m. Observe that (15) can be used as
the basis for an explicit Gaussian likelihood for the observed data, given Assumption MT .

Also, (14) and (15) allow us to compute the signal extraction quantities of Theorem 2. Details are omitted here,
but the R code that provides both the exact Gaussian likelihood and the filter and error covariance matrices F ,
M , and V is available from the authors. Table I provides average run times (in seconds) for various algorithms by
sample size, for the LLM (with the related trend parameter specification discussed later). The Gaussian likelihood
is computed using both the innovations algorithm and the Kalman filter, with the former being slightly superior in
speed. The matrices F and V of Theorem 2 are computed as well (third column of Table I), and when applied to
the data to yield signal extraction estimates, the additional cost is given in the fourth column of Table I. If the goal
is just to obtain signal estimates and their MSEs, the sum of columns 3 and 4 could be compared with the Kalman
smoother column (the sixth), which is substantially faster. However, if one needs the entries of F or the full error
covariance matrix, then we should compare the third column with the seventh column, which obtains F via passing
impulse responses (i.e. unit vectors) through the Kalman smoother; then it is clear that the matrix-based approach
is substantially faster.

An important facet in real applications is to remove outliers and other fixed effects (e.g. trading day effects)
before moving on to signal extraction. Often, this is accomplished at the model fitting stage, by adapting the like-
lihood to allow for a mean function parametrized through regressors – this amounts to utilizing generalized least
squares estimation for the fixed effects. If stochastic seasonality is present in the data, the simple trend–irregular

Table I. Average run time (seconds) by sample size for various algorithms,
computed for the local-level model

Average run times for algorithms

Sample size Lik SigMat SigEx KF KS Coeff

25 0.0314 0.0721 0.0010 0.0409 0.0271 0.9884
50 0.0628 0.2860 0.0012 0.0828 0.0511 3.8894
100 0.1191 0.6614 0.0044 0.1539 0.1064 15.6767
150 0.1975 1.3934 0.0076 0.2330 0.1602 34.6117
200 0.2755 3.6801 0.0146 0.3129 0.1965 61.7130
250 0.3142 5.3545 0.0213 0.3858 0.2483 96.3984
300 0.4032 9.6289 0.0329 0.4646 0.3059 141.3734
350 0.4873 16.4432 0.0438 0.5710 0.3695 198.0243
400 0.5635 24.6435 0.0606 0.6447 0.4197 259.3929
450 0.6560 30.7412 0.0831 0.7296 0.4801 336.5640
500 0.7180 40.1444 0.0885 0.8042 0.5215 414.5795

Lik is the Gaussian likelihood, computed using the innovations algorithm; SigMat computes
the matricesF and V of Theorem 2; SigEx appliesF to the data to generate the signal extrac-
tion estimates; KF is the Kalman filter, together with a computation of the log determinant
term needed in the Gaussian likelihood; KS is the Kalman smoother, which yields the signal
extraction estimates; Coeff yields the coefficients of the Kalman smoother, that is, the entries
of F .
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Table II. Local-level model (LLM) parameter estimates for core–total inflation (1986Q1–
2010Q4), based on separate univariate LLMs and the related trend bivariate LLM

Series �2� �2� q �� �� R2D LB

Parameter estimates for LLM univariate
Core 5.82e�006 1.77e�005 0.329 NA NA 0.164 13.42
Total 7.41e�006 0.000172 0.0431 NA NA 0.261 13.26

Related trend bivariate
Core 5.18946e�006 1.84607e�005 0.281 1.000 0.49832 0.179 11.08
Total 3.66532e�006 0.000177859 0.0206 1.000 0.49832 0.355 12.77

See (11) for definitions. LB is the Ljung–Box statistic based on the first 10 residual autocorrelations, andR2D
is the coefficient of determination with respect to first differences. For the common trend LLM, the estimate
of � was 0.840.
NA, not applicable.

paradigm described here must be extended by including another stochastic latent component (or potentially sev-
eral components, if modelling the individual seasonal frequencies); then Theorem 2 can still be applied, but the
noise in the trend extraction problem will consist of seasonal plus irregular and will therefore be difference station-
ary (this is being studied further by the first author in a separate article). A simulation study of signal extraction
accuracy can be found in the Supporting Information to this article.

4.3. Inflation Co-movements and Trend Estimation

Our principal goal here is to illustrate the multivariate framework for signal extraction with integrated series. For
macroeconomic data, the non-stationary part often has an interpretation or represents a point of reference, as in
the case of trend inflation. Here, we consider the use of core inflation – that is, excluding food and energy items –
to inform our estimate of the trend in overall inflation. The models considered are the LLM and STM, discussed
in Section 4.1.

The base data are the quarterly indices for total and core personal consumption expenditure prices from 1986Q1
to 2010Q4 (source: Bureau of Economic Analysis). Inflation is defined as 4 � log.Pt=Pt�1/ for price index Pt .
In terms of notation, we consider K D 1 common trends and let 
 denote the correlation across series for a
given vector component – so for example, 
� is the correlation between the core and total irregular components.
The load matrix just takes the simple form Œ1; ��0 for a scalar � . Kiley (2008) uses a bivariate common trend
model with a random walk and with the loading factor constrained to unity. Here, we consider two possible trend
specifications and relax the assumption of perfect correlation; whether there are correlated or common trends
becomes an empirical question. Also, when we subsequently estimate the common trend form, we allow the
loading factor to be unrestricted.

Although the formula for the likelihood is derived from the Gaussian distribution, the assumption of normality
is actually not needed for the efficiency of the resulting maximum likelihood estimators (Taniguchi and Kakizawa,
2000). The likelihood function is evaluated using formula (10) for each value of the parameter vector, computed
using the innovations algorithm,1 with the code written in the R statistical programming language.

Local-level model results are given in Table II for the univariate case. The fit was adequate according to standard
diagnostics: R2

D
is the coefficient of determination with respect to first differences, while LB refers to the Ljung–

Box based on the first 10 residual autocorrelations – its 5% critical value is 16.9. The resulting trends are shown

1 As an aside, we independently estimated all the models using Kalman Filtering algorithms (using diffuse initial conditions for the level) and
obtained nearly identical results for the MLEs. As shown in Bell and Hillmer (1991), the exact Gaussian likelihood in (10) will be precisely
equal to the linear SS likelihood only when initial conditions for recursive computation are based on the transformation approach of Ansley
and Kohn (1985).
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Figure 1. Trend estimates from the univariate local-level model for core–total inflation (1986Q1–2010Q4)

in Figure 1. The signal–noise ratio is defined as q D �2�=�
2
� , which indicates the relative variability of trend and

noise (for a given model structure). The value of q reported in the table is much greater for the core; this quantifies
the informal expression that ‘core inflation has more signal’.

The results for the bivariate case are shown in Table II and also indicate a good fit. Relative to the univariate
case, the R2

D
rises substantially, now measuring over 35% for total inflation. This points to the utility of core

inflation in the model. The cross-correlation for the irregulars takes on a smaller positive value of 
� D 0:498,
while the correlation between the trend disturbances is numerically indistinguishable from unity. In reformulating
the model with a common trend, for identification, we take the trend to represent that of core inflation; the loading
factor � D 0:84 gives the coefficient for mapping the common trend into total inflation’s trend. Fit and parsimony
can be compared for the related trend and common trend models via the Akaike information criterion (AIC),
defined via �2 times the log likelihood, plus a penalty equal to twice the number of model parameters; here,
the AICs are �1349:25 for the related trend model and �1351:25 for the common trends, with lower values
being preferred.

The left panel of Figure 6 shows the resulting trend in total inflation and compares it with the univariate output.
The solid lines pertain to the bivariate estimates. There are noticeable differences in both the trajectory of the
bivariate trend and in the substantially reduced degree of uncertainty associated with its estimation. Linked to our
signal extraction formulas, the model-based estimator has a formulation as a bivariate filter; for each element as a
2 � 2 matrix of scalar filters of the usual form, Figure 2 plots the observation weight against the time separation
from the signal location. The core-to-core weighting pattern in the upper-left box resembles a double exponential
(with a slight offset). The weights for total-to-core pattern show that a weighted average of total is actually
subtracted. So, overall, adjacent values of core inflation are somewhat overweighted and offset by subtracting
weighted adjacent values of total inflation. The weights for estimating trend inflation, shown in the bottom half of
the figure, have the same basic pattern (since there is a common trend).
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Figure 2. Observation weights for estimating trends in core and total inflation for the local-level model. The horizontal axis is
the separation between the signal estimate and observation time points. Note that the y-axes have differing scales
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Figure 3. Total trend inflation gain functions, as transfer functions from core (dashed) and total (solid) inflation respectively,
based on the local-level model (left panel) and smooth trend model (right panel)

The gain functions (away from the end points) for estimating trend inflation are shown in the left panel of
Figure 3. The filter gain for the core-to-total pattern essentially has the usual shape of a low-pass filter with its focus
on low frequencies. The cross-gain for the total-to-total pattern is essentially an inverted low pass. Analogous to the
weight functions, there are small shifts in the gains compared with a univariate model’s signal gain, which would
range between zero and unity. Reflecting the filter weights, the gains for estimating the signal in core inflation have
a similar profile to those in Figure 3 and are omitted for brevity.
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Table III. Smooth trend model (STM) parameter estimates for core–total inflation (1986Q1–
2010Q4), based on separate univariate STMs and the related trend bivariate STM

Series �2� �2� q �� �� R2D LB

Parameter estimates for STM univariate
Core 6.36e�008 2.33e�005 0.00273 NA NA 0.133 16.37
Total 6.17e�008 0.000185 0.000334 NA NA 0.22 12.64

Related trend bivariate
Core 6.11564e�008 2.34043e�005 0.00261 1.000 0.513972 0.146 15.30
Total 6.89953e�008 0.000179544 0.000384 1.000 0.513972 0.346 14.07

See (12) for definitions. LB is the Ljung–Box statistic based on the first 10 residual autocorrelations, andR2D
is the coefficient of determination with respect to first differences. For the common trend STM, the estimate
of � was 1.06219.
NA, not applicable.

Trend
Core Inflation 
Trend High
Trend Low

1985 1990 1995 2000 2005 2010

0.01

0.02

0.03

0.04

0.05 Trend
Core Inflation 
Trend High
Trend Low

Irreg, Core Inflation 

1985 1990 1995 2000 2005 2010

-0.01

0.00

0.01
Irreg, Core Inflation 

Trend
Total Inflation 
Trend High
Trend Low

1985 1990 1995 2000 2005 2010

-0.050

-0.025

0.000

0.025

0.050

Trend
Total Inflation 
Trend High
Trend Low

Irreg, Total Inflation 

1985 1990 1995 2000 2005 2010

-0.075

-0.050

-0.025

0.000

0.025

Irreg, Total Inflation 

Figure 4. Trend estimates from the bivariate smooth trend model for core–total inflation (1986Q1–2010Q4)

The results for the STM are shown in Table III. The fit measures and diagnostics are similar to those for
the LLM, and there is again a clear superiority of the bivariate model over the univariate specification. The
cross-correlation for the irregulars is 
� D 0:514, while the correlation between the trend disturbances is essen-
tially unity. The common trend loading factor is � D 1:062, and the respective AICs are �1332:06 for related
trends and �1334:06 for common trends. The estimated trends, displayed in Figure 4, show more stable variation
and clearer turning points than the LLM. The weighting kernels for the STM case are shown in Figure 5, and the
gain functions for the resulting pair of low-pass filters for estimating trend inflation are shown in the right panel of
Figure 3. The gain applied to core inflation cuts off more sharply than the LLM gains (left panel), giving greater
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Figure 5. Observation weights for estimating trends in core and total inflation for the smooth trend model. The horizontal axis
is the separation between the signal estimate and observation time points. Note that the y-axes have differing scales

Trend (Univariate) 
Trend High (Univariate) 
Trend (Bivariate) 
Trend Low (Bivariate) 

Total Inflation 
Trend Low (Univariate) 
Trend High (Bivariate) 

1985 1990 1995 2000 2005 2010

-0.04

-0.02

0.00

0.02

0.04

0.06

Trend (Univariate) 
Trend High (Univariate) 
Trend (Bivariate) 
Trend Low (Bivariate) 

Total Inflation 
Trend Low (Univariate) 
Trend High (Bivariate) 

Trend (Univariate) 
Total Inflation 
Trend High (Univariate) 
Trend Low (Univariate) 
Trend (Bivariate) 
Trend High (Bivariate) 
Trend Low (Bivariate) 

1985 1990 1995 2000 2005 2010

-0.04

-0.02

0.00

0.02

0.04

0.06

Trend (Univariate) 
Total Inflation 
Trend High (Univariate) 
Trend Low (Univariate) 
Trend (Bivariate) 
Trend High (Bivariate) 
Trend Low (Bivariate) 

Trend (Smooth)
Total Inflation 
Trend High (Smooth)
Trend Low (Smooth) 
Trend
Trend High
Trend Low

1985 1990 1995 2000 2005 2010

-0.04

-0.02

0.00

0.02

0.04

0.06

Trend (Smooth)
Total Inflation 
Trend High (Smooth)
Trend Low (Smooth) 
Trend
Trend High
Trend Low

Figure 6. Trend estimates for total inflation (1986Q1–2010Q4) from various models: univariate and bivariate local-level model
(LLM; left panel), univariate and bivariate smooth trend model (STM; middle panel), and bivariate LLM and STM (right panel)

persistence in the direction of the trend as well as increased smoothness. Further comparisons of the estimated
trends of total inflation can be found in the middle and right panels of Figure 6.

While our illustrations have used simple stochastic trend plus noise models, they already show that the exact
optimal weighting of just two series has non-obvious aspects, such as a slight over-emphasis on the signalling
series compensated by subtraction of a weighted average of the noisier target.

5. CONCLUSION

We have provided explicit matrix formulae for multivariate signal extraction computed from either finite or bi-
infinite samples drawn from difference stationary processes, continuing a thread of literature (e.g. Wiener, 1949;
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Whittle, 1963; Bell, 1984) on signal extraction theory. These results are the most general in the literature to
date, encompassing processes embeddable in a linear SS framework, while also being more broadly applicable to
vector long-memory processes. A precise discussion and treatment of co-integration is provided. We highlight, in
particular, how an invariance property arises: trend estimators (from a bi-infinite sample) have the same collinearity
relations as the unobserved stochastic trends. This is intuitively attractive, but not obviously true beforehand. These
new tools are illustrated on a bivariate inflation application.

In the statistical interpretation and analysis of co-movements across related time series, a diverse set of multi-
variate signal extraction systems arise in economics and other fields. The bi-infinite analysis shows, in compact
form, precisely how to best use the rich set of information in a set of variables to construct signal estimates. Cor-
respondingly, we can now examine the analytical expressions for the optimal set of weight polynomials, applied
to the observation vectors, based on the matrix ACGFs or pseudo-ACGFs in the time domain; in the frequency
domain, the generalized gain function is now based on matrix (pseudo-)spectra, illustrated by the introduction of
multivariate low-pass filters for I(1) and I(2) series.

The finite-sample time-domain formulae, which we have used for the actual application of the filters, expand the
available methodology and give a strategy distinct from the SS approach. Our compact method gives exact results
at all time points in a single matrix formula, and the entire error covariance matrix is explicitly available, which
is beneficial when studying the uncertainty in signal growth rate estimates, or cross-sectional aggregate signal
estimates. However, linear SS methods have already been implemented in several excellent software packages (e.g.
STAMP) and tend to be faster than the matrix methods introduced here. A practitioner may lean towards using SS
methods when speed is of utmost importance but may use the matrix formulae when it is necessary to gain insight
into filter weights, or for models not embeddable in the SS framework.
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APPENDIX A:

Proof of Theorem 1.
The action of each filter on a time series is obtained by replacing ´ byL and ´ byL�1. The error process is defined
via �t D W .L/yt � st . [It is also easy to derive an expression for 1N �W .´/, which has the same formula as (5)
but with signal and noise swapped.] Then applying (5) to this error decomposition yields

�t D Q�
�1

w .L/B.L/��1w .L/wt C Q�
�1

w .L/ Q�@u.L/nt � Q�
�1

w .L/ Q�@v.L/st : (A1)

Now even in the case that differencing operators are not uniform, it is true that

Q�@u.´/nt D Q�u.´/ Qın.´/ vt ;
Q�@v.´/ st D Q�v.´/ Qıs.´/ut :

Substituting these expressions into (A1) shows that ¹�tº is stationary. Moreover, by the definition of B.´/, we
see that �t is orthogonal to wtCh for all h and any t . In the expectation calculations, we can use the Cramer
representation for ¹wtº to obtain expressions involving integrals – then the fact that the FRF is not defined on
a set of measure zero becomes irrelevant. Moreover, since the error process only depends on ¹utº and ¹vtº, it
is orthogonal to the initial values of the data process as well, by Assumption M1. Hence, the error process is
uncorrelated with ¹ytº, proving the optimality of the signal extraction filter. The formula for the error spectral
density also follows from the earlier description of the error process, using the fact that the spectra are Hermitian
[i.e. �.´/ D � 0.´/].

Under the assumption that the differencing operators are uniform, we have (since such diagonal matrices
commute with any other matrix)

B.´/��1w .´/ Qı.´/ D
�
Q�@v.´/�@u.´/ � Q�@u.´/�@v.´/

�
��1w .´/:
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Using this relation produces

W .´/ D Q�
�1

w .´/
�
Q�@u.´/C

�
Q�@v.´/�@u.´/ � Q�@u.´/�@v.´/

�
��1w .´/

�
D Q�

�1

w .´/
�
Q�@u.´/�@u.´/C Q�@v.´/�@u.´/

�
��1w .´/ D �@u.´/�

�1
w .´/:

Similar substitutions in the error spectral density produce the stated formula.

Proof of Proposition 1.
The spectral density of the differenced data process is

F w.�/ D jın.´/j
2
„.´/†�„

0.´/C jıs.´/j
2
�.´/†��

0.´/:

For any fixed �, this expression is the linear combination of a positive definite matrix and a non-negative definite
matrix. So long as jıs.´/j

2 is non-zero, F w.�/ will be invertible, but otherwise, the matrix is singular. Let p.�/ D
jın.´/j

2 and q.�/ D jıs.´/j
2 for short. If �s is a root of q, then

Fw.�s/ D p.�s/„.´s/†�„
0.´s/;

where ´s D e�i�s . If this matrix has determinant zero, then either j†� j D 0, or there exists some matrix a
(depending on �s) such that a0„.´s/ D 0. The former case corresponds to the collinearity of the differenced
signal process, whereas the latter case is discussed further in the following. If the differenced signal process is
collinear, then from the singular value decomposition of †� , we can write this matrix as ‚D�‚0. Here, D� has
a reduced dimension corresponding to the number of non-zero eigenvalues of †� , and ‚ is rectangular. Then the
Sherman–Morrison–Woodbury formula (Golub and Van Loan, 1996) yields

F�1w .�/ D q�1.�/
�
�.´/†��

0.´/
��1
�
p.�/

q.�/

�
�.´/†��

0.´/
��1

„.´/‚D�

�
°
q.�/1N C p.�/‚

0„0.´/
�
�.´/†��

0.´/
��1

„.´/‚D�

±�1
�‚0„0.´/

�
�.´/†��

0.´/
��1

:

This formula is quite informative: the preceding derivation shows that qF�1w is bounded for all �, even in a
neighbourhood of �s . Unfortunately, the matrix F w is not invertible at �s , and the rate of explosion of q�1.�/ is
generally such that the Whittle likelihood (3.1.5 of Taniguchi and Kakizawa, 2000) is not well defined. However,
the FRF (6) for any � such that q.�/ ¤ 0 is given by

W .´/ D 1N � q.�/�.´/†��
0.´/F�1w .�/

D p.�/„.´/‚D� �
°
q.�/1N C p.�/‚

0„0.´/
�
�.´/†��

0.´/
��1

„.´/‚D�

±�1
�‚0„0.´/

�
�.´/†��

0.´/
��1

;

and the limit as �! �s of this is well defined; we set q.�/ D 0 and p.�/ D p.�s/ (which is non-zero, since the
signal and noise differencing polynomials are relatively prime by assumption). That is,

W .´s/ D p.�s/„.´s/‚†� �
°
p.�s/‚

0„0.´s/
�
�.´s/†��

0.´s/
��1

„.´s/‚D�

±�1
�‚0„0.´s/

�
�.´s/†��

0.´s/
��1

:

(A2)
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Now let us treat the case that the innovations are not collinear, and yet a0„.´/ D 0 at some measure zero set of
frequencies (with a different a for each frequency �). Let ƒ denote the set of frequencies where Fw is invertible,
so that

�@u.´/�
�1
w .´/ D 1N � q.�/

�
1N C p.�/Fu.�/F�1v .�/

��1
;

which is well defined for all frequencies �; for � 62 ƒ, we can take the limit as � ! �s , since the matrix inverse
in the preceding expression always exists. The limit is just 1N , so W.´/ can be continuously extended to all
frequencies. This completes the proof.

Proof of Theorem 2.
First note that M jj D �.j/n

0
†jjv
�1
�.j/n C�.j/s

0
†jju
�1
�.j/s ; and invertibility follows from the univariate argu-

ment of McElroy (2008), using the fact that ı.j/s and ı.j/n share no common factors. Next, the jkth block matrix
of the putative formula for F is

NX
`D1

M j`�1

0
@ QB`k C NX

p;qD1

�
C `p �D`p

�
�pqw �qk

1
A DM jj�1

0
@Bjk C NX

pD1

�
C jp �Djp

�
�pkw �.k/

1
A ;

using the block-diagonal structure of M , QB , and �. Letting �w D †
�1
w , the formula for F jk is then

F jj D M jj�1
h
�.j/n

0
†jjv
�1
�.j/n C†N`D1

�
�.j/s

0
†jju
�1
†j`u �.`/n

0
��.j/n

0
†jjv
�1
†j`v �.`/s

0
�
� j̀

w �.j/
i

F jk D M jj�1†N`D1

�
�.j/s

0
†jju
�1
†j`u �.`/n

0
��.j/n

0
†jjv
�1
†j`v �.`/s

0
�
�`kw �.k/

for j ¤ k. Note that in these formulae, for ` D j , we obtain

�.j/s
0
†jju
�1
†jju �.j/n

0
��.j/n †jjv

�1
†jjv �.j/s

0
D �.j/ ��.j/ D 0

by (8), which causes some simplification. The signal error for the j th signal is

.j/ Dbs.j/ � s.j/ D
X
k¤j

F jky.k/ C F jjn.j/ � .1 � F jj /s.j/:

Optimality of the matrix formulae follows from demonstrating that .j/ is orthogonal to y, the stacking of the
individual data vectors y.k/. As in Bell (1984), we can write y as a linear combination of w and various initial
values for all the component series. By utilizing Assumption MT , it is then sufficient to demonstrate that .j/ is
uncorrelated with w. Noting the formula for 1 � F jj , we obtain

.j/ D
X
k¤j

M jj�1
NX
`D1

�
C j` �Dj`

�
�`kw w.k/

CM jj�1
h
�.j/n

0
†jjv
�1

v.j/ C†N`D1
�
C j` �Dj`

�
� j̀

w �.j/s v.j/
i

�M jj�1
h
�.j/s

0
†jju
�1

u.j/ �†N`D1
�
C j` �Dj`

�
� j̀

w �.j/n u.j/
i
:

wileyonlinelibrary.com/journal/jtsa Copyright © 2014 Wiley Publishing Ltd J. Time. Ser. Anal. 36
DOI: 10.1111/jtsa.12102

: 209–227 (201 )5



SIGNAL EXTRACTION FOR NON-STATIONARY MULTIVARIATE 227

Next, we show that the covariance between this error vector and each w.p/ is zero for each p. Noting (9), we obtain

E
h
.j/w.p/

0
i
D
X
k¤j

M jj�1
NX
`D1

�
C j` �Dj`

�
�`kw †kpw

CM jj�1
h
�.j/n

0
†jjv
�1
†jpv �.p/s

0
C†N`D1

�
C j` �Dj`

�
� j̀

w �.j/s †jpv �.p/s
0
i

�M jj�1
h
�.j/s

0
†jju
�1
†jpu �.p/n

0
�†N`D1

�
C j` �Dj`

�
� j̀

w �.j/n †jpu �.p/n
0
i

DM jj�1
NX
`D1

�
C j` �Dj`

� X
k¤j

�`kw †kpw

CM jj�1†N`D1

�
C j` �Dj`

�
� j̀

w †jpw

�M jj�1
�
C jp �Djp

�
:

By the definition of �`kw , we know that
P
k �

`k
w †kpw is a matrix of zeroes unless ` D p, in which case it is an

identity matrix. As a result, the preceding calculation simplifies to zero. This completes the proof of optimality.
The signal extraction covariance matrix is produced by using the preceding expression for .j/ in EŒ.j/.k/

0
�,

after much algebra.
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